

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 2

Swaprava Nath

Slide preparation acknowledgments: Ramsundar Anandanarayanan and Harshvardhan Agarwal

ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal

Contents

- ► Formal Representation of Games
- ▶ Dominance
- ▶ Nash Equilibrium
- Max-Min Strategies
- ► Elimination of dominated strategies
- Preservation of PSNE
- ▶ Matrix games

- It is a representation technique for games particularly suitable for static games
- In a *static game*, the players interact only once with each other

- It is a representation technique for games particularly suitable for static games
- In a static game, the players interact only once with each other

• $N = \{1, 2, 3, ..., n\}$, set of players

- It is a representation technique for games particularly suitable for static games
- In a static game, the players interact only once with each other

- $N = \{1, 2, 3, ..., n\}$, set of players
- S_i : set of strategies for player i, $s_i \in S_i$

- It is a representation technique for games particularly suitable for **static games**
- In a static game, the players interact only once with each other

- $N = \{1, 2, 3, ..., n\}$, set of players
- S_i : set of strategies for player i, $s_i \in S_i$
- Set of strategy profiles $S = \times_{i \in N} S_i$

- It is a representation technique for games particularly suitable for **static games**
- In a static game, the players interact only once with each other

- $N = \{1, 2, 3, ..., n\}$, set of players
- S_i : set of strategies for player i, $s_i \in S_i$
- Set of strategy profiles $S = \times_{i \in N} S_i$
- A strategy profile $s = (s_1, s_2, s_3, \dots, s_n) \in S$

- It is a representation technique for games particularly suitable for static games
- In a static game, the players interact only once with each other

- $N = \{1, 2, 3, ..., n\}$, set of players
- S_i : set of strategies for player i, $s_i \in S_i$
- Set of strategy profiles $S = \times_{i \in N} S_i$
- A strategy profile $s = (s_1, s_2, s_3, \dots, s_n) \in S$
- Strategy profile without player *i*: $s_{-i} = (s_1, s_2, ..., s_{i-1}, s_{i+1}, ..., s_n)$

- It is a representation technique for games particularly suitable for static games
- In a static game, the players interact only once with each other

- $N = \{1, 2, 3, ..., n\}$, set of players
- S_i : set of strategies for player i, $s_i \in S_i$
- Set of strategy profiles $S = \times_{i \in N} S_i$
- A strategy profile $s = (s_1, s_2, s_3, \dots, s_n) \in S$
- Strategy profile without player *i*: $s_{-i} = (s_1, s_2, ..., s_{i-1}, s_{i+1}, ..., s_n)$
- $u_i : S \to \mathbb{R}$, utility function of player *i*

- It is a representation technique for games particularly suitable for static games
- In a static game, the players interact only once with each other

- $N = \{1, 2, 3, ..., n\}$, set of players
- S_i : set of strategies for player i, $s_i \in S_i$
- Set of strategy profiles $S = \times_{i \in N} S_i$
- A strategy profile $s = (s_1, s_2, s_3, \dots, s_n) \in S$
- Strategy profile without player *i*: $s_{-i} = (s_1, s_2, ..., s_{i-1}, s_{i+1}, ..., s_n)$
- $u_i : S \to \mathbb{R}$, utility function of player *i*
- Normal form representation is a tuple $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$

- It is a representation technique for games particularly suitable for static games
- In a static game, the players interact only once with each other

- $N = \{1, 2, 3, ..., n\}$, set of players
- S_i : set of strategies for player i, $s_i \in S_i$
- Set of strategy profiles $S = \times_{i \in N} S_i$
- A strategy profile $s = (s_1, s_2, s_3, \dots, s_n) \in S$
- Strategy profile without player *i*: $s_{-i} = (s_1, s_2, ..., s_{i-1}, s_{i+1}, ..., s_n)$
- $u_i : S \to \mathbb{R}$, utility function of player *i*
- Normal form representation is a tuple $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$
- If S_i is finite $\forall i \in N$, this is called a finite game.

• $N = \{1, 2\}, 1 =$ Shooter, 2 = Goalkeeper

N = {1,2}, 1 = Shooter, 2 = Goalkeeper
S₁ = S₂ = {L, C, R}

- $N = \{1, 2\}, 1 =$ Shooter, 2 = Goalkeeper
- $S_1 = S_2 = \{L, C, R\}$
- $u_1(L,L) = -1, u_1(L,C) = u_1(L,R) = 1$

- $N = \{1, 2\}, 1 =$ Shooter, 2 =Goalkeeper
- $S_1 = S_2 = \{L, C, R\}$
- $u_1(L,L) = -1, u_1(L,C) = u_1(L,R) = 1$
- $u_2(L,L) = 1, u_2(L,C) = u_2(L,R) = -1$

- $N = \{1, 2\}, 1 =$ Shooter, 2 = Goalkeeper
- $S_1 = S_2 = \{L, C, R\}$
- $u_1(L,L) = -1, u_1(L,C) = u_1(L,R) = 1$
- $u_2(L,L) = 1, u_2(L,C) = u_2(L,R) = -1$
- (loosely) $u_1(X, X) = -1 = -u_2(X, X), u_1(X, Y) = -u_2(X, Y) = 1$

Contents

► Formal Representation of Games

► Dominance

- Nash Equilibrium
- Max-Min Strategies
- ► Elimination of dominated strategies
- Preservation of PSNE
- ▶ Matrix games

Domination in NFGs

Domination in NFGs

Question

Will a rational Player 2 ever play R?

Definition (Strictly Dominated Strategy)

A strategy $s'_i \in S_i$ of player *i* is **strictly dominated** if there exists another strategy $s_i \in S_i$ such that **for every strategy profile** $s_{-i} \in S_{-i}$ of the other players, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.

