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Correlated Strategy and Equilibrium

Alternative approach - entry of a mediating agent/device

Why do we need such an agent?

• Alternative explanation of player rationality

• Utility for all players may get better
• Computational tractability
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Correlated Strategy and Equilibrium
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Correlated Strategy and Equilibrium

• In practice, something else happens

• A traffic light guides the players, and the players agree to this plan (Why?)
• The trusted third party is called the mediator
• Role:

— randomize over the strategy profiles (and not individual strategies)
— and suggest the corresponding strategies to the players

• If the strategies are enforceable then it is an equilibrium (correlated)



7

Correlated Strategy and Equilibrium

• In practice, something else happens
• A traffic light guides the players, and the players agree to this plan (Why?)

• The trusted third party is called the mediator
• Role:

— randomize over the strategy profiles (and not individual strategies)
— and suggest the corresponding strategies to the players

• If the strategies are enforceable then it is an equilibrium (correlated)



7

Correlated Strategy and Equilibrium

• In practice, something else happens
• A traffic light guides the players, and the players agree to this plan (Why?)
• The trusted third party is called the mediator

• Role:

— randomize over the strategy profiles (and not individual strategies)
— and suggest the corresponding strategies to the players

• If the strategies are enforceable then it is an equilibrium (correlated)



7

Correlated Strategy and Equilibrium

• In practice, something else happens
• A traffic light guides the players, and the players agree to this plan (Why?)
• The trusted third party is called the mediator
• Role:

— randomize over the strategy profiles (and not individual strategies)
— and suggest the corresponding strategies to the players

• If the strategies are enforceable then it is an equilibrium (correlated)



7

Correlated Strategy and Equilibrium

• In practice, something else happens
• A traffic light guides the players, and the players agree to this plan (Why?)
• The trusted third party is called the mediator
• Role:

— randomize over the strategy profiles (and not individual strategies)

— and suggest the corresponding strategies to the players

• If the strategies are enforceable then it is an equilibrium (correlated)



7

Correlated Strategy and Equilibrium

• In practice, something else happens
• A traffic light guides the players, and the players agree to this plan (Why?)
• The trusted third party is called the mediator
• Role:

— randomize over the strategy profiles (and not individual strategies)
— and suggest the corresponding strategies to the players

• If the strategies are enforceable then it is an equilibrium (correlated)



7

Correlated Strategy and Equilibrium

• In practice, something else happens
• A traffic light guides the players, and the players agree to this plan (Why?)
• The trusted third party is called the mediator
• Role:

— randomize over the strategy profiles (and not individual strategies)
— and suggest the corresponding strategies to the players

• If the strategies are enforceable then it is an equilibrium (correlated)



8

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Strategy)

A correlated strategy is a mapping π : S1 × S2 × · · · × Sn → [0, 1] s.t. ∑s∈S π(s) = 1.

Example: π(W, W) = 0, π(W, G) = π(G, W) = 1
2 , and π(G, G) = 0

Question

What is a correlated equilibrium?

Answer

A correlated strategy is a correlated equilibrium when no player gains by deviating from the
suggested strategy while others follow the suggested strategies

The correlated strategy π is a common knowledge
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Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Equilibrium)

A correlated equilibrium is a correlated strategy π s.t.

∑
s−i∈S−i

π(si, s−i) · ui(si, s−i) ⩾ ∑
s−i∈S−i

π(si, s−i) · ui(s′i , s−i), ∀si, s′i ∈ Si, ∀i ∈ N.

Discussions:

• The mediator suggests the actions after running its randomization device π

• Every agent’s best response is to follow it if others are also following it

Some examples (upcoming)
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Computing Correlated Equilibrium

CE finding is to solve a set of linear equations

Two set of constraints

∑
s−i∈S−i

π(si, s−i) · ui(si, s−i) ⩾ ∑
s−i∈S−i

π(si, s−i) · ui(s′i , s−i), ∀si, s′i ∈ Si, ∀i ∈ N

Total number of inequalities = O(n ·m2), assuming |Si| = m, ∀i ∈ N

π(s) ⩾ 0, ∀s ∈ S, ∑
s∈S

π(s) = 1

mn inequalities
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Computing Correlated Equilibrium (contd.)

• The inequalities together represent a feasibility linear program that is easier to compute
than MSNE

• MSNE : total number of support profiles = O(2mn)

• CE : number of inequalities O(mn): exponentially smaller than the above 1

• Moreover, this can also be used to optimize some objective function, e.g., maximize the sum
of utilities of the players

1take log of both quantities to understand this point
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Comparison with the previous equilibrium notions

Theorem

For every MSNE σ∗, there exists a CE π∗

Proof Hint: Use π∗(si, . . . , sn) = ∏n
i=1 σ∗i (si) and the MSNE characterization theorem [Homework]
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Venn diagram of games having equilibrium

SDSE WDSE PSNE MSNE CE
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Summary so far

• Normal form games

• Rationality, intelligence, common knowledge
• Strategy and action
• Dominance - strict and weak - equilibrium : SDSE, WDSE
• Unilateral deviation - PSNE, generalization : MSNE, existence (Nash)
• Characterization of MSNE - computing, hardness
• Trusted mediator - correlated strategies - equilibrium
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Richer representation of games

• More appropriate for multi-stage games, e.g. chess

• Players interact in a sequence - the sequence of actions is the history of the game
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Perfect Information Extensive Games (PIEFG)

• Brother-sister Chocolate Division
• Disagreement→ both chocolates taken

away

Brother

A
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0, 2
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0, 0
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Perfect Information Extensive Form Games (PIEFG)

Formal capture

PIEFG ⟨N, A, H, X, P, (ui)i∈N⟩

• N: a set of players

• A: a set of all possible actions (of all players)
• H: a set of all sequences of actions satisfying

— empty history ∅ ∈ H
— if h ∈ H, any sub-sequence h′ of h starting at the root must be in H
— a history h = (a(0), a(1), . . . , a(T−1)) is terminal if ∄ a(T) ∈ A s.t.

(a(0), a(1), . . . , a(T)) ∈ H
— Z ⊆ H: set of all terminals histories

• X : H \ Z→ 2A : action set selection function
• P : H \ Z→ N: player function
• ui : Z→ R : utility of i

Brother

A

2, 0

2− 0 1− 1
Sister

R

0, 0
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— a history h = (a(0), a(1), . . . , a(T−1)) is terminal if ∄ a(T) ∈ A s.t.

(a(0), a(1), . . . , a(T)) ∈ H
— Z ⊆ H: set of all terminals histories

• X : H \ Z→ 2A : action set selection function
• P : H \ Z→ N: player function
• ui : Z→ R : utility of i
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Perfect Information Extensive Form Games (PIEFG)

The strategy of a player in an EFG is a tuple of actions at every history where the player plays,
i.e.,

Si = ×{h∈H:P(h)=i}X(h)

Remember:

• Strategy is a complete contingency plan of the player

• It enumerates potential actions a player can take at every node where she can play, even
though some combination of actions may never be executed together
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Perfect Information Extensive Form Games (PIEFG)

• N = {1, 2} – Brother and Sister respectively

• A = {2− 0, 1− 1, 0− 2, A, R}
• H = {∅, (2− 0), (1− 1), (0− 2), (2− 0, A), (2− 0, R), (1−

1, A), (1− 1, R), (0− 2, A), (0− 2, R)}
• Z =
{(2− 0, A), (2− 0, R), (1− 1, A), (1− 1, R), (0− 2, A), (0− 2, R)}

• X(∅) = {(2− 0), (1− 1), (0− 2)}
• X(2− 0) = X(1− 1) = X(0− 2) = {A, R}
• P(∅) = 1, P(2− 0) = P(1− 1) = P(0− 2) = 2

Brother

A

2, 0

2− 0 1− 1
Sister

R

0, 0

0− 2

A

1, 1

R

0, 0

A

0, 2

R

0, 0

• u1(2− 0, A) = 2, u1(1− 1, A) = 1, u2(1− 1, A) = 1, u2(0− 2, A) = 2 [utilities are zero at the
other terminal histories]

• S1 = {2− 0, 1− 1, 0− 2}
• S2 = {A, R} × {A, R} × {A, R} = {AAA, AAR, ARA, ARR, RAA, RAR, RRA, RRR}
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Transforming PIEFG into NFG

Once we have the S1 and S2, the game can be represented as an NFG

2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0

1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0

0, 2 0, 0 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0

2-0

1-1

0-2

AAA AAR ARA ARR RAA RAR RRA RRR

Br
ot

he
r

Sister
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Transforming PIEFG into NFG
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A

2, 0

2− 0 1− 1
Sister

R

0, 0

0− 2

A

1, 1

R

0, 0

A

0, 2

R

0, 0

• Nash equilibrium like (2− 0, RRA) not quite reasonable, e.g., why R at 1− 1?

• Similarly, (2− 0, RRR) is not a credible threat, i.e., if the game ever reaches the history 1− 1,
Player 2’s rational choice is not R

• Hence this equilibrium concept (PSNE) is not good enough for predicting outcomes in
PIEFGs

• Also the representation of a sequential game as NFG has huge redundancy – EFG is succinct
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• Nash equilibrium like (2− 0, RRA) not quite reasonable, e.g., why R at 1− 1?
• Similarly, (2− 0, RRR) is not a credible threat, i.e., if the game ever reaches the history 1− 1,

Player 2’s rational choice is not R
• Hence this equilibrium concept (PSNE) is not good enough for predicting outcomes in

PIEFGs

• Also the representation of a sequential game as NFG has huge redundancy – EFG is succinct



24

Transforming PIEFG into NFG

2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0

1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0

0, 2 0, 0 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0

2-0

1-1

0-2

AAA AAR ARA ARR RAA RAR RRA RRR

Br
ot

he
r

Sister
Brother

A

2, 0

2− 0 1− 1
Sister

R

0, 0

0− 2

A

1, 1

R

0, 0

A

0, 2

R

0, 0

• Nash equilibrium like (2− 0, RRA) not quite reasonable, e.g., why R at 1− 1?
• Similarly, (2− 0, RRR) is not a credible threat, i.e., if the game ever reaches the history 1− 1,

Player 2’s rational choice is not R
• Hence this equilibrium concept (PSNE) is not good enough for predicting outcomes in

PIEFGs
• Also the representation of a sequential game as NFG has huge redundancy – EFG is succinct



25

Contents

▶ Recap

▶ Correlated Strategy and Equilibrium

▶ Computing Correlated Equilibrium

▶ Perfect Information Extensive Form Games (PIEFG)

▶ Subgame Perfection

▶ Limitations of SPNE



26

PIEFG to NFG

Equilibrium guarantees are weak for PIEFG in an
NFG representation
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• Strategies of Player 1 : AG, AH, BG, BH

• Strategies of Player 2 : CE, CF, DE, DF
• PSNEs?
• (AG, CF), (AH, CF), (BH, CE) – is there

any non-credible threat
• Better notion of rational outcome will

be that which considers a history and
ensures utility maximization
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Subgame and subgame perfection

Subgame: Game rooted at an intermediate vertex

Definition (Subgame)

The subgame of a PIEFG G rooted at a history h is the restriction of G to the descendants of h.

The set of subgames of G is the collection of all subgames at some history of G

Subgame perfection: Best response at every subgame

Definition (Subgame Perfect Nash Equilibrium (SPNE))

A subgame perfect Nash Equilibrium (SPNE) of a PIEFG G is a strategy profile s ∈ S s.t. for every
subgame G′ of G, the restriction of s to G′ is a PSNE of G′
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• PSNEs : (AH, CF), (BH, CE), (AG, CF)

• Are they all SPNEs?
• How to compute them?
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Subgame Perfection

Algorithm 1: Backward Induction

1 Function BACK IND(history h):
2 if h ∈ Z then
3 return u(h), ∅

4 best utilP(h) ←− −∞
foreach a ∈ X(h) do

5 util at childP(h) ←− BACK IND((h, a))
if util at childP(h) > best utilP(h) then

6 best utilP(h) ←− util at childP(h), best actionP(h) ←− a

7 return best utilP(h), best actionP(h)
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Limitations of SPNE

The idea of subgame perfection inherently is based on backward induction

Advantages:

• SPNE is guaranteed to exist in finite PIEFGs (requires proof)

• An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist
• The algorithm to find SPNE is quite simple

Disdvantages and criticisms:

• The whole tree has to be parsed to find the SPNE: which can be computationally expensive
(or maybe impossible), e.g., chess has ∼ 10150 vertices

• Cognitive limit of real players may prohibit playing an SPNE
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Centipede game

D D D D D

AAAAA1 1 12 2

1, 0 0, 2 3, 1 2, 4 4, 3
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Question

What is/are the SPNE(s) of this game?

Question

What is the problem with that prediction ?
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Arguments

• This game has been experimented with various populations

• Random participants, university students, grandmasters, etc.
• Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the

first round)
• Reasons claimed: altruism, limited computational capacity of individuals, incentive

difference
• Criticism of the defining principle of SPNE: It talks about “what action if the game reached

this history” but the equilibrium in some stage above can show that it “cannot reach that
history”

• Works in explaining outcomes in certain games, but there is another way to extend this idea
• Using the idea of belief of the players
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