

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

# CS 6001: Game Theory and Algorithmic Mechanism Design

Week 4

Swaprava Nath

Slide preparation acknowledgments: Onkar Borade and Rounak Dalmia

ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal

# Contents



# ▶ Recap

- ► Correlated Strategy and Equilibrium
- ► Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection
- ► Limitations of SPNE



## • MSNE $\rightarrow$ weakest notion of equilibrium so far



- MSNE  $\rightarrow$  weakest notion of equilibrium so far
- Existence is guaranteed for finite games



- MSNE  $\rightarrow$  weakest notion of equilibrium so far
- Existence is guaranteed for finite games
- Finding MSNE is computationally expensive





## ▶ Recap

- ► Correlated Strategy and Equilibrium
- ► Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- ► Subgame Perfection
- ► Limitations of SPNE



Alternative approach - entry of a **mediating** agent/device

Why do we need such an agent?

• Alternative explanation of player rationality



Alternative approach - entry of a **mediating** agent/device

Why do we need such an agent?

- Alternative explanation of player rationality
- Utility for all players may get better



Alternative approach - entry of a **mediating** agent/device

Why do we need such an agent?

- Alternative explanation of player rationality
- Utility for all players may get better
- Computational tractability

# **Correlated Strategy and Equilibrium**





Busy cross road game

# Correlated Strategy and Equilibrium





Nash solutions for the above are

- One waits and the other goes, or
- Large probability of waiting

# **Correlated Strategy and Equilibrium**



• In practice, something else happens



- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)



- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The **trusted third party** is called the **mediator**



- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The **trusted third party** is called the **mediator**
- Role:



- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The **trusted third party** is called the **mediator**
- Role:
  - randomize over the **strategy profiles** (and not individual strategies)



- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The **trusted third party** is called the **mediator**
- Role:
  - randomize over the strategy profiles (and not individual strategies)
  - and suggest the corresponding strategies to the players



- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The **trusted third party** is called the **mediator**
- Role:
  - randomize over the strategy profiles (and not individual strategies)
  - and suggest the corresponding strategies to the players
- If the strategies are **enforceable** then it is an equilibrium (correlated)



A correlated strategy is a mapping  $\pi : S_1 \times S_2 \times \cdots \times S_n \rightarrow [0,1]$  s.t.  $\sum_{s \in S} \pi(s) = 1$ .



A correlated strategy is a mapping  $\pi: S_1 \times S_2 \times \cdots \times S_n \to [0,1]$  s.t.  $\sum_{s \in S} \pi(s) = 1$ .

**Example**:  $\pi(W, W) = 0$ ,  $\pi(W, G) = \pi(G, W) = \frac{1}{2}$ , and  $\pi(G, G) = 0$ 



A correlated strategy is a mapping  $\pi: S_1 \times S_2 \times \cdots \times S_n \to [0,1]$  s.t.  $\sum_{s \in S} \pi(s) = 1$ .

**Example**:  $\pi(W, W) = 0$ ,  $\pi(W, G) = \pi(G, W) = \frac{1}{2}$ , and  $\pi(G, G) = 0$ 

#### Question

What is a correlated equilibrium?



A correlated strategy is a mapping  $\pi: S_1 \times S_2 \times \cdots \times S_n \to [0,1]$  s.t.  $\sum_{s \in S} \pi(s) = 1$ .

**Example**:  $\pi(W, W) = 0$ ,  $\pi(W, G) = \pi(G, W) = \frac{1}{2}$ , and  $\pi(G, G) = 0$ 

#### Question

What is a correlated equilibrium?

#### Answer

A *correlated strategy* is a **correlated equilibrium** when no player *gains* by deviating from the suggested strategy while others follow the suggested strategies



A correlated strategy is a mapping  $\pi: S_1 \times S_2 \times \cdots \times S_n \to [0,1]$  s.t.  $\sum_{s \in S} \pi(s) = 1$ .

**Example**:  $\pi(W, W) = 0$ ,  $\pi(W, G) = \pi(G, W) = \frac{1}{2}$ , and  $\pi(G, G) = 0$ 

#### Question

What is a correlated equilibrium?