Definition (Strictly Dominated Strategy)

A strategy $s'_i \in S_i$ of player *i* is **strictly dominated** if there exists another strategy $s_i \in S_i$ such that **for every strategy profile** $s_{-i} \in S_{-i}$ of the other players, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.

Definition (Weakly Dominated Strategy)

A strategy $s'_i \in S_i$ of player *i* is **weakly dominated** if there exists another strategy $s_i \in S_i$ such that for every strategy profile $s_{-i} \in S_{-i}$ of the other players $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ and there exists some $\tilde{s}_{-i} \in S_{-i}$ such that $u_i(s_i, \tilde{s}_{-i}) > u_i(s'_i, \tilde{s}_{-i})$.

Definition (Strictly Dominated Strategy)

A strategy $s'_i \in S_i$ of player *i* is **strictly dominated** if there exists another strategy $s_i \in S_i$ such that **for every strategy profile** $s_{-i} \in S_{-i}$ of the other players, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.

Definition (Weakly Dominated Strategy)

A strategy $s'_i \in S_i$ of player *i* is **weakly dominated** if there exists another strategy $s_i \in S_i$ such that **for every strategy profile** $s_{-i} \in S_{-i}$ of the other players $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ and **there exists some** $\tilde{s}_{-i} \in S_{-i}$ such that $u_i(s_i, \tilde{s}_{-i}) > u_i(s'_i, \tilde{s}_{-i})$.

Example: R is strictly dominated (by C) while D is weakly dominated (by U)

A strategy s'_i can be dominated by s_i , and a different strategy s''_i can be dominated by \tilde{s}_i

Definition (Dominant Strategy)

A strategy s_i is strictly(weakly) dominant strategy for player *i* if s_i strictly(weakly) dominates all other strategies $s'_i \in S_i \setminus \{s_i\}$.

A strategy s'_i can be dominated by s_i , and a different strategy s''_i can be dominated by \tilde{s}_i

Definition (Dominant Strategy)

A strategy s_i is strictly(weakly) dominant strategy for player *i* if s_i strictly(weakly) dominates all other strategies $s'_i \in S_i \setminus \{s_i\}$.

Examples of **dominant strategy**

- Neighbouring kingdom's dilemma
- Indivisible item for sale

Rashtrakuta
Agri WarAgri5,50,6War6,01,1

Question

Is there a dominant strategy in this game? Which kind?

• Two players value an indivisible item as v_1 and v_2 respectively

- Two players value an indivisible item as v_1 and v_2 respectively
- Each player's action: a number in [0, M], $M \gg v_1, v_2$

- Two players value an indivisible item as v_1 and v_2 respectively
- Each player's action: a number in [0, M], $M \gg v_1, v_2$
- Player quoting the larger number wins the object (ties broken in favour of player 1) and pays the losing player's chosen number

- Two players value an indivisible item as v_1 and v_2 respectively
- Each player's action: a number in [0, M], $M \gg v_1, v_2$
- Player quoting the larger number wins the object (ties broken in favour of player 1) and pays the losing player's chosen number
- utility of winning player = her **true** value other player's chosen number

- Two players value an indivisible item as v_1 and v_2 respectively
- Each player's action: a number in [0, M], $M \gg v_1, v_2$
- Player quoting the larger number wins the object (ties broken in favour of player 1) and pays the losing player's chosen number
- utility of winning player = her **true** value other player's chosen number
- utility of losing player = 0

Normal form representation of the game

- $N = \{1, 2\}, S_1 = S_2 = [0, M]$
- Agents pick s_i , while their **real** value for the item is v_i , and s_i may **not** be the same as v_i

Normal form representation of the game

- $N = \{1, 2\}, S_1 = S_2 = [0, M]$
- Agents pick s_i , while their **real** value for the item is v_i , and s_i may **not** be the same as v_i

1

$$u_1(s_1, s_2) = \begin{cases} v_1 - s_2 & \text{if } s_1 \ge s_2 \\ 0 & \text{otherwise} \end{cases}$$
(1)

$$u_2(s_1, s_2) = \begin{cases} v_2 - s_1 & \text{if } s_1 < s_2 \\ 0 & \text{otherwise} \end{cases}$$

(2)

(2)

Normal form representation of the game

- $N = \{1, 2\}, S_1 = S_2 = [0, M]$
- Agents pick s_i , while their **real** value for the item is v_i , and s_i may **not** be the same as v_i

$$u_1(s_1, s_2) = \begin{cases} v_1 - s_2 & \text{if } s_1 \geqslant s_2 \\ 0 & \text{otherwise} \end{cases}$$
(1)

$$u_2(s_1, s_2) = \begin{cases} v_2 - s_1 & \text{if } s_1 < s_2 \\ 0 & \text{otherwise} \end{cases}$$

Question

Is there a dominant strategy in this game? Which kind?

ı

Definition (Dominant Strategy Equilibrium)

A strategy profile $(s_1^*, s_2^*, \dots, s_n^*)$ is a strictly (weakly) dominant strategy equilibrium (SDSE/WDSE) if s_i^* is strictly (weakly) dominant strategy $\forall i \in N$.

Definition (Dominant Strategy Equilibrium)

A strategy profile $(s_1^*, s_2^*, \dots, s_n^*)$ is a strictly (weakly) dominant strategy equilibrium (SDSE/WDSE) if s_i^* is strictly (weakly) dominant strategy $\forall i \in N$.

Example of **dominant strategy equilibrium**

Definition (Dominant Strategy Equilibrium)

A strategy profile $(s_1^*, s_2^*, \dots, s_n^*)$ is a strictly (weakly) dominant strategy equilibrium (SDSE/WDSE) if s_i^* is strictly (weakly) dominant strategy $\forall i \in N$.

