
CS 217: Artificial Intelligence and Machine Learning Jan-Apr 2024

Lecture 8: Logistic Regression and Multiclass Classification
Lecturer: Swaprava Nath Scribe(s): SG15, SG16

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

8.1 Logistic Regression

Continuing the introduction to the logistic regression in the last lecture, let us first jot down the problem
and the notations.

Let Y be a binary output variable and we want to model the conditional probability P (Y = 1|X = x) for
features X ∈ Rd, this can be done as[

P (Y = 1|X = x,w1, w2)
P (Y = 0|X = x,w1, w2)

]
=

[
ζew

T
1 x

ζew
T
2 x

]
; ζ =

1

ew
T
1 x + ew

T
2 x

where w1 and w2 are the associated weight vectors and ζ is the normalization factor, which ensures the sum
of the two probabilities to be one.
Furthermore,

P (Y = 1|X = x,w1, w2) =
ew

T
1 x

ew
T
1 x + ew

T
2 x

P (Y = 1|X = x,w1, w2) =
1

1 + e(w2−w1)T x

P (Y = 1|X = x,w1, w2) =
1

1 + e−(w1−w2)T x

P (Y = 1|X = x,w) =
1

1 + e−wT x
;w = w1− w2

P (Y = 1|X = x,w) = σ(wTx)

where σ is the sigmoid function,

σ(z) =
1

1 + e−z
; z ∈ R

One can also use the fact σ(z) + σ(−z) = 1 to compute P (Y = 0|X = x,w).

8.2 Computing the weights vector

Let w∗
LR ∈ Rd denote the optimal value for the weights vector which correspond to d features of the input

variable that maximizes the logistic regression objective function. We will use MLE to compute the same,

w∗
LR = argmax

w

i=n∏
i=1

P (Y = yi|X = xi, w)

8-1

8-2 Lecture 8: Logistic Regression and Multiclass Classification

for the training data given as n tuples of the input-output form (xi, yi),

w∗
LR = argmax

w

i=n∑
i=1

log(P (Y = yi|X = xi, w))

w∗
LR = argmin

w

i=n∑
i=1

− log(P (Y = yi|X = xi, w))

let us denote the sum to be minimized as NLL(w) and each of the summands in the summation to be
NLLi(w), NLL stands for the Negative Log Likelihood. As yi ∈ {0, 1} we can simplify

NLLi(w) =

{
− log((P (Y = 1|X = xi, w))) when yi = 1

− log(1− (P (Y = 1|X = xi, w))) otherwise

thus NLLi(w) can be rewritten as

NLLi(w) = −yi log(σ(wTxi))− (1− yi) log(1− σ(wTxi)))

The loss function so formed is the cross-entropy loss which is encountered quite frequently whenever we are
trying to estimate a probability distribution for an event from a set of observations.

Simplifying further,

NLLi(w) = yi log(1 + e−wT xi)− (1− yi) log(
e−wT xi

1 + e−wT xi
)

NLLi(w) = yi log(1 + e−wT xi) + (1− yi)w
Txi + (1− yi) log(1 + e−wT xi)

NLLi(w) = (1− yi)w
Txi + log(1 + e−wT xi)

taking the grads,

∇wNLLi(w) = xi
−e−wT xi

1 + e−wT xi
+ (1− yi)xi

∇wNLLi(w) = −xi(yi − σ(wTxi))

we use gradient descent to approximate the weights vector

wt+1 ← wt − η

n∑
i=1

∇wNLLi(w)

After training our weights this model classifies points as

ŷ =

{
1 if P (y=1|x̂,w)

P (y=0|x̂,w) > 1

0 otherwise

Note: However this leads to a linear decision boundary. For a non-linear decision boundary we can, as
we have done earlier make the use of basis functions. This will, as expected, increase the computational
complexity of the model. Here, our prediction changes as,

P (Y = 1|X = x,w) = σ(wTΦ(x))

where w is the weights matrix of the appropriate dimensions.

https://en.wikipedia.org/wiki/Cross-entropy

Lecture 8: Logistic Regression and Multiclass Classification 8-3

−4 −2 0 2 4

−4

−2

0

2

4

x

y
Class 1
Class 2

Linear Decision Boundary
Non-Linear Decision Boundary

Figure 8.1: Linear and Non-Linear Decision Boundaries

8.3 Multi-class Classification

8.3.1 One vs Rest Classifier

−4 −2 0 2 4

−4

−2

0

2

4

x

y

Class 1
Class 2
Class 3

Figure 8.2: Multi-class classification problem

This method uses multiple binary regression steps to classify the data. This method seems to be a kind of
hack because the final probability distribution we have is not a real one. The basic idea behind this is we
consider one class as the first class and all the rest of classes as the second classes and apply binary regression
on these two. We do this for every class.

8-4 Lecture 8: Logistic Regression and Multiclass Classification

−4 −2 0 2 4

−4

−2

0

2

4

x

y

Class 1
Class 2
Class3

Linear Decision Boundary

Figure 8.3: Sub-Problem 1

−4 −2 0 2 4

−4

−2

0

2

4

x

y

Class 1
Class 2
Class3

Linear Decision Boundary

Figure 8.4: Sub-Problem 2

Lecture 8: Logistic Regression and Multiclass Classification 8-5

−4 −2 0 2 4

−4

−2

0

2

4

x

y
Class 1
Class 2
Class3

Linear Decision Boundary

Figure 8.5: Sub-Problem 3

After perfoming all the binary regressions, in the end we have k weight vectors w1, w2, . . . , wk corresponding
to each class. Suppose we have a test data point x̂

σ(wT
i x̂) is the probablity of x̂ being in class i (8.1)

The final prediction is given by:
ŷ = argmax

k
(σ(wT

k x̂)) (8.2)

i.e, after computing the probabilities for a given data point to belong to each of the three classes we choose
the one for which the probability is highest.

8.3.2 Softmax Regression

The above distribution is not real. We want an actual probability distrubution. This takes us back to
analysis we did earlier for binary regression. We will perform similar analysis for multiple classes(Suppose
there are K classes). We will assign the score of wT

k x̂ to P (y = k|x,w), that is

wT
1 x̂ → P (y = 1|x,w)

wT
2 x̂ → P (y = 2|x,w)

...

wT
k x̂ → P (y = k|x,w)

As we did before , we will exponentiate the wT
k x̂ and also normalise the values by addind a factor ρ to get a

valid probability distribution.

f(x̂, w) =

P (y = 1|x̂, w)
P (y = 2|x̂, w)

...
P (y = k|x̂, w)

 =

ρew

T
1 x̂

ρew
T
2 x̂

...

ρew
T
k x̂

 , w =

wT

1

wT
2
...

wT
K

K×d

(8.3)

8-6 Lecture 8: Logistic Regression and Multiclass Classification

where d is dimesion of data point, K is number of classes, and

ρ =
1∑K

j=1 e
wT

j x̂

This is also known as the Softmax-Function.
Finding out the value of wi is a different story, once we have the found the wi by regression, we use them to
predict the class of x̂ by as follows:

ŷ = argmax
i

(P (y = i|x,w)) = argmax
i

(
ew

T
i x̂∑K

j=1 e
wT

j x̂

)
(8.4)

To train our model, we will perform a regression with the same loss function as in the Binary Logistic
regression:- Negative Log Likelihood function:-

NLL(w) = −
n∑

i=1

log [P (yi|xi, w)]

= −
n∑

i=1

K∑
j=1

I{yi = j}log

[
ew

T
j xi∑K

m=1 e
wT

mxi

]
(8.5)

We intend to find the gradient of NLL(w), with respect to each of the wi, so that we can perform gradient
descent. But to make our life easier , lets first consider NLLi(w)(loss corresponding to ith data point :

NLLi(w) = −
K∑
j=1

I{yi = j}log

[
ew

T
j xi∑K

m=1 e
wT

mxi

]
(8.6)

Now take the gradient with repsect to wk, we have two cases:
Case 1 : yi = k

∇wk
NLLi(w) = −∇wk

(
log

[
ew

T
k xi∑K

m=1 e
wT

mxi

])

= −

(
1− ew

T
k xi∑K

m=1 e
wT

mxi

)
xi

Case 2 : yi = l ̸= k

∇wk
NLLi(w) = −∇wk

(
log

[
ew

T
l xi∑K

m=1 e
wT

mxi

])

= −

(
− ew

T
k xi∑K

m=1 e
wT

mxi

)
xi

We can also write this as:
∇wk

NLLi(w) = (fk(xi, w)− I{yi = k})xi (8.7)

where fk(xi, w) represents the kth row of the softmax-function.Another thing to note that we want to
eliminate the I{} function from our expression, in order to do that, we can represent our y′is using one-hot
representation. For each data point, yi is a vector whose all elements are 0, except the kth , with is 1, if
yi belongs to kth class.

yi = [0 0 . . . 1
↑

kthindex

. . . 0]

Lecture 8: Logistic Regression and Multiclass Classification 8-7

Using this we can write :

∇wk
NLLi(w) = (fk(xi, w)− y

(k)
i)xi (8.8)

Also summing over i gives us the overall gradient

∇wk
NLL(w) =

n∑
i=1

(fk(xi, w)− y
(k)
i)xi (8.9)

Now all that is left is to do the standard GD, where each update step would be:

w′ :

wT

1

wT
2
...

wT
K

←

wT
1

wT
2
...

wT
K

− η

∇w1NLL(w)T

∇w2
NLL(w)T

...
∇wK

NLL(w)T

 (8.10)

It can also be proven, that this GD converges.

8.4 Naive Bayes Vs Logistic Regression

Discriminative Models: Discriminative models tries to draw a decision boundary between classes in a
classification problem.It tries to find a relation between the input data set to the classification it belongs to.

Generative Models: Generative models, in contrast to discriminative models, focus on modelling the
underlying probability distribution of the entire dataset. Instead of learning a decision boundary between
classes, generative models aim to learn how the data is generated.

Naive Bayes is a generative model as it focuses on learning the conditional probabilities of features of given
classes rather than drawing explicit decision boundaries. It estimates how likely certain features are for each
class, allowing it to make predictions based on observed data.

Logistic Regression is indeed a discriminative model as it aims to draw a decision boundary in the feature
space to separate different classes. By learning the relationship between input features and the binary
outcome, it directly models the posterior probability of belonging to a particular class, enabling effective
classification based on the identified decision boundary

8.4.1 Equivalence of Gaussian Naive Bayes and Logistic Regression

Gaussian Naive Bayes is a machine-learning classification technique based on a probabilistic approach that
assumes each feature of the class follows a normal distribution

Naive Bayes is given as follows,

argmaxyk
P (Y = yk|x) = argmaxyk

(
∏k

i=1 P (xi|Y = yk)) P (Y = yk)

In Gaussian Naives P (x = xj |Y = yk) is a normal distribution where x1, x2..... are all features for a given
class yk.

P (x = xj |Y = yk) ∼ N (µjk, σ
2
jk)

To proceed further, we consider 3 assumptions, Those are

1)xi, xj are conditionally independent.

8-8 Lecture 8: Logistic Regression and Multiclass Classification

2)let π be a different constant from the usual one.Let P (Y = 1) = π , P (Y = 0) = 1- π which means we are
considering that we are given only two classes .

3)We assume σjkfor all k is equal to σj

P (x = xj |Y = 0) ∼ N (µj0, σ
2
j0) , P (x = xj |Y = 1) ∼ N (µj1, σ

2
j1)

Now lets find out the conditional probability of a Y = yk for a given feature set x means say x represents
(x1, x2, x3, . . .), i.e., the combination of all features.

P (yi = 1|x) =
(

P (x|yi = 1)P (yi = 1)

P (x|yi = 1)P (yi = 1) + P (x|yi = 0)P (yi = 0)

)
(8.11)

The above equation can also be written as

P (yi = 1|x) = 1

1 + P (x|yi=0)P (yi=0)
P (x|yi=1)P (yi=1)

(8.12)

P (yi = 1|x) = 1

1 + exp
(
ln
(

P (yi=0)
P (yi=1)

)
+ ln

(
P (x|yi=0)
P (x|yi=1)

)) (8.13)

As x1, x2, x3, . . . are independent features so to find joint probability we can multiply individual probabilities.
Say there are total d features.

P (yi = 1|x) = 1

1 + exp
(
ln 1−π

π + ln
∏d

i
P (xi|yi=0)
P (xi|yi=1)

) (8.14)

P (yi = 1|x) = 1

1 + exp
(
ln 1−π

π +
∑d

i ln
P (xi|yi=0)
P (xi|yi=1)

) (8.15)

P (xi|yi = 1) =
1√
2πσ2

i1

exp

(
− 1

2σ2
i1

(xi − µi1)
2

)
(8.16)

P (xi|yi = 0) =
1√
2πσ2

i0

exp

(
− 1

2σ2
i0

(xi − µi0)
2

)
(8.17)

ln

(
P (x|yi = 0)

P (x|yi = 1)

)
= ln

 1√
2πσ2

i0

exp
(
− 1

2σ2
i0
(xi − µi0)

2
)

· 1√
2πσ2

i1

exp
(
− 1

2σ2
i0
(xi − µi1)2

)
 (8.18)

As we have assumed σjk for all k is equal to σj

Then above equation becomes

ln

(
P (x|yi = 0)

P (x|yi = 1)

)
=

µ2
i1 − µ2

i0

2σi
+

µi0 − µi1

σ2
i

xi (8.19)

Substituting in eq 8.15 we get

Lecture 8: Logistic Regression and Multiclass Classification 8-9

P (yi = 1|x) = 1

1 + exp
(
ln
(

1−π
π +

∑d
i

(
ln
(

µ2
i1−µ2

i0

2σ2
i

)
+ µi0−µi1

σ2
i

xi

))) (8.20)

Now let us compare it with

P (yi = 1|x) = 1

1 + exp(w0 +
∑d

i wixi)
(8.21)

w0 = ln

(
1− π

π

)
+

d∑
i

ln

(
µ2
i1 − µ2

i0

2σ2
i

)
(8.22)

wi =
µi0 − µi1

σ2
i

(8.23)

We can compare the eq 8.21 with that of logistic regression eq 8.24 and they are similar.

P (yi = 1|xi, w) =
1

1 + e−(wTxi)
. (8.24)

	Logistic Regression
	Computing the weights vector
	Multi-class Classification
	One vs Rest Classifier
	Softmax Regression

	Naive Bayes Vs Logistic Regression
	Equivalence of Gaussian Naive Bayes and Logistic Regression