#### Answer

A *correlated strategy* is a **correlated equilibrium** when no player *gains* by deviating from the suggested strategy while others follow the suggested strategies

The correlated strategy  $\pi$  is a common knowledge

# Correlated Strategy and Equilibrium (contd.)



Definition (Correlated Equilibrium)

A **correlated equilibrium** is a correlated strategy  $\pi$  s.t.

$$\sum_{s_{-i}\in S_{-i}}\pi(s_i,s_{-i})\cdot u_i(s_i,s_{-i}) \geqslant \sum_{s_{-i}\in S_{-i}}\pi(s_i,s_{-i})\cdot u_i(s_i',s_{-i}), \ \forall s_i,s_i'\in S_i, \forall i\in N.$$



Definition (Correlated Equilibrium)

A **correlated equilibrium** is a correlated strategy  $\pi$  s.t.

$$\sum_{i\in S_{-i}} \pi(\mathbf{s}_i, \mathbf{s}_{-i}) \cdot u_i(\mathbf{s}_i, \mathbf{s}_{-i}) \ge \sum_{s_{-i}\in S_{-i}} \pi(\mathbf{s}_i, \mathbf{s}_{-i}) \cdot u_i(\mathbf{s}'_i, \mathbf{s}_{-i}), \ \forall s_i, s'_i \in S_i, \forall i \in N.$$

## **Discussions**:

- The mediator suggests the actions after running its randomization device  $\pi$
- Every agent's best response is to follow it if others are also following it



Definition (Correlated Equilibrium)

A **correlated equilibrium** is a correlated strategy  $\pi$  s.t.

$$\sum_{i\in S_{-i}} \pi(\mathbf{s}_i, \mathbf{s}_{-i}) \cdot u_i(\mathbf{s}_i, \mathbf{s}_{-i}) \ge \sum_{s_{-i}\in S_{-i}} \pi(\mathbf{s}_i, \mathbf{s}_{-i}) \cdot u_i(\mathbf{s}'_i, \mathbf{s}_{-i}), \ \forall s_i, s'_i \in S_i, \forall i \in N.$$

## **Discussions**:

- The mediator suggests the actions after running its randomization device  $\pi$
- Every agent's best response is to follow it if others are also following it

Some examples (upcoming)





Football or Cricket Game





Football or Cricket Game

MSNE:  $\left(\left(\frac{2}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{2}{3}\right)\right)$ 





Football or Cricket Game

MSNE:  $\left(\left(\frac{2}{3},\frac{1}{3}\right), \left(\frac{1}{3},\frac{2}{3}\right)\right)$ 

QuestionIs  $\pi(C, C) = \frac{1}{2} = \pi(F, F)$  a CE?





Football or Cricket Game

MSNE:  $\left( \left( \frac{2}{3}, \frac{1}{3} \right), \left( \frac{1}{3}, \frac{2}{3} \right) \right)$ 

Ouestion Is  $\pi(C, C) = \frac{1}{2} = \pi(F, F)$  a CE?

Yes!





Football or Cricket Game

MSNE:  $\left( \left( \frac{2}{3}, \frac{1}{3} \right), \left( \frac{1}{3}, \frac{2}{3} \right) \right)$ 

Question Is  $\pi(C, C) = \frac{1}{2} = \pi(F, F)$  a CE?

Yes! Expected utility: MSNE =  $\frac{2}{3}$ , CE =  $\frac{3}{2}$ 





MSNE:  $\left( \left( \frac{2}{3}, \frac{1}{3} \right), \left( \frac{1}{3}, \frac{2}{3} \right) \right)$ 

QuestionIs  $\pi(C, C) = \frac{1}{2} = \pi(F, F)$  a CE?

Yes! Expected utility: MSNE =  $\frac{2}{3}$ , CE =  $\frac{3}{2}$ 



Busy Cross road





MSNE:  $\left( \left( \frac{2}{3}, \frac{1}{3} \right), \left( \frac{1}{3}, \frac{2}{3} \right) \right)$ 

Question Is  $\pi(C, C) = \frac{1}{2} = \pi(F, F)$  a CE?

Yes! Expected utility: MSNE =  $\frac{2}{3}$ , CE =  $\frac{3}{2}$ 



Busy Cross road

What are the MSNEs?