Example of **dominant strategy equilibrium**

What kind of equilibrium in this game?

• Rational players do not play **dominated strategies**

- Rational players do not play **dominated strategies**
- To obtain rational outcomes eliminate dominated strategies

- Rational players do not play **dominated strategies**
- To obtain rational outcomes eliminate dominated strategies
- For strictly dominated strategies the order of elimination does not matter

- Rational players do not play **dominated strategies**
- To obtain rational outcomes eliminate dominated strategies
- For strictly dominated strategies the order of elimination does not matter
- It matters for weakly dominated strategies some reasonable outcomes are also eliminated

- Rational players do not play **dominated strategies**
- To obtain rational outcomes eliminate dominated strategies
- For strictly dominated strategies the order of elimination does not matter
- It matters for weakly dominated strategies some reasonable outcomes are also eliminated

- Rational players do not play **dominated strategies**
- To obtain rational outcomes eliminate dominated strategies
- For strictly dominated strategies the order of elimination does not matter
- It matters for weakly dominated strategies some reasonable outcomes are also eliminated

		Player 2		
		L	С	R
Player 1	Т	1,2	2,3	<mark>0,3</mark>
	Μ	2,2	2,1	3,2
	В	2,1	0,0	1,0

• Order T, R, B, $C \to (M, L) : (2, 2)$

- Rational players do not play **dominated strategies**
- To obtain rational outcomes eliminate dominated strategies
- For strictly dominated strategies the order of elimination does not matter
- It matters for weakly dominated strategies some reasonable outcomes are also eliminated

		Player 2		
		L	С	R
Player 1	Т	1,2	2,3	<mark>0,3</mark>
	Μ	2,2	2,1	3,2
	В	2,1	0,0	1,0

- Order T, R, B, $C \rightarrow (M, L) : (2, 2)$
- Order B, L, C, T \rightarrow (*M*, *R*) : (3, 2)

Existence of Dominant Strategies

Not guaranteed!

Existence of Dominant Strategies

Not guaranteed!

Co-ordination game

Not guaranteed!

Not guaranteed!

If dominance cannot explain a reasonable outcome – refine equilibrium concept

Contents

- ► Formal Representation of Games
- ▶ Dominance
- ▶ Nash Equilibrium
- Max-Min Strategies
- ► Elimination of dominated strategies
- Preservation of PSNE
- ▶ Matrix games

Nash Equilibrium (Nash 1951)

No player gains by a unilateral deviation

No player gains by a unilateral deviation

Definition (Nash Equilibrium)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium (PSNE) if $\forall i \in N$ and $\forall s_i \in S_i$

 $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*).$

No player gains by a unilateral deviation

Definition (Nash Equilibrium)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium (PSNE) if $\forall i \in N$ and $\forall s_i \in S_i$

 $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*).$

Football or Cricket Game

Best Response View

• A best response of a player i against the strategy profile s_{-i} of other players is a strategy that gives the maximum utility i.e.,

$$B_i(s_{-i}) = \{s_i \in S_i : u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}), \forall s'_i \in S_i\}$$

Best Response View

• A best response of a player i against the strategy profile s_{-i} of other players is a strategy that gives the maximum utility i.e.,

$$B_i(s_{-i}) = \{s_i \in S_i : u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}), \forall s'_i \in S_i\}$$

• PSNE is a strategy profile (s_i^*, s_{-i}^*) s.t.

 $s_i^* \in B_i(s_{-i}^*), \forall i \in N$

• A best response of a player i against the strategy profile s_{-i} of other players is a strategy that gives the maximum utility i.e.,

$$B_i(s_{-i}) = \{s_i \in S_i : u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}), \forall s'_i \in S_i\}$$

• PSNE is a strategy profile (s_i^*, s_{-i}^*) s.t.

 $s_i^* \in B_i(s_{-i}^*), \forall i \in N$

• PSNE gives stability – once there, no rational player unilaterally deviates

• A best response of a player i against the strategy profile s_{-i} of other players is a strategy that gives the maximum utility i.e.,

$$B_i(s_{-i}) = \{s_i \in S_i : u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}), \forall s'_i \in S_i\}$$

• PSNE is a strategy profile (s_i^*, s_{-i}^*) s.t.

 $s_i^* \in B_i(s_{-i}^*), \forall i \in N$

• PSNE gives stability – once there, no rational player unilaterally deviates

$$B_i(s_{-i}) = \{s_i \in S_i : u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}), \forall s'_i \in S_i\}$$

• PSNE is a strategy profile (s_i^*, s_{-i}^*) s.t.

$$s_i^* \in B_i(s_{-i}^*), \forall i \in N$$

• PSNE gives stability – once there, no rational player unilaterally deviates

Question

Relationship between SDSE, WDSE, PSNE?

• A best response of a player i against the strategy profile s_{-i} of other players is a strategy that gives the maximum utility i.e.,

$$B_i(s_{-i}) = \{s_i \in S_i : u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}), \forall s'_i \in S_i\}$$

• PSNE is a strategy profile (s_i^*, s_{-i}^*) s.t.

 $s_i^* \in B_i(s_{-i}^*), \forall i \in N$

• PSNE gives stability – once there, no rational player unilaterally deviates

Q	uestion				
Relationship between SDSE, WDSE, PSNE?					
А	inswer				
$SDSE \implies WDSE \implies PSNE$					

Contents

- ► Formal Representation of Games
- ▶ Dominance
- Nash Equilibrium
- ► Max-Min Strategies
- ► Elimination of dominated strategies
- Preservation of PSNE
- ▶ Matrix games

Risk Aversion of Players

	Player 2		
	L	R	
T	2,1	1, -20	
Jayer J	3,0	-10,1	
B	-100,2	3, 3	

Risk Aversion of Players

Question

What if the other player does not pick an equilibrium action (Nash)?

