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Normal Form Games

• It is a representation technique for games – particularly suitable for static games
• In a static game, the players interact only once with each other

Notation

• N = {1, 2, 3, . . . , n}, set of players
• Si : set of strategies for player i, si ∈ Si

• Set of strategy profiles S = ×i∈NSi

• A strategy profile s = (s1, s2, s3, . . . , sn) ∈ S
• Strategy profile without player i: s−i = (s1, s2, ..., si−1, si+1, . . . , sn)

• ui : S → R, utility function of player i

• Normal form representation is a tuple ⟨N, (Si)i∈N, (ui)i∈N⟩
• If Si is finite ∀i ∈ N, this is called a finite game.
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Example: Penalty Shoot Game

−1, 1 1,−1 1,−1

1,−1 −1, 1 1,−1

1,−1 1,−1 −1, 1

L

C

R

L C R

Sh
oo

te
r

Goalkeeper

• N = {1, 2}, 1 = Shooter, 2 = Goalkeeper
• S1 = S2 = {L, C, R}
• u1(L, L) = −1, u1(L, C) = u1(L, R) = 1
• u2(L, L) = 1, u2(L, C) = u2(L, R) = −1
• (loosely) u1(X, X) = −1 = −u2(X, X), u1(X, Y) = −u2(X, Y) = 1
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Domination in NFGs

1, 0 1, 3 3, 2

−1, 6 0, 5 3, 3

U

D

L C R

Pl
ay

er
1

Player 2

Question

Will a rational Player 2 ever play R?
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Dominated Strategy

Definition (Strictly Dominated Strategy)

A strategy s′i ∈ Si of player i is strictly dominated if there exists another strategy si ∈ Si such that
for every strategy profile s−i ∈ S−i of the other players, ui(si, s−i) > ui(s′i , s−i).

Definition (Weakly Dominated Strategy)

A strategy s′i ∈ Si of player i is weakly dominated if there exists another strategy si ∈ Si such that
for every strategy profile s−i ∈ S−i of the other players ui(si, s−i) ⩾ ui(s′i , s−i) and there exists
some s̃−i ∈ S−i such that ui(si, s̃−i) > ui(s′i , s̃−i).

Example: R is strictly dominated (by C) while D is weakly dominated (by U)
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Dominant Strategy

A strategy s′i can be dominated by si, and a different strategy s′′i can be dominated by s̃i

Definition (Dominant Strategy)

A strategy si is strictly(weakly) dominant strategy for player i if si strictly(weakly) dominates all
other strategies s′i ∈ Si \ {si}.

Examples of dominant strategy

• Neighbouring kingdom’s dilemma
• Indivisible item for sale
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Neighbouring Kingdom’s Dilemma

5, 5 0, 6

6, 0 1, 1

Agri

War

Agri War

Pa
la

Rashtrakuta

Question

Is there a dominant strategy in this game? Which kind?
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Indivisible Item for Sale

• Two players value an indivisible item as v1 and v2
respectively

• Each player’s action: a number in [0, M], M ≫ v1, v2

• Player quoting the larger number wins the object (ties
broken in favour of player 1) and pays the losing
player’s chosen number

• utility of winning player = her true value - other
player’s chosen number

• utility of losing player = 0
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Indivisible Item for Sale

Normal form representation of the game

• N = {1, 2}, S1 = S2 = [0, M]

• Agents pick si, while their real value for the item is vi, and si may not be the same as vi

u1(s1, s2) =

{
v1 − s2 if s1 ⩾ s2

0 otherwise
(1)

u2(s1, s2) =

{
v2 − s1 if s1 < s2

0 otherwise
(2)

Question

Is there a dominant strategy in this game? Which kind?
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Dominant Strategy Equilibrium

Definition (Dominant Strategy Equilibrium)

A strategy profile (s∗1 , s∗2 , . . . , s∗n) is a strictly (weakly) dominant strategy equilibrium
(SDSE/WDSE) if s∗i is strictly (weakly) dominant strategy ∀i ∈ N.