MSNE:  $\left( \left( \frac{2}{3}, \frac{1}{3} \right), \left( \frac{1}{3}, \frac{2}{3} \right) \right)$ 

Question Is  $\pi(C,C) = \frac{1}{2} = \pi(F,F)$  a CE?

Yes! Expected utility: MSNE =  $\frac{2}{3}$ , CE =  $\frac{3}{2}$ 



Busy Cross road

### What are the MSNEs?

Question  $\pi(W,G) = \pi(W,W) = \pi(G,W) = \frac{1}{3}$  a CE?





MSNE:  $\left( \left( \frac{2}{3}, \frac{1}{3} \right), \left( \frac{1}{3}, \frac{2}{3} \right) \right)$ 

Question Is  $\pi(C,C) = \frac{1}{2} = \pi(F,F)$  a CE?

Yes! Expected utility:  $MSNE = \frac{2}{3}$ ,  $CE = \frac{3}{2}$ 





#### What are the MSNEs?

# Question $\pi(W,G) = \pi(W,W) = \pi(G,W) = \frac{1}{3}$ a CE?

#### Question

Are there other CEs of this game?





## ▶ Recap

- ► Correlated Strategy and Equilibrium
- ► Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection
- ► Limitations of SPNE




Two set of constraints



Two set of constraints

$$\sum_{s_{-i} \in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s_i, s_{-i}) \geqslant \sum_{s_{-i} \in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s_i', s_{-i}), \forall s_i, s_i' \in S_i, \forall i \in N$$



## Two set of constraints

$$\sum_{s_{-i}\in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s_i, s_{-i}) \ge \sum_{s_{-i}\in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s_i', s_{-i}), \forall s_i, s_i' \in S_i, \forall i \in N$$

Total number of inequalities =  $O(n \cdot m^2)$ , assuming  $|S_i| = m$ ,  $\forall i \in N$ 



## Two set of constraints

$$\sum_{s_{-i}\in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s_i, s_{-i}) \ge \sum_{s_{-i}\in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s'_i, s_{-i}), \forall s_i, s'_i \in S_i, \forall i \in N$$
  
Total number of inequalities =  $O(n \cdot m^2)$ , assuming  $|S_i| = m, \forall i \in N$   
 $\pi(s) \ge 0, \forall s \in S, \quad \sum_{s \in S} \pi(s) = 1$ 



## Two set of constraints

$$\sum_{s_{-i} \in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in S_{-i}} \pi(s_i, s_{-i}) \cdot u_i(s'_i, s_{-i}), \forall s_i, s'_i \in S_i, \forall i \in N$$
  
Total number of inequalities =  $O(n \cdot m^2)$ , assuming  $|S_i| = m, \forall i \in N$   
 $\pi(s) \ge 0, \forall s \in S, \quad \sum_{s \in S} \pi(s) = 1$   
 $m^n$  inequalities



• The inequalities together represent a **feasibility linear program** that is easier to compute than MSNE

<sup>&</sup>lt;sup>1</sup>take log of both quantities to understand this point



- The inequalities together represent a **feasibility linear program** that is easier to compute than MSNE
- **MSNE** : total number of support profiles =  $O(2^{mn})$

<sup>&</sup>lt;sup>1</sup>take log of both quantities to understand this point



- The inequalities together represent a **feasibility linear program** that is easier to compute than MSNE
- **MSNE** : total number of support profiles =  $O(2^{mn})$
- **CE** : number of inequalities  $O(m^n)$ : exponentially smaller than the above <sup>1</sup>

<sup>&</sup>lt;sup>1</sup>take log of both quantities to understand this point



- The inequalities together represent a **feasibility linear program** that is easier to compute than MSNE
- **MSNE** : total number of support profiles =  $O(2^{mn})$
- **CE** : number of inequalities  $O(m^n)$ : exponentially smaller than the above <sup>1</sup>
- Moreover, this can also be used to optimize some objective function, e.g., maximize the sum of utilities of the players

<sup>&</sup>lt;sup>1</sup>take log of both quantities to understand this point

# Comparison with the previous equilibrium notions



Theorem

For every **MSNE**  $\sigma^*$ , there exists a **CE**  $\pi^*$ 



Theorem

For every **MSNE**  $\sigma^*$ , there exists a **CE**  $\pi^*$ 

**Proof Hint:** Use  $\pi^*(s_i, \ldots, s_n) = \prod_{i=1}^n \sigma_i^*(s_i)$  and the MSNE characterization theorem [Homework]