Risk Aversion of Players

Question

What if the other player does not pick an equilibrium action (Nash)?

Picking T is less risky for player 1

Definition

The worst case optimal choice is **max-min strategy**

 $u_i(\mathbf{s_i}, \mathbf{s_{-i}})$

Definition

The worst case optimal choice is **max-min strategy**

$$\min_{\mathbf{s}_{-i}\in S_{-i}}u_i(\mathbf{s}_i,\mathbf{s}_{-i})$$

Definition

The worst case optimal choice is **max-min strategy**

$$\max_{\mathbf{s}_i \in S_i} \min_{\mathbf{s}_{-i} \in S_{-i}} u_i(\mathbf{s}_i, \mathbf{s}_{-i})$$

Definition

The worst case optimal choice is **max-min strategy**

$$s_i^{\max \min} \in \arg \max_{\mathbf{s}_i \in S_i} \min_{\mathbf{s}_{-i} \in S_{-i}} u_i(\mathbf{s}_i, \mathbf{s}_{-i})$$

Definition

The worst case optimal choice is **max-min strategy**

$$s_i^{\max \min} \in \arg \max_{\substack{s_i \in S_i \ s_{-i} \in S_{-i}}} u_i(s_i, s_{-i})$$

Note: $s_{-i}^{\min}(s_i) \in \arg \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$ is indeed a function of s_i ; as s_i changes the minimizer keeps on changing

Definition

The worst case optimal choice is **max-min strategy**

$$s_i^{\max \min} \in \arg \max_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

Note: $s_{-i}^{\min}(s_i) \in \arg \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$ is indeed a function of s_i ; as s_i changes the minimizer keeps on changing

Max-min value (utility at the max-min strategy) of player *i* is given by

$$\underline{v}_i = \max_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$
$$u_i(s_i^{\max\min}, t_{-i}) \ge \underline{v}_i, \quad \forall t_{-i} \in S_{-i}$$

Theorem

If s_i^* is **dominant strategy** for player *i*, then it is a **max-min strategy** for player *i* as well.

(3)

Theorem

If s_i^* is **dominant strategy** for player *i*, then it is a **max-min strategy** for player *i* as well.

Proof.

Let s_i^* be dominant strategy for player i

$$u_i(s_i^*, s_{-i}) \ge u_i(s_i', s_{-i}), \ \forall s_{-i} \in S_{-i}, \forall s_i' \in S_i \setminus \{s_i^*\}$$

Theorem

If s_i^* is **dominant strategy** for player *i*, then it is a **max-min strategy** for player *i* as well.

Proof.

Let s_i^* be dominant strategy for player i

$$u_i(s_i^*, s_{-i}) \ge u_i(s_i', s_{-i}), \ \forall s_{-i} \in S_{-i}, \forall s_i' \in S_i \setminus \{s_i^*\}$$

$$(3)$$

Define $s_{-i}^{\min}(s'_i) \in \arg \min_{s_{-i} \in S_{-i}} u_i(s'_i, s_{-i})$: the worst choice of strategies of the other players for the action s'_i of agent i

If s_i^* is **dominant strategy** for player *i*, then it is a **max-min strategy** for player *i* as well.

Proof.

Let s_i^* be dominant strategy for player i

$$u_{i}(s_{i}^{*}, s_{-i}) \ge u_{i}(s_{i}^{\prime}, s_{-i}), \ \forall s_{-i} \in S_{-i}, \forall s_{i}^{\prime} \in S_{i} \setminus \{s_{i}^{*}\}$$
(3)

Define $s_{-i}^{\min}(s'_i) \in \arg\min_{s_{-i} \in S_{-i}} u_i(s'_i, s_{-i})$: the worst choice of strategies of the other players for the action s'_i of agent *i* But Equation (3) holds for every s_{-i} , in particular $s_{-i}^{\min}(s'_i)$

If s_i^* is **dominant strategy** for player *i*, then it is a **max-min strategy** for player *i* as well.

Proof.

Let s_i^* be dominant strategy for player i

$$u_i(s_i^*, s_{-i}) \ge u_i(s_i', s_{-i}), \ \forall s_{-i} \in S_{-i}, \forall s_i' \in S_i \setminus \{s_i^*\}$$

$$(3)$$

Define $s_{-i}^{\min}(s'_i) \in \arg \min_{s_{-i} \in S_{-i}} u_i(s'_i, s_{-i})$: the worst choice of strategies of the other players for the action s'_i of agent *i* But Equation (3) holds for every s_{-i} , in particular $s_{-i}^{\min}(s'_i)$

$$u_{i}(s_{i}^{*}, s_{-i}^{\min}(s_{i}')) \ge u_{i}(s_{i}', s_{-i}^{\min}(s_{i}')), \ \forall s_{i}' \in S_{i} \setminus \{s_{i}^{*}\}$$
$$s_{i}^{*} \in \arg \max_{s_{i} \in S_{i}} \min_{s_{-i} \in S_{-i}} u_{i}(s_{i}, s_{-i})$$

Every **PSNE** $s^* = (s_1^*, s_2^*, \dots, s_n^*)$ of a normal form game satisfies $u_i(s^*) \ge \underline{v}_i, \forall i \in N$.

Every **PSNE** $s^* = (s_1^*, s_2^*, \dots, s_n^*)$ of a normal form game satisfies $u_i(s^*) \ge \underline{v}_i, \forall i \in N$.