Example of dominant strategy equilibrium

5, 5 0, 5

5, 0 1, 1

4, 0 1, 1

A

B

C

D E

Pl
ay

er
1

Player 2

Question

What kind of equilibrium in
this game?
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How to find equilibrium?

• Rational players do not play dominated strategies

• To obtain rational outcomes eliminate dominated strategies
• For strictly dominated strategies the order of elimination does not matter
• It matters for weakly dominated strategies – some reasonable outcomes are also eliminated

1, 2 2, 3 0, 3
2, 2 2, 1 3, 2
2, 1 0, 0 1, 0

T
M
B

L C R

Pl
ay

er
1

Player 2

• Order T, R, B, C → (M, L) : (2, 2)
• Order B, L, C, T → (M, R) : (3, 2)
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Existence of Dominant Strategies

Not guaranteed!

1, 1 0, 0

0, 0 1, 1

L

R

L R

Co-ordination game

Pl
ay

er
1

Player 2

2, 1 0, 0

0, 0 1, 2

F

C

F C

Football or Cricket Game

Fr
ie

nd
1

Friend 2

If dominance cannot explain a reasonable outcome – refine equilibrium concept
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Nash Equilibrium (Nash 1951)

No player gains by a unilateral deviation

Definition (Nash Equilibrium)

A strategy profile (s∗i , s∗−i) is a pure strategy Nash equilibrium (PSNE) if ∀i ∈ N and ∀si ∈ Si

ui(s∗i , s∗−i) ⩾ ui(si, s∗−i).
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Best Response View

• A best response of a player i against the strategy profile s−i of other players is a strategy that
gives the maximum utility i.e.,

Bi(s−i) = {si ∈ Si : ui(si, s−i) ≥ ui(s′i , s−i), ∀s′i ∈ Si}

• PSNE is a strategy profile (s∗i , s∗−i) s.t.

s∗i ∈ Bi(s∗−i), ∀i ∈ N

• PSNE gives stability – once there, no rational player unilaterally deviates

Question

Relationship between SDSE, WDSE, PSNE?

Answer

SDSE =⇒ WDSE =⇒ PSNE
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Risk Aversion of Players
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Question

What if the other player does not pick an equilibrium action (Nash)?

Picking T is less risky for player 1
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Max-min Strategy

Definition

The worst case optimal choice is max-min strategy

smax min
i ∈ arg max

si∈Si
min

s−i∈S−i

ui(si, s−i)

Note: smin
−i (si) ∈ arg mins−i∈S−i ui(si, s−i) is indeed a function of si; as si changes the minimizer

keeps on changing

Max-min value (utility at the max-min strategy) of player i is given by

vi = max
si∈Si

min
s−i∈S−i

ui(si, s−i)

ui(smax min
i , t−i) ⩾ vi, ∀t−i ∈ S−i
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Max-min and Dominant Strategies

Theorem

If s∗i is dominant strategy for player i, then it is a max-min strategy for player i as well.

Proof.

Let s∗i be dominant strategy for player i

ui(s∗i , s−i) ⩾ ui(s′i , s−i), ∀s−i ∈ S−i, ∀s′i ∈ Si \ {s∗i } (3)

Define smin
−i (s′i) ∈ arg mins−i∈S−i ui(s′i , s−i): the worst choice of strategies of the other players for

the action s′i of agent i
But Equation (3) holds for every s−i, in particular smin

−i (s′i)

ui(s∗i , smin
−i (s′i)) ⩾ ui(s′i , smin

−i (s′i)), ∀s′i ∈ Si \ {s∗i }
s∗i ∈ arg max

si∈Si
min

s−i∈S−i
ui(si, s−i)
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Max-min and PSNE

Theorem

Every PSNE s∗ = (s∗1 , s∗2 , . . . , s∗n) of a normal form game satisfies ui(s∗) ⩾ vi, ∀i ∈ N.

Proof.

ui(si, s∗−i) ⩾ min
s−i∈S−i

ui(si, s−i), ∀si ∈ Si, by definition of min

ui(s∗i , s∗−i) ⩾ ui(si, s∗−i), ∀si ∈ Si, by definition of PSNE
ui(s∗i , s∗−i) = max

si∈Si
ui(si, s∗−i)

⩾ max
si∈Si

min
s−i∈S−i

ui(si, s−i)

= vi
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Iterated elimination of dominated strategies

The story so far

• Dominance cannot explain all outcomes; games may not have dominant strategies
• PSNE: unilateral deviation; gives stability
• Maxmin: rationality for risk-aversion; gives security

Question

What happens to stability and security when some strategies are eliminated?
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Iterated elimination of dominated strategies (contd.)

1, 2 2, 3 0, 3
2, 2 2, 1 3, 2
2, 1 0, 0 1, 0

T
M
B

L C R

Pl
ay

er
1

Player 2

• Order T, R, B, C → (M, L) : (2, 2)
• Order B, L, C, T → (M, R) : (3, 2)

Question

Does it change the maxmin value?



25

Iterated elimination of dominated strategies (contd.)

1, 2 2, 3 0, 3
2, 2 2, 1 3, 2
2, 1 0, 0 1, 0

T
M
B

L C R

Pl
ay

er
1

Player 2

• Order T, R, B, C → (M, L) : (2, 2)

• Order B, L, C, T → (M, R) : (3, 2)

Question

Does it change the maxmin value?



25

Iterated elimination of dominated strategies (contd.)

1, 2 2, 3 0, 3
2, 2 2, 1 3, 2
2, 1 0, 0 1, 0

T
M
B

L C R

Pl
ay

er
1

Player 2

• Order T, R, B, C → (M, L) : (2, 2)
• Order B, L, C, T → (M, R) : (3, 2)

Question

Does it change the maxmin value?



25

Iterated elimination of dominated strategies (contd.)

1, 2 2, 3 0, 3
2, 2 2, 1 3, 2
2, 1 0, 0 1, 0

T
M
B

L C R

Pl
ay

er
1

Player 2

• Order T, R, B, C → (M, L) : (2, 2)
• Order B, L, C, T → (M, R) : (3, 2)

Question

Does it change the maxmin value?



25

Iterated elimination of dominated strategies (contd.)

1, 2 2, 3 0, 3
2, 2 2, 1 3, 2
2, 1 0, 0 1, 0

T
M
B

L C R

Pl
ay

er
1

Player 2

• Order T, R, B, C → (M, L) : (2, 2)
• Order B, L, C, T → (M, R) : (3, 2)

Question

Does it change the maxmin value?



26

Iterated elimination of dominated strategies (contd.)
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Consider in the above example: elimination of dominated strategy B for player 1

Maxmin values Player 1 Player 2
Before

2 0

After

2 2

Maxmin value is not affected for the player whose dominated strategy is removed
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A Result for Iterated Elimination

Theorem

Consider an NFG G = ⟨N, (Si)i∈N, (ui)i∈N⟩, and let s′j ∈ Sj be a dominated strategy. Let G′ be the
residual game after removing s′j . Then, the maxmin value of j in G′ is equal to her maxmin value in G.

Intuition

• Maxmin is the ‘max’ of all ‘min’s
• Elimination affects one ‘min’
• But that does not affect the ‘max’ since the strategy was dominated
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Proof

Maxmin value of player j in G vj = max
sj∈Sj

min
s−j∈S−j

uj(sj, s−j)

Maxmin value of player j in G′ v′
j = max

sj∈Sj\{s′j}
min

s−j∈S−j
uj(sj, s−j)

Suppose tj dominates s′j in G, tj ∈ Sj \ {s′j}, then, uj(tj, s−j) ⩾ uj(s′j , s−j), ∀s−j ∈ S−j

Therefore, min
s−j∈S−j

uj(tj, s−j) = uj(tj, s̃−j)

⩾ uj(s′j , s̃−j)

⩾ min
s−j∈S−j

uj(s′j , s−j)