# Venn diagram of games having equilibrium







• Normal form games



- Normal form games
- Rationality, intelligence, common knowledge



- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action



- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance strict and weak equilibrium : SDSE, WDSE



- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance strict and weak equilibrium : SDSE, WDSE
- Unilateral deviation PSNE, generalization : MSNE, existence (Nash)



- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance strict and weak equilibrium : SDSE, WDSE
- Unilateral deviation PSNE, generalization : MSNE, existence (Nash)
- Characterization of MSNE computing, hardness



- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance strict and weak equilibrium : SDSE, WDSE
- Unilateral deviation PSNE, generalization : MSNE, existence (Nash)
- Characterization of MSNE computing, hardness
- Trusted mediator correlated strategies equilibrium



• More appropriate for multi-stage games, e.g. **chess** 



- More appropriate for multi-stage games, e.g. chess
- Players interact in a sequence the sequence of actions is the history of the game



# ▶ Recap

- ► Correlated Strategy and Equilibrium
- ► Computing Correlated Equilibrium
- ▶ Perfect Information Extensive Form Games (PIEFG)
- ► Subgame Perfection
- ► Limitations of SPNE

# **Perfect Information Extensive Games (PIEFG)**



Brother 2 - 00 - 2-1Sister R R R Α A Α 0.0 2,0 0,0 1,1 0,0 0,2

- Brother-sister Chocolate Division
- **Disagreement** → both chocolates taken away

# PIEFG $\langle N, A, H, X, P, (u_i)_{i \in N} \rangle$

• *N*: a set of players



- *N*: a set of players
- *A*: a set of all possible actions (of all players)



- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying





- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying
  - empty history  $\emptyset \in H$





- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying
  - empty history  $\emptyset \in H$
  - if  $h \in H$ , any sub-sequence h' of h starting at the root must be in H



- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying
  - empty history  $\emptyset \in H$
  - if  $h \in H$ , any sub-sequence h' of h starting at the root must be in H
  - a history  $h = (a^{(0)}, a^{(1)}, ..., a^{(T-1)})$  is **terminal** if  $\nexists a^{(T)} \in A$  s.t.  $(a^{(0)}, a^{(1)}, ..., a^{(T)}) \in H$



- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying
  - empty history  $\emptyset \in H$
  - if  $h \in H$ , any sub-sequence h' of h starting at the root must be in H
  - a history  $h = (a^{(0)}, a^{(1)}, \dots, a^{(T-1)})$  is **terminal** if  $\nexists a^{(T)} \in A$  s.t.  $(a^{(0)}, a^{(1)}, \dots, a^{(T)}) \in H$
  - $Z \subseteq H$ : set of all terminals histories





- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying
  - empty history  $\emptyset \in H$
  - if  $h \in H$ , any sub-sequence h' of h starting at the root must be in H
  - a history  $h = (a^{(0)}, a^{(1)}, \dots, a^{(T-1)})$  is **terminal** if  $\nexists a^{(T)} \in A$  s.t.  $(a^{(0)}, a^{(1)}, \dots, a^{(T)}) \in H$
  - $Z \subseteq H$ : set of all terminals histories
- $X: H \setminus Z \to 2^A$ : action set selection function



- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying
  - empty history  $\emptyset \in H$
  - if  $h \in H$ , any sub-sequence h' of h starting at the root must be in H
  - a history  $h = (a^{(0)}, a^{(1)}, ..., a^{(T-1)})$  is **terminal** if  $\nexists a^{(T)} \in A$  s.t.  $(a^{(0)}, a^{(1)}, ..., a^{(T)}) \in H$
  - $Z \subseteq H$ : set of all terminals histories
- $X: H \setminus Z \to 2^A$ : action set selection function
- $P: H \setminus Z \rightarrow N$ : player function



- *N*: a set of players
- *A*: a set of all possible actions (of all players)
- *H*: a set of all **sequences of actions** satisfying
  - empty history  $\emptyset \in H$
  - if  $h \in H$ , any sub-sequence h' of h starting at the root must be in H
  - a history  $h = (a^{(0)}, a^{(1)}, ..., a^{(T-1)})$  is **terminal** if  $\nexists a^{(T)} \in A$  s.t.  $(a^{(0)}, a^{(1)}, ..., a^{(T)}) \in H$
  - $Z \subseteq H$ : set of all terminals histories
- $X: H \setminus Z \to 2^A$ : action set selection function
- $P: H \setminus Z \rightarrow N$ : player function
- $u_i: Z \to \mathbb{R}$ : utility of i





The **strategy** of a player in an EFG is a tuple of actions at every history where the player plays, i.e.,

$$S_i = \times_{\{h \in H: P(h) = i\}} X(h)$$

**Remember:** 

• Strategy is a **complete contingency plan** of the player



The **strategy** of a player in an EFG is a tuple of actions at every history where the player plays, i.e.,

$$S_i = \times_{\{h \in H: P(h) = i\}} X(h)$$

### Remember:

- Strategy is a **complete contingency plan** of the player
- It enumerates potential actions a player can take at every node where she can play, even though some combination of actions may never be executed together
•  $N = \{1, 2\}$  – Brother and Sister respectively



- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$



- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$



- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$
- $Z = \{(2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R)\}$



- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$
- Z ={(2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R)} •  $X(\emptyset) = \{(2-0), (1-1), (0-2)\}$



- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$
- $Z = \{(2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R)\}$
- $X(\emptyset) = \{(2-0), (1-1), (0-2)\}$
- $X(2-0) = X(1-1) = X(0-2) = \{A, R\}$



- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$
- $Z = \{(2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R)\}$
- $X(\emptyset) = \{(2-0), (1-1), (0-2)\}$

• 
$$X(2-0) = X(1-1) = X(0-2) = \{A, R\}$$

•  $P(\emptyset) = 1, P(2-0) = P(1-1) = P(0-2) = 2$ 





- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$
- $Z = \{(2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R)\}$
- $X(\emptyset) = \{(2-0), (1-1), (0-2)\}$

• 
$$X(2-0) = X(1-1) = X(0-2) = \{A, R\}$$

- $P(\emptyset) = 1, P(2-0) = P(1-1) = P(0-2) = 2$
- $u_1(2-0,A) = 2, u_1(1-1,A) = 1, u_2(1-1,A) = 1, u_2(0-2,A) = 2$  [utilities are zero at the other terminal histories]





- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$
- $Z = \{(2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R)\}$
- $X(\emptyset) = \{(2-0), (1-1), (0-2)\}$

• 
$$X(2-0) = X(1-1) = X(0-2) = \{A, R\}$$

- $P(\emptyset) = 1, P(2-0) = P(1-1) = P(0-2) = 2$
- *u*<sub>1</sub>(2−0,*A*) = 2, *u*<sub>1</sub>(1−1,*A*) = 1, *u*<sub>2</sub>(1−1,*A*) = 1, *u*<sub>2</sub>(0−2,*A*) = 2 [utilities are zero at the other terminal histories]
- $S_1 = \{2 0, 1 1, 0 2\}$





- $N = \{1, 2\}$  Brother and Sister respectively
- $A = \{2 0, 1 1, 0 2, A, R\}$
- $H = \{ \emptyset, (2-0), (1-1), (0-2), (2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R) \}$
- $Z = \{(2-0,A), (2-0,R), (1-1,A), (1-1,R), (0-2,A), (0-2,R)\}$
- $X(\emptyset) = \{(2-0), (1-1), (0-2)\}$

• 
$$X(2-0) = X(1-1) = X(0-2) = \{A, R\}$$

- $P(\emptyset) = 1, P(2-0) = P(1-1) = P(0-2) = 2$
- *u*<sub>1</sub>(2−0,*A*) = 2, *u*<sub>1</sub>(1−1,*A*) = 1, *u*<sub>2</sub>(1−1,*A*) = 1, *u*<sub>2</sub>(0−2,*A*) = 2 [utilities are zero at the other terminal histories]
- $S_1 = \{2 0, 1 1, 0 2\}$ •  $S_2 = \{A, R\} \times \{A, R\} \times \{A, R\} = \{AAA, AAR, ARA, ARR, RAA, RAR, RRA, RRR\}$