Proof.

$$u_i(s_i, s_{-i}^*) \ge \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}), \ \forall s_i \in S_i,$$

by definition of min

Every **PSNE** $s^* = (s_1^*, s_2^*, \dots, s_n^*)$ of a normal form game satisfies $u_i(s^*) \ge \underline{v}_i, \forall i \in N$.

Proof.

 $u_i(s_i, s_{-i}^*) \ge \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}), \ \forall s_i \in S_i,$ by definition of min $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*), \ \forall s_i \in S_i,$ by definition of PSNE

Every **PSNE** $s^* = (s_1^*, s_2^*, \dots, s_n^*)$ of a normal form game satisfies $u_i(s^*) \ge \underline{v}_i, \forall i \in N$.

Proof.

$$u_{i}(s_{i}, s_{-i}^{*}) \geq \min_{s_{-i} \in S_{-i}} u_{i}(s_{i}, s_{-i}), \forall s_{i} \in S_{i},$$
 by definition of min

$$u_{i}(s_{i}^{*}, s_{-i}^{*}) \geq u_{i}(s_{i}, s_{-i}^{*}), \forall s_{i} \in S_{i},$$
 by definition of PSNE

$$u_{i}(s_{i}^{*}, s_{-i}^{*}) = \max_{s_{i} \in S_{i}} u_{i}(s_{i}, s_{-i}^{*})$$

Every **PSNE** $s^* = (s_1^*, s_2^*, \dots, s_n^*)$ of a normal form game satisfies $u_i(s^*) \ge \underline{v}_i, \forall i \in N$.

Proof.

$$u_{i}(s_{i}, s_{-i}^{*}) \ge \min_{s_{-i} \in S_{-i}} u_{i}(s_{i}, s_{-i}), \ \forall s_{i} \in S_{i},$$
 by definition of min

$$u_{i}(s_{i}^{*}, s_{-i}^{*}) \ge u_{i}(s_{i}, s_{-i}^{*}), \ \forall s_{i} \in S_{i},$$
 by definition of PSNE

$$u_{i}(s_{i}^{*}, s_{-i}^{*}) = \max_{s_{i} \in S_{i}} u_{i}(s_{i}, s_{-i}^{*}) \ge \max_{s_{i} \in S_{-i}} \min_{s_{-i} \in S_{-i}} u_{i}(s_{i}, s_{-i})$$

Every **PSNE** $s^* = (s_1^*, s_2^*, \dots, s_n^*)$ of a normal form game satisfies $u_i(s^*) \ge \underline{v}_i, \forall i \in N$.

Proof.

$$u_{i}(s_{i}, s_{-i}^{*}) \geq \min_{s_{-i} \in S_{-i}} u_{i}(s_{i}, s_{-i}), \ \forall s_{i} \in S_{i},$$
 by definition of min

$$u_{i}(s_{i}^{*}, s_{-i}^{*}) \geq u_{i}(s_{i}, s_{-i}^{*}), \ \forall s_{i} \in S_{i},$$
 by definition of PSNE

$$u_{i}(s_{i}^{*}, s_{-i}^{*}) = \max_{s_{i} \in S_{i}} u_{i}(s_{i}, s_{-i}^{*}) \geq \max_{s_{i} \in S_{i}} \min_{s_{-i} \in S_{-i}} u_{i}(s_{i}, s_{-i}) = \underline{v}_{i}$$

Contents

- ► Formal Representation of Games
- ▶ Dominance
- ▶ Nash Equilibrium
- Max-Min Strategies
- ► Elimination of dominated strategies
- Preservation of PSNE
- ▶ Matrix games

Iterated elimination of dominated strategies

Iterated elimination of dominated strategies

The story so far

• Dominance cannot explain all outcomes; games may not have dominant strategies

- Dominance cannot explain all outcomes; games may not have dominant strategies
- PSNE: unilateral deviation; gives **stability**

- Dominance cannot explain all outcomes; games may not have dominant strategies
- PSNE: unilateral deviation; gives **stability**
- Maxmin: rationality for risk-aversion; gives security

- Dominance cannot explain all outcomes; games may not have dominant strategies
- PSNE: unilateral deviation; gives **stability**
- Maxmin: rationality for risk-aversion; gives security

- Dominance cannot explain all outcomes; games may not have dominant strategies
- PSNE: unilateral deviation; gives **stability**
- Maxmin: rationality for risk-aversion; gives security

Question

What happens to stability and security when some strategies are eliminated?

• Order T, R, B, $C \to (M, L) : (2, 2)$

- Order T, R, B, $C \rightarrow (M, L) : (2, 2)$
- Order B, L, C, T \rightarrow (*M*, *R*) : (3, 2)

- Order T, R, B, $C \rightarrow (M, L) : (2, 2)$
- Order B, L, C, T \rightarrow (*M*, *R*) : (3, 2)

- Order T, R, B, $C \to (M, L) : (2, 2)$
- Order B, L, C, T \rightarrow (*M*, *R*) : (3, 2)

Question

Does it change the maxmin value?

Iterated elimination of dominated strategies (contd.)

Maxmin values	Player 1	Player 2
Before		
After		

Maxmin values	Player 1	Player 2
Before	2	0
After		

Maxmin values	Player 1	Player 2
Before	2	0
After	2	2

Maxmin values	Player 1	Player 2
Before	2	0
After	2	2

Maxmin value is not affected for the player whose dominated strategy is removed

Consider an NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, and let $s'_j \in S_j$ be a dominated strategy. Let G' be the residual game after removing s'_j . Then, the maxmin value of j in G' is equal to her maxmin value in G.

Consider an NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, and let $s'_j \in S_j$ be a dominated strategy. Let G' be the residual game after removing s'_i . Then, the maxmin value of j in G' is equal to her maxmin value in G.

Intuition

Consider an NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, and let $s'_j \in S_j$ be a dominated strategy. Let G' be the residual game after removing s'_i . Then, the maxmin value of j in G' is equal to her maxmin value in G.

Intuition

• Maxmin is the 'max' of all 'min's

Consider an NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, and let $s'_j \in S_j$ be a dominated strategy. Let G' be the residual game after removing s'_i . Then, the maxmin value of j in G' is equal to her maxmin value in G.

Intuition

- Maxmin is the 'max' of all 'min's
- Elimination affects one 'min'

Consider an NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, and let $s'_j \in S_j$ be a dominated strategy. Let G' be the residual game after removing s'_i . Then, the maxmin value of j in G' is equal to her maxmin value in G.

Intuition

- Maxmin is the 'max' of all 'min's
- Elimination affects one 'min'
- But that does not affect the 'max' since the strategy was dominated

Proof

Maxmin value of player j in G

 $\underline{\mathbf{v}}_j = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$

Maxmin value of player j in GMaxmin value of player j in G' $\underline{\mathbf{v}}_{j} = \max_{s_{j} \in S_{j}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$ $\underline{\mathbf{v}}_{j}' = \max_{s_{j} \in S_{j} \setminus \{\mathbf{s}_{j}'\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$

Maxmin value of player j in GMaxmin value of player j in G'

Suppose t_j dominates s'_j in $G, t_j \in S_j \setminus \{s'_j\}$, then, $u_j(t_j, s_{-j}) \ge u_j(s'_j, s_{-j}), \forall s_{-j} \in S_{-j}$

 $\underline{\mathbf{v}}_{j} = \max_{s_{j} \in S_{j}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$ $\underline{\mathbf{v}}_{j}' = \max_{s_{j} \in S_{j} \setminus \{s'_{j}\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$ $t_{j}, s_{-j}) \ge u_{j}(s'_{j}, s_{-j}), \forall s_{-j} \in S_{-j}$

Maxmin value of player j in GMaxmin value of player j in G'

Suppose t_j dominates s'_j in $G, t_j \in S_j \setminus \{s'_j\}$, then, $u_j(t_j, s_{-j}) \ge u_j(s'_j, s_{-j}), \forall s_{-j} \in S_{-j}$

 $\underline{\mathbf{v}}_{j} = \max_{s_{j} \in S_{j}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$ $\underline{\mathbf{v}}_{j}' = \max_{s_{j} \in S_{j} \setminus \{s'_{j}\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$ $i_{j}(s_{-j}, s_{-j}) \geqslant u_{j}(s'_{j}, s_{-j}), \forall s_{-j} \in S_{-j}$

Therefore,

$$\min_{s_{-j}\in S_{-j}}u_j(t_j,s_{-j})=u_j(t_j,\tilde{s}_{-j})$$

Maxmin value of player i in G $\underline{\mathbf{v}}_j = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$ $\underline{\mathbf{v}}_{j}' = \max_{s_{j} \in S_{j} \setminus \{s_{j}'\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$ Maxmin value of player i in G'

Suppose t_j dominates s'_j in $G, t_j \in S_j \setminus \{s'_i\}$, then, $u_i(t_j, s_{-j}) \ge u_i(s'_i, s_{-j}), \forall s_{-i} \in S_{-i}$

Therefore,

$$\min_{s_{-j} \in S_{-j}} u_j(t_j, s_{-j}) = u_j(t_j, \tilde{s}_{-j}) \ge u_j(s'_j, \tilde{s}_{-j})$$

Maxmin value of player j in G $\underline{v}_j = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$ Maxmin value of player j in G' $\underline{v}'_j = \max_{s_j \in S_j \setminus \{s'_j\}} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$ Suppose t_j dominates s'_j in $G, t_j \in S_j \setminus \{s'_j\}$, then, $u_j(t_j, s_{-j}) \ge u_j(s'_j, s_{-j}), \forall s_{-j} \in S_{-j}$

Therefore,

$$\min_{s_{-j} \in S_{-j}} u_j(t_j, s_{-j}) = u_j(t_j, \tilde{s}_{-j}) \ge u_j(s'_j, \tilde{s}_{-j}) \ge \min_{s_{-j} \in S_{-j}} u_j(s'_j, s_{-j})$$

Maxmin value of player j in G $\underline{v}_j = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$ Maxmin value of player j in G' $\underline{v}'_j = \max_{s_j \in S_j \setminus \{s'_j\}} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$ Suppose t_j dominates s'_j in $G, t_j \in S_j \setminus \{s'_j\}$, then, $u_j(t_j, s_{-j}) \ge u_j(s'_j, s_{-j}), \forall s_{-j} \in S_{-j}$

Therefore, $\begin{array}{ll}
\min_{s_{-j}\in S_{-j}}u_{j}(t_{j},s_{-j}) = u_{j}(t_{j},\tilde{s}_{-j}) \geqslant u_{j}(s'_{j},\tilde{s}_{-j}) \geqslant \min_{s_{-j}\in S_{-j}}u_{j}(s'_{j},s_{-j}) \\
\implies \\
\underset{s_{j}\in S_{j}\setminus\{s'_{j}\}}{\max}\min_{s_{-j}\in S_{-j}}u_{j}(s_{j},s_{-j}) \geqslant \min_{s_{-j}\in S_{-j}}u_{j}(t_{j},s_{-j})
\end{array}$

Maxmin value of player j in G $\underline{v}_j = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$ Maxmin value of player j in G' $\underline{v}'_j = \max_{s_j \in S_j \setminus \{s'_j\}} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$ Suppose t_j dominates s'_j in $G, t_j \in S_j \setminus \{s'_j\}$, then, $u_j(t_j, s_{-j}) \ge u_j(s'_j, s_{-j}), \forall s_{-j} \in S_{-j}$

Therefore, $\begin{array}{ll}
\min_{s_{-j}\in S_{-j}}u_{j}(t_{j},s_{-j}) = u_{j}(t_{j},\tilde{s}_{-j}) \geqslant u_{j}(s_{j}',\tilde{s}_{-j}) \geqslant \min_{s_{-j}\in S_{-j}}u_{j}(s_{j}',s_{-j}) \\
\implies \\
\underset{s_{j}\in S_{j}\setminus\{s_{j}'\}}{\max}\min_{s_{-j}\in S_{-j}}u_{j}(s_{j},s_{-j}) \geqslant \min_{s_{-j}\in S_{-j}}u_{j}(t_{j},s_{-j}) \geqslant \min_{s_{-j}\in S_{-j}}u_{j}(s_{j}',s_{-j})$

 $\underline{\mathbf{v}}_j \quad [\text{maxmin value of } j \text{ in } G] \\ = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$

$$\underline{\mathbf{v}}_{j} \quad [\text{maxmin value of } j \text{ in } G]$$

$$= \max_{s_{j} \in S_{j}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$$

$$= \max \left\{ \max_{s_{j} \in S_{j} \setminus \{s'_{j}\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j}), \min_{s_{-j} \in S_{-j}} u_{j}(s'_{j}, s_{-j}) \right\}$$

$$\underline{v}_{j} \quad [\text{maxmin value of } j \text{ in } G]$$

$$= \max_{s_{j} \in S_{j}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j})$$

$$= \max \left\{ \max_{s_{j} \in S_{j} \setminus \{s'_{j}\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j}), \min_{s_{-j} \in S_{-j}} u_{j}(s'_{j}, s_{-j}) \right\}$$

$$= \max_{s_{j} \in S_{j} \setminus \{s'_{j}\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j}), \text{ because of the previous inequality}$$

$$\underline{v}_{j} \quad [\text{maxmin value of } j \text{ in } G] \\ = \max_{s_{j} \in S_{j}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j}) \\ = \max \left\{ \max_{s_{j} \in S_{j} \setminus \{s'_{j}\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j}), \min_{s_{-j} \in S_{-j}} u_{j}(s'_{j}, s_{-j}) \right\} \\ = \max_{s_{j} \in S_{j} \setminus \{s'_{j}\}} \min_{s_{-j} \in S_{-j}} u_{j}(s_{j}, s_{-j}), \text{ because of the previous inequality} \\ = \underline{v}_{j}' \quad [\text{maxmin value of } j \text{ in } G']$$

Contents

- ► Formal Representation of Games
- ▶ Dominance
- Nash Equilibrium
- Max-Min Strategies
- ► Elimination of dominated strategies
- ► Preservation of PSNE
- ▶ Matrix games

Question

What happens to existing equilibrium after iterated elimination?

Question

What happens to existing equilibrium after iterated elimination?

Theorem

Consider G and \hat{G} are games before and after elimination of a strategy (not necessarily dominated). If s^{*} *is a PSNE in G and survives in \hat{G}, then s*^{*} *is a PSNE in \hat{G} too.*

Question

What happens to existing equilibrium after iterated elimination?

Theorem

Consider G and \hat{G} *are games before and after elimination of a strategy (not necessarily dominated). If* s^* *is a PSNE in G and survives in* \hat{G} *, then* s^* *is a PSNE in* \hat{G} *too.*

Intuition

PSNE was a maxima of utility of *i* among the strategies of *i*. Removing other strategies does not affect maximality. **Proof:** exercise.

Theorem

Consider NFG G. Let \hat{s}_j be a weakly dominated strategy of j. If \hat{G} is obtained from G eliminating \hat{s}_j , then every PSNE of \hat{G} is a PSNE of G.

Theorem

Consider NFG G. Let \hat{s}_j be a weakly dominated strategy of j. If \hat{G} is obtained from G eliminating \hat{s}_j , then every PSNE of \hat{G} is a PSNE of G.

No new PSNE if the eliminated strategy is dominated

Theorem

Consider NFG G. Let \hat{s}_j be a weakly dominated strategy of j. If \hat{G} is obtained from G eliminating \hat{s}_j , then every PSNE of \hat{G} is a PSNE of G.

No new PSNE if the eliminated strategy is dominated

But old PSNEs could be killed: saw in the previous example

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus {\{\hat{s}_j\}}$, $\hat{S}_i = S_i, \forall i \neq j$

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus {\{\hat{s}_j\}}$, $\hat{S}_i = S_i$, $\forall i \neq j$

Need to show: if $s^* = (s_j^*, s_{-j}^*)$ is a PSNE in \hat{G} , it is a PSNE in *G*.

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus {\{\hat{s}_j\}}, \hat{S}_i = S_i, \forall i \neq j$

Need to show: if $s^* = (s_j^*, s_{-j}^*)$ is a PSNE in \hat{G} , it is a PSNE in *G*.

Given

$$u_i(s^*) \ge u_i(s_i, s^*_{-i}), \forall i \neq j, \forall s_i \in \hat{S}_i = S_i$$

$$u_j(s^*) \ge u_j(s_j, s^*_{-j}), \forall s_j \in \hat{S}_j$$

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus {\{\hat{s}_j\}}$, $\hat{S}_i = S_i$, $\forall i \neq j$

Need to show: if $s^* = (s_j^*, s_{-j}^*)$ is a PSNE in \hat{G} , it is a PSNE in *G*.

