Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 4

Swaprava Nath

Slide preparation acknowledgments: Onkar Borade and Rounak Dalmia

ज्ञानम् परमम् ध्येयम्
Knowledge is the supreme goal

Contents

- Recap
- Correlated Strategy and Equilibrium
- Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection
- Limitations of SPNE
- MSNE \rightarrow weakest notion of equilibrium so far

Recap

- MSNE \rightarrow weakest notion of equilibrium so far
- Existence is guaranteed for finite games

Recap

- MSNE \rightarrow weakest notion of equilibrium so far
- Existence is guaranteed for finite games
- Finding MSNE is computationally expensive

Contents

- Recap
- Correlated Strategy and Equilibrium
- Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection
- Limitations of SPNE

Correlated Strategy and Equilibrium

Alternative approach - entry of a mediating agent/device Why do we need such an agent?

- Alternative explanation of player rationality

Correlated Strategy and Equilibrium

Alternative approach - entry of a mediating agent/device Why do we need such an agent?

- Alternative explanation of player rationality
- Utility for all players may get better

Correlated Strategy and Equilibrium

Alternative approach - entry of a mediating agent/device
Why do we need such an agent?

- Alternative explanation of player rationality
- Utility for all players may get better
- Computational tractability

Correlated Strategy and Equilibrium

Player 2

Correlated Strategy and Equilibrium

$\begin{aligned} & \stackrel{\rightharpoonup}{\overleftarrow{0}} \\ & \dot{む} \\ & \stackrel{\pi}{\sim} \end{aligned}$	Wait	Player 2	
		Wait	Go
		0,0	1,2
	Go	2,1	-10, -10
		sy c	road game

Nash solutions for the above are

- One waits and the other goes, or
- Large probability of waiting

Correlated Strategy and Equilibrium

- In practice, something else happens

Correlated Strategy and Equilibrium

- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)

Correlated Strategy and Equilibrium

- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The trusted third party is called the mediator

Correlated Strategy and Equilibrium

- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The trusted third party is called the mediator
- Role:

Correlated Strategy and Equilibrium

- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The trusted third party is called the mediator
- Role:
- randomize over the strategy profiles (and not individual strategies)

Correlated Strategy and Equilibrium

- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The trusted third party is called the mediator
- Role:
- randomize over the strategy profiles (and not individual strategies)
- and suggest the corresponding strategies to the players

Correlated Strategy and Equilibrium

- In practice, something else happens
- A traffic light guides the players, and the players agree to this plan (Why?)
- The trusted third party is called the mediator
- Role:
- randomize over the strategy profiles (and not individual strategies)
- and suggest the corresponding strategies to the players
- If the strategies are enforceable then it is an equilibrium (correlated)

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Strategy)

A correlated strategy is a mapping $\pi: S_{1} \times S_{2} \times \cdots \times S_{n} \rightarrow[0,1]$ s.t. $\sum_{s \in S} \pi(s)=1$.

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Strategy)

A correlated strategy is a mapping $\pi: S_{1} \times S_{2} \times \cdots \times S_{n} \rightarrow[0,1]$ s.t. $\sum_{s \in S} \pi(s)=1$.

Example: $\pi(W, W)=0, \pi(W, G)=\pi(G, W)=\frac{1}{2}$, and $\pi(G, G)=0$

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Strategy)

A correlated strategy is a mapping $\pi: S_{1} \times S_{2} \times \cdots \times S_{n} \rightarrow[0,1]$ s.t. $\sum_{s \in S} \pi(s)=1$.

Example: $\pi(W, W)=0, \pi(W, G)=\pi(G, W)=\frac{1}{2}$, and $\pi(G, G)=0$

Question

What is a correlated equilibrium?

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Strategy)

A correlated strategy is a mapping $\pi: S_{1} \times S_{2} \times \cdots \times S_{n} \rightarrow[0,1]$ s.t. $\sum_{s \in S} \pi(s)=1$.

Example: $\pi(W, W)=0, \pi(W, G)=\pi(G, W)=\frac{1}{2}$, and $\pi(G, G)=0$

Question

What is a correlated equilibrium?

Answer

A correlated strategy is a correlated equilibrium when no player gains by deviating from the suggested strategy while others follow the suggested strategies

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Strategy)

A correlated strategy is a mapping $\pi: S_{1} \times S_{2} \times \cdots \times S_{n} \rightarrow[0,1]$ s.t. $\sum_{s \in S} \pi(s)=1$.

Example: $\pi(W, W)=0, \pi(W, G)=\pi(G, W)=\frac{1}{2}$, and $\pi(G, G)=0$

Question

What is a correlated equilibrium?

Answer

A correlated strategy is a correlated equilibrium when no player gains by deviating from the suggested strategy while others follow the suggested strategies

The correlated strategy π is a common knowledge

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Equilibrium)

A correlated equilibrium is a correlated strategy π s.t.

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \geqslant \sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}, \forall i \in N
$$

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Equilibrium)

A correlated equilibrium is a correlated strategy π s.t.

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \geqslant \sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}, \forall i \in N
$$

Discussions:

- The mediator suggests the actions after running its randomization device π
- Every agent's best response is to follow it if others are also following it

Correlated Strategy and Equilibrium (contd.)

Definition (Correlated Equilibrium)

A correlated equilibrium is a correlated strategy π s.t.

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \geqslant \sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}, \forall i \in N
$$

Discussions:

- The mediator suggests the actions after running its randomization device π
- Every agent's best response is to follow it if others are also following it

Some examples (upcoming)

Examples

Friend 2

$\begin{aligned} & \text { ت } \\ & \text { F } \\ & \text { 茳 } \end{aligned}$	F	C
	2,1	0,0
	0,0	1,2

Football or Cricket Game

Examples

Friend 2

	F	C
	2,1	0,0
	0,0	1,2

Football or Cricket Game
$\operatorname{MSNE}:\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$

Examples

Friend 2

	F	C
	2,1	0,0
	0,0	1,2

MSNE: $\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$
Question
Is $\pi(C, C)=\frac{1}{2}=\pi(F, F)$ a CE?

Examples

Friend 2

$\begin{aligned} & \text { ت } \\ & \stackrel{y}{E} \\ & \text { F } \end{aligned}$	F	C
	2,1	0,0
	0,0	1,2

MSNE: $\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$
Question
Is $\pi(C, C)=\frac{1}{2}=\pi(F, F)$ a CE?
Yes!

Examples

Friend 2

	F	C
	2,1	0,0
	0,0	1,2

MSNE: $\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$
Question
Is $\pi(C, C)=\frac{1}{2}=\pi(F, F)$ a CE?

Yes!

Expected utility: $\mathrm{MSNE}=\frac{2}{3}, \mathrm{CE}=\frac{3}{2}$

Examples

Friend 2

를	F	C
	2,1	0,0
	0,0	1,2

Car 2

MSNE: $\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$

Question

Is $\pi(C, C)=\frac{1}{2}=\pi(F, F)$ a $C E$?

Yes!

Expected utility: $\mathrm{MSNE}=\frac{2}{3}, \mathrm{CE}=\frac{3}{2}$

Examples

Friend 2

를	F	C
	2,1	0,0
	0,0	1,2

MSNE: $\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$

Question

Is $\pi(C, C)=\frac{1}{2}=\pi(F, F)$ a CE?

Yes!

Expected utility: MSNE $=\frac{2}{3}, \mathrm{CE}=\frac{3}{2}$

Car 2

What are the MSNEs?

Examples

Friend 2

	F		C
	F		
	2,1		

MSNE: $\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$

Question

Is $\pi(C, C)=\frac{1}{2}=\pi(F, F)$ a CE?
Yes!
Expected utility: MSNE $=\frac{2}{3}, \mathrm{CE}=\frac{3}{2}$

Car 2

What are the MSNEs?

Question

$$
\pi(W, G)=\pi(W, W)=\pi(G, W)=\frac{1}{3} \text { a CE? }
$$

Examples

Friend 2

	F		C
	F		
	2,1		

MSNE: $\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$

Question

Is $\pi(C, C)=\frac{1}{2}=\pi(F, F)$ a CE?
Yes!
Expected utility: MSNE $=\frac{2}{3}, \mathrm{CE}=\frac{3}{2}$

Car 2

What are the MSNEs?

Question

$$
\pi(W, G)=\pi(W, W)=\pi(G, W)=\frac{1}{3} \text { a CE? }
$$

Question

Are there other CEs of this game?

Contents

- Recap
- Correlated Strategy and Equilibrium
- Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection
- Limitations of SPNE

Computing Correlated Equilibrium

CE finding is to solve a set of linear equations

Computing Correlated Equilibrium

CE finding is to solve a set of linear equations
Two set of constraints

Computing Correlated Equilibrium

CE finding is to solve a set of linear equations
Two set of constraints

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \geqslant \sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}, \forall i \in N
$$

Computing Correlated Equilibrium

CE finding is to solve a set of linear equations
Two set of constraints

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \geqslant \sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}, \forall i \in N
$$

Total number of inequalities $=O\left(n \cdot m^{2}\right)$, assuming $\left|S_{i}\right|=m, \forall i \in N$

Computing Correlated Equilibrium

CE finding is to solve a set of linear equations
Two set of constraints

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \geqslant \sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}, \forall i \in N
$$

Total number of inequalities $=O\left(n \cdot m^{2}\right)$, assuming $\left|S_{i}\right|=m, \forall i \in N$
$\pi(s) \geqslant 0, \forall s \in S, \quad \sum_{s \in S} \pi(s)=1$

Computing Correlated Equilibrium

CE finding is to solve a set of linear equations
Two set of constraints

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \geqslant \sum_{s_{-i} \in S_{-i}} \pi\left(s_{i}, s_{-i}\right) \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}, \forall i \in N
$$

Total number of inequalities $=O\left(n \cdot m^{2}\right)$, assuming $\left|S_{i}\right|=m, \forall i \in N$
$\pi(s) \geqslant 0, \forall s \in S, \quad \sum_{s \in S} \pi(s)=1$
m^{n} inequalities

Computing Correlated Equilibrium (contd.)

- The inequalities together represent a feasibility linear program that is easier to compute than MSNE

[^0]
Computing Correlated Equilibrium (contd.)

- The inequalities together represent a feasibility linear program that is easier to compute than MSNE
- MSNE : total number of support profiles $=O\left(2^{m n}\right)$

[^1]
Computing Correlated Equilibrium (contd.)

- The inequalities together represent a feasibility linear program that is easier to compute than MSNE
- MSNE : total number of support profiles $=O\left(2^{m n}\right)$
- CE : number of inequalities $O\left(m^{n}\right)$: exponentially smaller than the above ${ }^{1}$

[^2]
Computing Correlated Equilibrium (contd.)

- The inequalities together represent a feasibility linear program that is easier to compute than MSNE
- MSNE : total number of support profiles $=O\left(2^{m n}\right)$
- CE : number of inequalities $O\left(m^{n}\right)$: exponentially smaller than the above ${ }^{1}$
- Moreover, this can also be used to optimize some objective function, e.g., maximize the sum of utilities of the players

[^3]
Comparison with the previous equilibrium notions

Theorem

For every MSNE σ^{*}, there exists a CE π^{*}

Comparison with the previous equilibrium notions

Theorem

For every MSNE σ^{*}, there exists a CE π^{*}

Proof Hint: Use $\pi^{*}\left(s_{i}, \ldots, s_{n}\right)=\prod_{i=1}^{n} \sigma_{i}^{*}\left(s_{i}\right)$ and the MSNE characterization theorem [Homework]

Venn diagram of games having equilibrium

Summary so far

Normal form games

Summary so far

- Normal form games
- Rationality, intelligence, common knowledge

Summary so far

- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action

Summary so far

- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance - strict and weak - equilibrium : SDSE, WDSE

Summary so far

- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance - strict and weak - equilibrium : SDSE, WDSE
- Unilateral deviation - PSNE, generalization : MSNE, existence (Nash)

Summary so far

- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance - strict and weak - equilibrium : SDSE, WDSE
- Unilateral deviation - PSNE, generalization : MSNE, existence (Nash)
- Characterization of MSNE - computing, hardness