=⇒ max
sj∈Sj\{s′j}

min
s−j∈S−j

uj(sj, s−j) ⩾ min
s−j∈S−j

uj(tj, s−j)
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Proof (contd.)

vj [maxmin value of j in G]

= max
sj∈Sj

min
s−j∈S−j

uj(sj, s−j)

= max

{
max

sj∈Sj\{s′j}
min

s−j∈S−j
uj(sj, s−j), min

s−j∈S−j
uj(s′j , s−j)

}
= max

sj∈Sj\{s′j}
min

s−j∈S−j
uj(sj, s−j), because of the previous inequality

= v′
j [maxmin value of j in G′]
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Preservation of PSNE

Question

What happens to existing equilibrium after iterated elimination?

Theorem

Consider G and Ĝ are games before and after elimination of a strategy (not necessarily dominated). If s∗ is
a PSNE in G and survives in Ĝ, then s∗ is a PSNE in Ĝ too.

Intuition

PSNE was a maxima of utility of i among the strategies of i. Removing other strategies does not
affect maximality.
Proof: exercise.
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Can new equilibrium be generated?

Theorem

Consider NFG G. Let ŝj be a weakly dominated strategy of j. If Ĝ is obtained from G eliminating ŝj, then
every PSNE of Ĝ is a PSNE of G.

No new PSNE if the eliminated strategy is dominated

But old PSNEs could be killed: saw in the previous example
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Proof

In the game Ĝ, modified strategy sets are Ŝj = Sj \ {ŝj}, Ŝi = Si, ∀i ̸= j

Need to show: if s∗ = (s∗j , s∗−j) is a PSNE in Ĝ, it is a PSNE in G.

Given

ui(s∗) ⩾ ui(si, s∗−i), ∀i ̸= j, ∀si ∈ Ŝi = Si

uj(s∗) ⩾ uj(sj, s∗−j), ∀sj ∈ Ŝj

Need to show: no profitable deviation
for any player in G. For i ̸= j, this is im-
mediate since no strategy is removed.

For j, no profitable deviation from s∗ for
any strategy sj ̸= ŝj
Since ŝj is dominated, ∃tj such that

uj(tj, s−j) ⩾ uj(ŝj, s−j), ∀s−j ∈ S−j

In particular, uj(tj, s∗−j) ⩾ uj(ŝj, s∗−j)

Since s∗ is a PSNE in Ĝ and tj ∈ Ŝj

uj(s∗j , s∗−j) ⩾ uj(tj, s∗−j) ⩾ uj(ŝj, s∗−j)
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Need to show: if s∗ = (s∗j , s∗−j) is a PSNE in Ĝ, it is a PSNE in G.
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uj(s∗) ⩾ uj(sj, s∗−j), ∀sj ∈ Ŝj
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Need to show: if s∗ = (s∗j , s∗−j) is a PSNE in Ĝ, it is a PSNE in G.
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Need to show: no profitable deviation
for any player in G. For i ̸= j, this is im-
mediate since no strategy is removed.

For j, no profitable deviation from s∗ for
any strategy sj ̸= ŝj
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Summary

• Elimination of strictly dominated strategy have no effect on PSNE

• Elimination of weakly dominated strategy may reduce the set of PSNEs, but never adds new
• The maxmin values of the player whose strictly or weakly dominated strategies are remove

remain unaffected
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Matrix games: two player zero-sum games

A special class with certain nice security and stability properties

Definition (Two player zero-sum games)

A NFG ⟨N, (Si)i∈N, (ui)i∈N⟩ with N = {1, 2} and u1 + u2 ≡ 0

Question

Why called matrix game?

Answer

Possible to represent the game with only one matrix considering the utilities of player 1; player
2’s utilities are negative of this matrix
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Example: Penalty shoot game

−1, 1 1,−1
1,−1 −1, 1

L
R

L R
Pl

ay
er

1
Player 2

=⇒
(

−1 1
1 −1

)
=: u

Player 2’s maxmin value is the minmax value of this matrix

−1 1 −1
1 −1 −1
1 1

L
R

minmax

L R maxmin

Pl
ay

er
1
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