Given

$$\begin{split} u_i(s^*) &\ge u_i(s_i, s^*_{-i}), \forall i \neq j, \forall s_i \in \hat{S}_i = S_i \\ u_j(s^*) &\ge u_j(s_j, s^*_{-j}), \forall s_j \in \hat{S}_j \end{split}$$

Need to show: no profitable deviation for any player in *G*. For $i \neq j$, this is immediate since no strategy is removed.

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus {\{\hat{s}_j\}}, \hat{S}_i = S_i, \forall i \neq j$

Need to show: if $s^* = (s_j^*, s_{-j}^*)$ is a PSNE in \hat{G} , it is a PSNE in *G*.

Given

For *j*, no profitable deviation from s^* for any strategy $s_j \neq \hat{s}_j$

$$u_i(s^*) \ge u_i(s_i, s^*_{-i}), \forall i \neq j, \forall s_i \in \hat{S}_i = S_i$$
$$u_j(s^*) \ge u_j(s_j, s^*_{-j}), \forall s_j \in \hat{S}_j$$

Need to show: no profitable deviation for any player in *G*. For $i \neq j$, this is immediate since no strategy is removed.

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus \{\hat{s}_j\}$, $\hat{S}_i = S_i, \forall i \neq j$

Need to show: if $s^* = (s_j^*, s_{-j}^*)$ is a PSNE in \hat{G} , it is a PSNE in *G*.

Given

$$u_i(s^*) \ge u_i(s_i, s^*_{-i}), \forall i \neq j, \forall s_i \in \hat{S}_i = S_i$$
$$u_j(s^*) \ge u_j(s_j, s^*_{-j}), \forall s_j \in \hat{S}_j$$

Need to show: no profitable deviation for any player in *G*. For $i \neq j$, this is immediate since no strategy is removed.

For *j*, no profitable deviation from s^* for any strategy $s_j \neq \hat{s}_j$ Since \hat{s}_j is dominated, $\exists t_j$ such that

$$u_j(t_j, s_{-j}) \ge u_j(\hat{s}_j, s_{-j}), \forall s_{-j} \in S_{-j}$$

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus \{\hat{s}_j\}$, $\hat{S}_i = S_i, \forall i \neq j$

Need to show: if $s^* = (s_j^*, s_{-j}^*)$ is a PSNE in \hat{G} , it is a PSNE in *G*.

Given

$$u_i(s^*) \ge u_i(s_i, s^*_{-i}), \forall i \neq j, \forall s_i \in \hat{S}_i = S_i$$
$$u_j(s^*) \ge u_j(s_j, s^*_{-j}), \forall s_j \in \hat{S}_j$$

Need to show: no profitable deviation for any player in *G*. For $i \neq j$, this is immediate since no strategy is removed.

For *j*, no profitable deviation from s^* for any strategy $s_j \neq \hat{s}_j$ Since \hat{s}_j is dominated, $\exists t_j$ such that

$$\begin{split} u_j(t_j,s_{-j}) \geqslant u_j(\hat{s}_j,s_{-j}), \forall s_{-j} \in S_{-j} \\ \text{In particular,} \quad u_j(t_j,s^*_{-j}) \geqslant u_j(\hat{s}_j,s^*_{-j}) \end{split}$$

In the game \hat{G} , modified strategy sets are $\hat{S}_j = S_j \setminus {\{\hat{s}_j\}}, \, \hat{S}_i = S_i, \forall i \neq j$

Need to show: if $s^* = (s_i^*, s_{-i}^*)$ is a PSNE in \hat{G} , it is a PSNE in *G*.

Given

$$u_i(s^*) \ge u_i(s_i, s^*_{-i}), \forall i \neq j, \forall s_i \in \hat{S}_i = S_i$$
$$u_j(s^*) \ge u_j(s_j, s^*_{-j}), \forall s_j \in \hat{S}_j$$

Need to show: no profitable deviation for any player in *G*. For $i \neq j$, this is immediate since no strategy is removed.

For *j*, no profitable deviation from s^* for any strategy $s_j \neq \hat{s}_j$ Since \hat{s}_j is dominated, $\exists t_j$ such that

 $u_j(t_j, s_{-j}) \ge u_j(\hat{s}_j, s_{-j}), \forall s_{-j} \in S_{-j}$

In particular, $u_j(t_j, s^*_{-j}) \ge u_j(\hat{s}_j, s^*_{-j})$ Since s^* is a PSNE in \hat{G} and $t_j \in \hat{S}_j$

 $u_j(s_j^*,s_{-j}^*) \ge u_j(t_j,s_{-j}^*) \ge u_j(\hat{s}_j,s_{-j}^*)$

• Elimination of strictly dominated strategy have no effect on PSNE

- Elimination of strictly dominated strategy have no effect on PSNE
- Elimination of weakly dominated strategy may reduce the set of PSNEs, but never adds new

- Elimination of strictly dominated strategy have no effect on PSNE
- Elimination of weakly dominated strategy may reduce the set of PSNEs, but never adds new
- The maxmin values of the player whose strictly or weakly dominated strategies are remove remain unaffected

Contents

- ► Formal Representation of Games
- ▶ Dominance
- Nash Equilibrium
- Max-Min Strategies
- ► Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Definition (Two player zero-sum games)

A NFG $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$ and $u_1 + u_2 \equiv 0$

Definition (Two player zero-sum games)

A NFG $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$ and $u_1 + u_2 \equiv 0$

Question

Why called **matrix** game?

Definition (Two player zero-sum games)

A NFG $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$ and $u_1 + u_2 \equiv 0$

Question

Why called **matrix** game?

Answer

Possible to represent the game with only one matrix considering the utilities of player 1; player 2's utilities are negative of this matrix

Example: Penalty shoot game

Example: Penalty shoot game

Example: Penalty shoot game

Player 2's maxmin value is the minmax value of this matrix

भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay