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Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

17.1 Dimensionality reduction

Dimensionality reduction involves condensing dataset information while preserving essential characteris-
tics. The primary objective is to reduce algorithmic complexity and enhance model performance by removing
redundant or irrelevant features without losing much information. Suppose we are given some input data,
with dimension d, the problem we want to solve is whether we can reduce the dimension of the data to some
m < d, without losing, or compromising a lot of the information.
We have two methods to achieve this:

• Unsupervised: D = {xi} =⇒ Principal Component Analysis (PCA)

• Supervised: D = {xi, yi} =⇒ Linear Discriminant Analysis

17.2 Principle Component Analysis

Principal Component Analysis (PCA) is a fundamental technique that helps extract the most informative
features and transform high-dimensional data into a more manageable low-dimensional form. It identifies a
set of orthogonal axes called principal components (PCs) that capture the maximum variance upon orthog-
onal projection of the data onto these axes.
Say we have some data as shown in the figure. Let the vectors be u1 and u2 onto which projections are done.
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Figure 17.1: PCA illustration
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We can say that v1 is a better basis vector than v2 since the variations among the data points in the
original dataset are best depicted by the projections on v1 rather than v2.

Consider a dataset D = {x1, x2, ..., xn}, xi ∈ Rd

Our aim is to map dataset D onto m dimensions where m < n.
The question becomes which vectors to choose as our new basis vectors. To be able to capture the most
important trends or patterns among the given data points, they have to be projected onto a vector that
maximises the variance of projected data

17.2.1 Optimisation

Here, we’re interested in getting a unit vector u1 ∈ Rd, such that the variance of the projected data is
maximum. And this vector will be our first PC. So here, for the sake of notation, we define the projection
of x1 on u1 as :

Proju1 (x1) =
(
xT
1 .u1

)
u1 =

(
uT
1 .x1

)
u1

where u1 is a unit vector
Now, to calculate the variance, we get the mean of the projected data as:

Mean of the projected data on u1 =
1

n

n∑
i=1

Proju1
(xi)

=
1

n

n∑
i=1

(
u1

T .x̄i

)
u1

=
(
u1

T .x̄
)
u1

Now, we find the variance of the projected data. We know that each of the projected data points is(
uT
1 .xi

)
u1. Since all projected points are in the direction of u1, and u1 is a unit vector, we can therefore

write variance in terms of distance of
(
uT
1 .xi

)
u1 from the

(
uT
1 .x̄

)
u1 as :

Variance of the projections =
1

n

n∑
i=1

(
uT
1 · xi − uT

1 x̄
)2

=
1

n

n∑
i=1

uT
1 (xi − x̄) (xi − x̄)

T
u1

= uT
1 Su1 , where S =

1

n

n∑
i=1

(xi − x̄) (xi − x̄)
T

Here, we take a small digression to take a note of S, we can write X = [x1 − x̄ x2 − x̄ ... xn − x̄], where
xi’s and x̄ ∈ Rd. We have S′ = XXT, and we get that

S′(i, j) =

n∑
k=1

(xki − x̄i) (xkj − x̄j)

Now, also we have,

S(i, j) =
1

n

n∑
k=1

(xki − x̄i) (xkj − x̄j)



Lecture 17: Dimensionality Reduction 17-3

Therefore, we have S = 1
nXXT, hence S is covariance matrix, of the vectors x1, x2, ..., xn

Now, we are back to the original discussion, that is, getting a unit vector u1 such that the variance of the
projected data is maximum. So far, we have reduced the optimisation to the following problem:

max
u1

uT
1 Su1

st uT
1 u1 = 1

Now the question comes: is it a convex optimization problem? Here the optimisation function f(u1) =
uT
1 Su1, is convex because ∇2f (u1) = 2S = 2

n
XXT is positive semi definite. The problem is not convex

because the feasible region itself is not convex, and instead of minimizing it, we are maximizing it. So, it
looks like we will find another way out.

17.2.1.1 Orthonormal Eigenvectors

Before we state the main theorem that we are going to use, we first introduce a few terminologies:

• For a matrix A, we say a vector v to be eigenvector with eigenvalue λ, if following holds:

Av = λv

• If two vectors v,u, satisfies :

vT .v = 1 , uT .u = 1 and vT .u = uT .v = 0

then we say, the vectors v,u as orthonormal vectors.

Theorem ( Spectral theorem for real matrices)

A real symmteric martix A
d×d

has a orthonormal basis of Rd, formed by eigenvectors of A.

Although we ain’t going to use the actual version of the theorem, instead, we use the equivalent version,
which states that every real symmetry matrix A

d×d
has d orthonormal eigenvectors.

17.2.1.2 Optimising the reduced problem

Here, we can observe that S is a real symmetry matrix,

ST =

(
1

n
XXT

)T

=
1

n

(
XXT

)T
=

1

n

(
XT

)T
XT =

1

n
XXT = S

Now, using the theorm stated above, we can say that ∃ vi, λi such that ,

Svi = λivi where

{
vT
i .vj = 0 if i ̸= j, i, j ∈ [1, 2, ..., d]

vT
i .vi = 1 if i ∈ [1, 2, ..., d]

for i = 1, 2, ..., d
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Which can be equivalently rewritten as:

S
[
v1 v2 · · · vd

]
=

[
λ1v1 λ2v2 · · · λdvd

]
=

[
v1 v2 · · · vd

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λd


Denoting

[
v1 v2 · · · vd

]
by V , and by the condition that v1,v2, ...,vd are orthonormal vectors we have

that
V TV = I

we have,
SV = V Σ

where,

Σ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 ... λd


Therefore,

S = V ΣV T

Now, putting this back into the reduced optimization problem, we have the following optimisation problem:

max
u1

uT
1 V ΣV Tu1

st uT
1 u1 = 1

Since the vectors v1,v2, ...,vd form a basis of Rd ∃ α1, α2, ..., αd such that u1 = α1v1 + α2v2 + ...+ αdvd

which is equivalently,
u1 = V αT where α =

[
α1 α2 · · · αd

]
∴ Our optimisation problem reduces as:

max
α

α
(
V TV

)
Σ
(
V TV

)
αT st α

(
V TV

)
αT

max
α

αΣαT st ααT

max
α

d∑
i=1

α2
iλi st

d∑
i=1

α2
i = 1

Suppose, λj = max (λ1, λ2, ..., λd), then clearly the solution to our optimisation is α such that αi =
1 (i = j) ∀ i ∈ [1, 2, ..., d], we summarise the result for first PC u1 as follow:

max
u1

uT
1 Su1 st uT

1 .u1 = 1 and S = ST

=⇒ u1 = vj where λj = max (λ1, λ2, ..., λd) and Svi = λivi ∀ i ∈ [1, 2, ..., d]
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17.2.2 Generalisation for reduction to m dimensions

After we have the first PC u1, we can find the second PC u2, by solving the following optimisation
problem:

max
u1

uT
2 Su2 st uT

2 .u2 = 1 and uT
1 .u2 = 0

=⇒ u2 = vk st λk = max {{λ1, λ2, ..., λd} \ {λj}}

where λj = max {λ1, λ2, ..., λd} ,Svi = λivi ∀ i ∈ [1, 2, ..., d]

In other words, if we order the eigenvectors according to their eigenvalues, then u1 is the largest eigenvector,
and u2 is the second largest eigenvector of S.
To generalize in the end, to reduce to m dimension, we just take the projection of the data points to the
first m eigenvectors of S, where eigenvectors are being ordered for the eigenvalues. In a nutshell, take the
first m largest eigenvectors, say u1,u2, ...,um, and then to reduce the dimension to m, take the projection
of each of the data points xi ∈ Rd, in Span {u1,u2, ...,um}.

17.2.3 PCA Algorithm

1. Compute mean of data points, x̄

2. Mean centre the data i.e., compute xi − x̄, ∀i

3. Compute the covariance matrix, S = 1
n

∑n
i=1(xi − x̄)(xi − x̄)T

4. Do eigenvalue decomposition of S = V ΣV T

5. Pick m top eigenvectors (corresponding to largest eigenvalues): u1, ...um → Principal Components

6. Create a projection matrix, U = [u1, ...um]

7. For each xi ∈ D, UTxi will give the projection on m-dimensional space

Note that for UTx is a m-dimensional vector.

UTx =


uT
1 x

uT
2 x
...

uT
mx


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17.3 Supervised Learning
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Figure 17.2: PCA’s Blindness towards Class Discrimination

Utilizing the vector v1 from PCA for data projection results in the loss of class distinctions. Thus, employing
vector v2 would be more advantageous in this context.
As we can see, PCA fails to preserve the intrinsic class characteristics. We need a projection that provides
us with more resolution between classes.
We need a good measure to evaluate these projections.

J(u) = |µT
1 u− µT

2 u| where µi is the mean of class i

J(u) is one possible measure, but it alone is not good enough since it only considers the means of various
classes.

Objective:

• Different classes are well separated.

• Data within the same class is not well separated.


