
CS 217: Artificial Intelligence and Machine Learning Jan-Apr 2024

Lecture 20: Sequential and Simultaneous Move Games
Lecturer: Swaprava Nath Scribe(s): SG39, SG40

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

20.1 Limitations of Backward Induction and Various Enhance-
ments

The computation of the function uagent(s) for all the states s that occur in the game is computationally
expensive for large games like Chess which have about 1040, 10170 nodes in the game tree. Hence solving a
game exactly is not practical at all for large games. Now we see possible alternatives for enhancements like
the Depth Limited Search and α,β Pruning.

20.1.1 Depth Limited Search

Depth-limited search is a variant of depth-first search (DFS) algorithm used in graph traversal. In DFS, the
algorithm explores as far as possible along each branch before backtracking. However, this approach might
lead to very deep paths in some game trees.

Depth-limited search addresses this issue by imposing a depth limit on the exploration. When the algorithm
reaches the specified depth limit, it stops exploring that branch further and backtracks to explore other
branches. This prevents the algorithm from getting stuck in deep paths and allows it to handle very deep
trees effectively thus reducing the computational time.

The utility of the agent can be written as

uagent(s, d) =



utility(s) if isEnd(s)

eval(s) if d = 0

max
a∈actions(s)

{uagent(succ(s, a), d− 1)} if player(s) = agent

min
a∈actions(s)

{uagent(succ(s, a), d− 1)} if player(s) = opponent

(20.1)

Here eval(s) is a domain specific function denoting the possible utility to the agent. For example in the
game of chess, it can be written as

eval(s) = army +mobility + king′s safety + . . . (20.2)

The contribution of army towards the utility can be represented by the following equation

army = 10100(K −K ′) + q(Q−Q′) + r(R−R′) + . . . (20.3)

Here K, Q, R and K ′, Q′, R′ are the number of king, queen and rooks that the agent and the opponent
respectively have. The constants can be appropriately chosen according to the value of the pieces in the
game. The constant 10100 (very large) for the kings denotes that if the agent’s king is out of the board while
opponent’s king is still on board, then the utility is minimum for the agent.

20-1



20-2 Lecture 20: Sequential and Simultaneous Move Games

The mobility can be expressed in the following way

mobility = c× (#legal moves−#legal moves′) (20.4)

Where c is a suitable constant.

20.1.2 α,β Pruning

α, β−Pruning is a technique used in game theory to reduce the number of nodes evaluated in the minimax
algorithm search tree. It aims to eliminate branches that are deemed irrelevant to the final result.

20.1.2.1 Binary Tree of Actions with Alpha-Beta Values

Consider the following binary tree representing actions in a game, along with alpha-beta values:

A

B

D

3 5

E

6 9

C

F

1 2

G

0 -1

Here, we initialise α with -∞ and β with +∞ in all action nodes.

20.1.2.2 Marking Subtrees for Pruning

Using alpha-beta pruning, we mark subtrees to be pruned based on the values of α and β. If α ⩾ β at a
node, we can prune the subtree rooted at that node as it won’t affect the final decision.

20.1.2.3 Formulae for Alpha and Beta

In alpha-beta pruning:

• For ‘Max’ nodes: α = max(α, value)

• For ‘Min’ nodes: β = min(β, value)

These updates help narrow down the search space, making game-playing algorithms more efficient.



Lecture 20: Sequential and Simultaneous Move Games 20-3

20.1.2.4 Run of the Algorithm for an Example

If, for example, at node ‘Z’, α ⩾ β. We can then mark the subtree rooted at ‘Z’ for pruning. Considering
the given binary tree, these are the following steps :-

1. Start with the subtree rooted at D. After transfering values from its two leaves, α=5, β=∞.

A

B

D(5)

3 5

E

6 9

C

F

1 2

G

0 -1

2. Transfering the value of D to B, α=-∞, β=5.

A

B(5)

D(5)

3 5

E

6 9

C

F

1 2

G

0 -1

3. Transfering the value of B to E, α=-∞, β=5.



20-4 Lecture 20: Sequential and Simultaneous Move Games

A

B(5)

D(5)

3 5

E(5)

6 9

C

F

1 2

G

0 -1

4. Taking the value from first child of E, α=6. So, α > β, hence the rest branch of E is ignored.

A

B(5)

D(5)

3 5

E(6)

6 9(ignore)

C

F

1 2

G

0 -1

5. After transfering values from B to A, α=5, β=∞.



Lecture 20: Sequential and Simultaneous Move Games 20-5

A(5)

B(5)

D(5)

3 5

E(6)

6 9(ignore)

C

F

1 2

G

0 -1

6. Start with the subtree rooted at F. After transfering values from its two leaves, α=2, β=∞.

A(5)

B(5)

D(5)

3 5

E(6)

6 9(ignore)

C

F(2)

1 2

G

0 -1

7. After transfering values from A and F to C, α=5, β=2. So, α > β. Hence, G subtree is ignored.



20-6 Lecture 20: Sequential and Simultaneous Move Games

A(5)

B(5)

D(5)

3 5

E(6)

6 9(ignore)

C(2)

F(2)

1 2

G(ignore)

0 -1

Likewise, the whole game can be solved in a computionally less expensive way by prunning.