Once we have the  $S_1$  and  $S_2$ , the game can be represented as an NFG

|         |     | Sister |                   |                   |                   |                   |                   |                   |                   |
|---------|-----|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|         |     | AAA    | AAR               | ARA               | ARR               | RAA               | RAR               | RRA               | RRR               |
| Brother | 2-0 | 2,0    | 2,0               | 2,0               | 2,0               | <mark>0</mark> ,0 | <mark>0</mark> ,0 | <mark>0</mark> ,0 | 0,0               |
|         | 1-1 | 1,1    | 1,1               | <mark>0</mark> ,0 | <mark>0</mark> ,0 | 1,1               | 1,1               | <mark>0</mark> ,0 | <mark>0</mark> ,0 |
|         | 0-2 | 0,2    | <mark>0</mark> ,0 | 0,2               | <mark>0</mark> ,0 | 0,2               | <mark>0</mark> ,0 | 0,2               | <mark>0</mark> ,0 |







• Nash equilibrium like (2 - 0, RRA) not quite reasonable, e.g., why R at 1 - 1?







- Nash equilibrium like (2 0, RRA) not quite reasonable, e.g., why R at 1 1?
- Similarly, (2 0, RRR) is not a **credible threat**, i.e., if the game ever reaches the history 1 1, Player 2's rational choice is not *R*







- Nash equilibrium like (2 0, RRA) not quite reasonable, e.g., why *R* at 1 1?
- Similarly, (2 0, RRR) is not a **credible threat**, i.e., if the game ever reaches the history 1 1, Player 2's rational choice is not *R*
- Hence this equilibrium concept (PSNE) is not good enough for predicting outcomes in PIEFGs







- Nash equilibrium like (2 0, RRA) not quite reasonable, e.g., why R at 1 1?
- Similarly, (2 0, RRR) is not a **credible threat**, i.e., if the game ever reaches the history 1 1, Player 2's rational choice is not *R*
- Hence this equilibrium concept (PSNE) is not good enough for predicting outcomes in PIEFGs
- Also the representation of a sequential game as NFG has huge redundancy EFG is succinct



## ▶ Recap

- ► Correlated Strategy and Equilibrium
- ► Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- ► Subgame Perfection
- ► Limitations of SPNE

**PIEFG to NFG** 

Equilibrium guarantees are weak for PIEFG in an NFG representation



• Strategies of Player 1 : *AG*, *AH*, *BG*, *BH* 



#### 26

# **PIEFG to NFG**

Equilibrium guarantees are weak for PIEFG in an NFG representation



- Strategies of Player 1 : *AG*, *AH*, *BG*, *BH*
- Strategies of Player 2 : *CE*, *CF*, *DE*, *DF*



#### 26

# **PIEFG to NFG**





- Strategies of Player 1 : *AG*, *AH*, *BG*, *BH*
- Strategies of Player 2 : *CE*, *CF*, *DE*, *DF*
- PSNEs?



# PIEFG to NFG



Equilibrium guarantees are weak for PIEFG in an NFG representation



- Strategies of Player 1 : AG, AH, BG, BH
- Strategies of Player 2 : *CE*, *CF*, *DE*, *DF*
- PSNEs?
- (*AG*, *CF*), (*AH*, *CF*), (*BH*, *CE*) is there any non-credible threat

# **PIEFG** to NFG



Equilibrium guarantees are weak for PIEFG in an NFG representation



- Strategies of Player 1 : AG, AH, BG, BH
- Strategies of Player 2 : *CE*, *CF*, *DE*, *DF*
- PSNEs?
- (*AG*, *CF*), (*AH*, *CF*), (*BH*, *CE*) is there any non-credible threat
- Better notion of rational outcome will be that which considers a history and ensures utility maximization





Definition (Subgame)

The subgame of a PIEFG *G* rooted at a history *h* is the *restriction* of *G* to the descendants of *h*.



Definition (Subgame)

The subgame of a PIEFG *G* rooted at a history *h* is the *restriction* of *G* to the descendants of *h*.

The set of subgames of G is the collection of all subgames at some history of G



Definition (Subgame)

The subgame of a PIEFG *G* rooted at a history *h* is the *restriction* of *G* to the descendants of *h*.

The set of subgames of G is the collection of all subgames at some history of G

**Subgame perfection**: Best response at every subgame



Definition (Subgame)

The subgame of a PIEFG *G* rooted at a history *h* is the *restriction* of *G* to the descendants of *h*.

The set of subgames of G is the collection of all subgames at some history of G

**Subgame perfection**: Best response at every subgame

Definition (Subgame Perfect Nash Equilibrium (SPNE))

A subgame perfect Nash Equilibrium (SPNE) of a PIEFG *G* is a strategy profile  $s \in S$  s.t. for every subgame *G*' of *G*, the restriction of *s* to *G*' is a PSNE of *G*'

Example





• PSNEs : (*AH*, *CF*), (*BH*, *CE*), (*AG*, *CF*)

Example





- PSNEs : (*AH*, *CF*), (*BH*, *CE*), (*AG*, *CF*)
- Are they all SPNEs?

Example





- PSNEs : (*AH*, *CF*), (*BH*, *CE*), (*AG*, *CF*)
- Are they all SPNEs?
- How to compute them?



|   | Algorithm 1: Backward Induction                                                                               |  |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1 | <b>Function</b> BACK_IND(history h):                                                                          |  |  |  |  |  |  |
| 2 | if $h \in Z$ then                                                                                             |  |  |  |  |  |  |
| 3 | return $u(h), \emptyset$                                                                                      |  |  |  |  |  |  |
| 4 | $best\_util_{P(h)} \longleftarrow -\infty$                                                                    |  |  |  |  |  |  |
|   | foreach $a \in X(h)$ do                                                                                       |  |  |  |  |  |  |
| 5 | $util_at\_child_{P(h)} \longleftarrow BACK\_IND((h, a))$                                                      |  |  |  |  |  |  |
|   | if $util_at_child_{P(h)} > best_util_{P(h)}$ then                                                             |  |  |  |  |  |  |
| 6 | $ best\_util_{P(h)}  util\_at\_child_{P(h)}, best\_action_{P(h)}  a$                                          |  |  |  |  |  |  |
| 7 | <b>return</b> <i>best_util</i> <sub><math>P(h)</math></sub> , <i>best_action</i> <sub><math>P(h)</math></sub> |  |  |  |  |  |  |



## ▶ Recap

- ► Correlated Strategy and Equilibrium
- ► Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection

### ► Limitations of SPNE



Advantages:

• SPNE is guaranteed to exist in finite PIEFGs (requires proof)



Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist



Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist
- The algorithm to find SPNE is quite simple



Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist
- The algorithm to find SPNE is quite simple

### Disdvantages and criticisms:

• The whole tree has to be parsed to find the SPNE: which can be computationally expensive (or maybe impossible), e.g., chess has  $\sim 10^{150}$  vertices



Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist
- The algorithm to find SPNE is quite simple

- The whole tree has to be parsed to find the SPNE: which can be computationally expensive (or maybe impossible), e.g., chess has  $\sim 10^{150}$  vertices
- Cognitive limit of real players may prohibit playing an SPNE
Centipede game





Centipede game





Question

What is/are the SPNE(s) of this game?

Question

What is the problem with that prediction ?





• This game has been experimented with various populations





- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.





- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)



- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- **Reasons claimed:** altruism, limited computational capacity of individuals, incentive difference



- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- **Reasons claimed:** altruism, limited computational capacity of individuals, incentive difference
- **Criticism of the defining principle of SPNE:** It talks about "what action if the game reached this history" but the equilibrium in some stage above can show that it "cannot reach that history"



- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- **Reasons claimed:** altruism, limited computational capacity of individuals, incentive difference
- **Criticism of the defining principle of SPNE:** It talks about "what action if the game reached this history" but the equilibrium in some stage above can show that it "cannot reach that history"
- Works in explaining outcomes in certain games, but there is another way to extend this idea



- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- **Reasons claimed:** altruism, limited computational capacity of individuals, incentive difference
- **Criticism of the defining principle of SPNE:** It talks about "what action if the game reached this history" but the equilibrium in some stage above can show that it "cannot reach that history"
- Works in explaining outcomes in certain games, but there is another way to extend this idea
- Using the idea of **belief** of the players



## भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay