
CS 217: Artificial Intelligence and Machine Learning 9th Feb 2024

Lecture 9: Perceptron Classifier Models
Lecturer: Swaprava Nath Scribe(s): SG17,SG18

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

This lecture covers perceptrons - their training algorithm and proof of convergence, in detail. Towards the
end, we also touch on the topic of decision trees.

9.1 Introduction to perceptron models

Formally, perceptrons are a linear deterministic binary classification method.

They use a linear function of the form w⊺x to perform binary classification. Since it is a binary classifier, it
segregates data into two classes, which we label +1 and -1 for ease of notation.

The perception outputs a prediction ỹi as:

ỹi = fw(xi) = sgn(w⊺xi)

Here sgn(x) is the signum function, which returns 1 if x is positive or 0, and -1 if negative.

Note that for ease of notation, the vector x contains the input data augumented by 1 as its 0th component
(the linear function also contains a constant intercept). It is hence a vector with d+ 1 dimensions where d
is the number of features of the input.

In a perceptron model, we consider the hyperplane in d+1-dimensional space with normal vector w (referred
to as the classification plane), and classify instances of x based on which side of the plane they lie on.

Hence, an input xi is labelled +1 if w⊺xi ≥ 0 and labelled -1 if w⊺xi < 0. Here’s a visual representation of
the same.

x

y

w
Classification Plane

+

+

+

+

+

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

––

–

–

–

–

–

Labelled as 1

Labelled as -1

9-1

9-2 Lecture 9: Perceptron Classifier Models

9.2 Finding correct parameter w for a perceptron

We follow a simple algorithm to find a w that performs said classification correctly:

1. Start with a random vector w0 (generally initialized to 0 for simplicity)

2. Randomly select an instance (xi, yi) from the dataset

3. If the predicted label for this datapoint is wrong, update w as given in pseudocode to correct the
misclassification. Note that due to our model, the data instance xi is misclassified if yi ·w⊺xi < 0.

4. Repeat steps 2 and 3 until there are no updates in w for a continiuous fixed number of iterations or
the number of iterations crosses a predicided threshold.

Algorithm 1: Finding suitable parameter w

w0 = 0
for t = 0 . . .maxIter do

i = random{1, 2, . . . , n}
if yi ·w⊺xi ≤ 0 then

wt+1 ← wt + yi · xi

else
wt+1 ← wt

end

end

Equivalently, we could replace the conditional statement in step 3 by updating on every datapoint as given
below which changes w only when the predicted output is incorrect.

Algorithm 2: Finding suitable weight w

w0 = 0
for t = 0 . . .maxIter do

i = random{1, 2, . . . , n}
wt+1 ← wt +

1
2 · (yi − sgn(yi ·w⊺xi)) · xi

end

9.2.1 Remarks on the algorithm

Classification algorithms we have studied in the past, including Linear and Logistic regression are called
batch algorithms as they require the whole dataset to be processed together.

The perceptron algorithm however is an online algorithm which uses the data points one-by-one. Every
update tilts the classification plane in such a way that it resolves, or atleast reduces the margin of misclas-
sification, of the particular data point.

A visual representation of the algorithm is shown ahead.

Lecture 9: Perceptron Classifier Models 9-3

x

y

wt

Old Classification Plane

++

+

+

+

+

–

–

–

–

–

–

–

+
Misclassified xi

wt+1

New Classification Plane

Here, on setting wt+1 = wt + xi, we can see that the perceptron model corrected the classification plane so
that wt+1 correctly predicts xi. However, that might not always be the case.

x

y

wt

Old Classification Plane

+

+

+

+

+

+

–

–

–

–

–

–

–

+
Misclassified xi

+ xi′

wt+1

New Classification Plane

This time, on correcting wt for the misclassified point, the new wt+1 still fails to correctly classify xi.
Furthermore, it misclassifies an additional point xi′ which is clearly undesirable. Note that this particular
dataset is not linearly separable (by observation) and hence, any linear perceptron model will misclassify
atleast one point even with corrections applied to w.

Hence, a step involving xi may not necessarily result in a parameter w that resolves the misprediction, but
it still change the value w⊺xi in the correct direction. The proof of the same is as follows.

Proof. Consider a misclassified example (xi, yi); i.e. sgn(w
⊺
t xi) ̸= yi.

We will show how the algorithm improves the value of yiw
⊺
t+1xi, making it more positive with every

update.

9-4 Lecture 9: Perceptron Classifier Models

On updating wt+1 = wt + yi · xi,

yiw
⊺
t+1xi = yi · ((wt + yixi)

⊺xi)

= yiw
⊺
t xi + y2i x

⊺
i xi

= yiw
⊺
t xi + ∥xi∥2

As ∥xi∥2 ≥ 0,

yiw
⊺
t+1xi ≥ yiw

⊺
t xi

Since we made the value of yiw
⊺xi more positive, it is more likely that yiw

⊺xi ≥ 0 and we have succeeded
in improving the model.

9.2.2 Summary

We have shown how perceptron is a mistake-driven online learning algorithm. Untill now, we have shown
how updates are made to the w parameter of the perceptron to make corrections in the classification of our
data points.

We will now prove that this algorithm is guaranteed to converge for linearly separable training data.

9.3 Proof of convergence

Theorem 9.1. If a dataset with ||xi||2 < 1 ∀i is linearly separable, that is, there exists a vector w∗ with
margin of separation γ then the perceptron algorithm always finds a correct solution (not necessarily the same
solution) in at most 1

γ2 updates.

Proof. We define linear separability as the existence of a hyperplane that divides the input space into two
half-spaces, such that all points of one class lie in one half-space and those of the other class lie in the other
half-space. Hence,

∃ w∗ such that (yi ·w∗⊺xi) ≥ 0 ∀ (xi, yi) ∈ D

We define the margin of separation as γ = min
i
{|w∗⊺xi|} = min

i
{∥w∗∥ · ∥xi∥ · cos θi}.

We need to track two quantities:

• w⊺
i w

∗

• ∥wt∥22

Claim 1: After every update, w⊺
i w

∗ increases by at least γ.

wt+1w
∗ = (wt + yixi)w

∗

= wtw
∗ + yix

⊺
i w

∗

Since yix
⊺
i w

∗ ≥ γ, we have wt+1w
∗ −wtw

∗ ≥ γ.

Lecture 9: Perceptron Classifier Models 9-5

Claim 2: ∥wt∥22 increases by at most 1 at every update.

∥wt+1∥22 = w⊺
t+1wt+1 = (wt + yixi)

⊺(wt + yixi)

= ∥wt∥22 + 2yi ·w⊺
t xi + ∥xi∥22

Since yi ·w⊺
t xi < 0 and ∥xi∥22 ≤ 1, we have w⊺

t+1wt+1 ≤ w⊺
t wt + 1.

Now suppose w0 = 0. After k iterations we have:

w⊺
kw

∗ ≥ kγ

∥wk∥2 < k ⇒ ∥wk∥ <
√
k

Since w⊺
kw

∗ = ∥wk∥ · ∥w∗∥ cos θi, we obtain
√
k > kγ, thus k <

1

γ2
.

This enforces an upper bound on the number of iterations. Hence, our algorithm converges to an optimal
parameter w∗ in atmost 1

γ2 iterations if the dataset is linearly separable.

9.3.1 Limitations of Perceptrons

1. This algorithm does not give us a rate of convergence.

2. In some datasets, 1
γ2 is extremely large, rendering the upper bound on number of iterations pointless.

3. May not converge if dataset is not linearly separable.

9.4 Loss function view of Perceptrons

Our goal of choosing w to maximize yi(w
⊺xi) can also be framed as:

w∗ = argmin
w

∑
i ∈ misclassified

−yi · (w⊺xi)

Thus, we can make a loss function Li as such:

Li = max{0,−yiw⊺xi}

and L =
∑n

i=1 Li.

The Li we have defined is also known as hinge loss, as it appears as a hinge at the origin:

x

y

Hinge Loss

9-6 Lecture 9: Perceptron Classifier Models

Since this is not differentiable at origin, we take the derivative there to be 0 or some other arbitrary value.
It does not usually matter because, statistically, we will have to face such a situation with a probability of 0.

In this way, we can view our Perceptron algorithm as the Stochastic Gradient Descent of this loss function,
as:

1. Like SGD, we calculate the gradient for a single data point at a time.

2. The derivative of this loss function comes out to be exactly the update we have been using so far.

The proof of the same is below:

Proof. We are performing a stochastic gradient descent (SGD) update: wt+1 = wt −∇wLi.

Note that

∇wLi =

{
0, if the prediction is correct

−yixi, if the prediction is incorrect

Thus, the update is only performed when yi ̸= w⊺
t xi, and it is done as follows: wt+1 = wt + yixi, which is

exactly the same as the Perceptron Algorithm.

Lecture 9: Perceptron Classifier Models 9-7

9.5 Decision Trees

At the end of the lecture, we touched upon decision trees, another tool used for classification problems.
Decision trees are, as you probably guessed, trees, where each node considers a feature or a function of the
features of the input vector, and the tool accordingly traverses to one of the children of the node based on
the value of the same. It simulates a human-like case-by-case classification mechanism. A diagram to help
visualise the same can be found below:

Suppose our dataset has 4 features (cyl, disp, origin, year) and has to be classified into 2 classes good and
bad.

Fuel Efficiency Cyl Disp Origin Year

good 3 low
...

...

bad 4 med
...

...
... 5 high

...
...

... 6
...

...
...

A decision tree for the same might look like the following:

Cyl

3

Good

4

Disp

Low

Bad

Med

Good

High

Bad

5

...

6

...

7

Origin

· · · · · · · · ·

· · ·