20.2 Simultaneous Move Games

The games we have seen so far in this lecture and the previous were sequential or turn based games ie, games
where players make moves in some order. However some games are simultaneous where the players might
make moves at the same time. A real life example we take is foot ball. There is a shooter who is going to
kick the ball and there is a goal keeper who defends the goal. Now, for simplicity assume these are the only
two players playing the game. The goal keeper cannot decide which direction to move to defend the goal
after the shooter shoots and has to predict and already start moving in the direction he chooses. Similarly
the shooter cannot kick the ball assuming the goal keeper is going to remain where he is currently. He has
to make a guess and kick it towards some portion of the goal. Again to keep things simple, we will only
consider three moves for each of the two players : L,C,R denoting left,centre and right respectively.

We now define a utility function through a matrix. Let the agent be the shooter and the goal keeper the
opponent. Now we define the various actions,the outcomes of every pair of actions and the rules:

1. If both players make the same move ie (L,L),(C,C) or (R,R), then, the goal keeper defends the goal
successfully, and the utility matrix U [i][i] = −1 where i = 0, 1, 2 correspond to the actions L,C,R
respectively.

2. U [i][j] corresponds to : Player 1 taking the action i and player 2 taking the action j.

3. For any of the other 6 tuples, U [i][j] = 1 where i ̸= j.

This is an example of a 2-player zero sum simultaneous move game and is called a Matrix Game.
Now we consider a variant of this game where the agent is an excellent left shooter ie, even if the goal keeper
moves to the left, the shooter’s goal is successful. So the utility matrix for the variant will have U [0][0] = 1



Lecture 20: Sequential and Simultaneous Move Games 20-7

and the remaining entries are the same as before. Call the variant’s matrix as U2 and the original as U1.
Therefore we have

U1 =

−1 1 1
1 −1 1
1 1 −1

 (20.5)

U2 =

1 1 1
1 −1 1
1 1 −1

 (20.6)

Now we define a few more terms for matrix games :

Definition 20.1 Equilibrium : A tuple of actions from which no player gains (a strict gain) by a unilateral
deviation. A unilateral deviation from a tuple of actions (a1, a2, . . . , an) is a tuple of actions of the form
(b1, b2, . . . , bn) where ai = bi , ∀i ̸= j for some j ie, the actions of exactly one player j differs from the
previous set.

In our case, (L,L) is a simultaneous move equilibrium for game 2 because, the agent (player 1) will not gain
any extra utility from (C,L) or (R,L) and similarly the opponent (player 2) will not gain any extra utility
from (L,C) or (L,R).

However, observe that for game 1, no such equilibrium exists. This can be shown by analysing all possible
pairs of actions.

1. (L,L) : Player 1 gains additonal utility by (C,L) or (R,L). Similarly for (C,C) and (R,R), player 1
stands to gain by unilaterally deviating.

2. (L,R) : Player 2 gains additonal utility by (L,L). Similarly for any tuple (A,B), where A ̸= B, if
player 2 deviates and chooses the action A, there is a utility gain.

Therefore there exists no such equilibrium for game 1.

We will now try to generalise this observation. Which types of simulataneous move games have an equilib-
rium?

The agent is a max player and the opponent is a min player. Therefore, the agent tries to maximise his
utility at each step and the opponent tries to minimise the agent’s utility thereby maximising his own utility.
We compute the terms max of min and min of max for the utility matrix as follows :

1. For every row of the matrix calculate the minimum utility possible. The value corresponding to row i
denotes the least utility for the agent upon performing move i. Now take the max of the min values
over all rows. This quantity is denoted as max

s1
min
s2

u(s1, s2).

2. Similarly, for every column of the matrix calculate the maximum utility possible. The values corre-
sponding to column j denotes the most utility the agent can obtain if the opponent performs move j.
Now take the min of the max values over all columns. This quantity is denoted as min

s2
max
s1

u(s1, s2).

Lemma 20.2 max
s1

min
s2

u(s1, s2) ⩽ min
s2

max
s1

u(s1, s2).



20-8 Lecture 20: Sequential and Simultaneous Move Games

Proof: For any (s1, s2),

u(s1, s2) ⩽ max
s1

u(s1, s2) and

min
s2

u(s1, s2) ⩽ u(s1, s2)

⇒ min
s2

u(s1, s2) ⩽ max
s1

u(s1, s2)

(20.7)

Since the previous inequality is true ∀s1, it is also true for s∗1 which maximises min
s2

u(s1, s2). Therefore we

have,

min
s2

u(s∗1, s2) ⩽ max
s1

u(s1, s2)

⇒ max
s1

min
s2

u(s1, s2) ⩽ max
s1

u(s1, s2)

Similarly, since the previous inequality is true ∀s2, it is also true for s∗2 which minimises max
s1

u(s1, s2).

Therefore we have,

max
s1

min
s2

u(s1, s2) ⩽ max
s1

u(s1, s
∗
2)

⇒ max
s1

min
s2

u(s1, s2) ⩽ min
s2

max
s1

u(s1, s2)

And we are done with the proof.

If for some game, these two quantities equal each other, we have an equilibrium and the equilibrium point
is called the saddle point. We will continue with this concept in the next lecture.