Summary so far

- Normal form games
- Rationality, intelligence, common knowledge
- Strategy and action
- Dominance - strict and weak - equilibrium : SDSE, WDSE
- Unilateral deviation - PSNE, generalization : MSNE, existence (Nash)
- Characterization of MSNE - computing, hardness
- Trusted mediator - correlated strategies - equilibrium

Richer representation of games

- More appropriate for multi-stage games, e.g. chess

Richer representation of games

- More appropriate for multi-stage games, e.g. chess
- Players interact in a sequence - the sequence of actions is the history of the game

Contents

- Recap
- Correlated Strategy and Equilibrium
- Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection

Perfect Information Extensive Games (PIEFG)

- Brother-sister Chocolate Division
- Disagreement \rightarrow both chocolates taken away

Perfect Information Extensive Form Games (PIEFG)

Formal capture
 PIEFG $\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players

Perfect Information Extensive Form Games (PIEFG)

Formal capture
 PIEFG $\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players
- A: a set of all possible actions (of all players)

Perfect Information Extensive Form Games (PIEFG)

Formal capture
 PIEFG $\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players
- A: a set of all possible actions (of all players)
- H : a set of all sequences of actions satisfying

Perfect Information Extensive Form Games (PIEFG)

Formal capture

PIEFG $\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players
- A: a set of all possible actions (of all players)
- H : a set of all sequences of actions satisfying
- empty history $\varnothing \in H$

Perfect Information Extensive Form Games (PIEFG)

Formal capture

PIEFG $\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players
- A: a set of all possible actions (of all players)
- H : a set of all sequences of actions satisfying
- empty history $\varnothing \in H$
- if $h \in H$, any sub-sequence h^{\prime} of h starting at the root must be in H

Perfect Information Extensive Form Games (PIEFG)

Formal capture

$$
\text { PIEFG }\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle
$$

- N : a set of players
- A: a set of all possible actions (of all players)
- H : a set of all sequences of actions satisfying
- empty history $\varnothing \in H$
- if $h \in H$, any sub-sequence h^{\prime} of h starting at the root must be in H
- a history $h=\left(a^{(0)}, a^{(1)}, \ldots, a^{(T-1)}\right)$ is terminal if $\nexists a^{(T)} \in A$ s.t.
 $\left(a^{(0)}, a^{(1)}, \ldots, a^{(T)}\right) \in H$

Perfect Information Extensive Form Games (PIEFG)

Formal capture

$$
\text { PIEFG }\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle
$$

- N : a set of players
- A: a set of all possible actions (of all players)
- H : a set of all sequences of actions satisfying
- empty history $\varnothing \in H$
- if $h \in H$, any sub-sequence h^{\prime} of h starting at the root must be in H
- a history $h=\left(a^{(0)}, a^{(1)}, \ldots, a^{(T-1)}\right)$ is terminal if $\nexists a^{(T)} \in A$ s.t.
 $\left(a^{(0)}, a^{(1)}, \ldots, a^{(T)}\right) \in H$
$-Z \subseteq H$: set of all terminals histories

Perfect Information Extensive Form Games (PIEFG)

Formal capture

$\operatorname{PIEFG}\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players
- A: a set of all possible actions (of all players)
- H: a set of all sequences of actions satisfying
- empty history $\varnothing \in H$
- if $h \in H$, any sub-sequence h^{\prime} of h starting at the root must be in H
- a history $h=\left(a^{(0)}, a^{(1)}, \ldots, a^{(T-1)}\right)$ is terminal if $\nexists a^{(T)} \in A$ s.t.
 $\left(a^{(0)}, a^{(1)}, \ldots, a^{(T)}\right) \in H$
$-Z \subseteq H$: set of all terminals histories
- $X: H \backslash Z \rightarrow 2^{A}$: action set selection function

Perfect Information Extensive Form Games (PIEFG)

Formal capture

PIEFG $\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players
- A: a set of all possible actions (of all players)
- H: a set of all sequences of actions satisfying
- empty history $\varnothing \in H$
- if $h \in H$, any sub-sequence h^{\prime} of h starting at the root must be in H
- a history $h=\left(a^{(0)}, a^{(1)}, \ldots, a^{(T-1)}\right)$ is terminal if $\nexists a^{(T)} \in A$ s.t.
 $\left(a^{(0)}, a^{(1)}, \ldots, a^{(T)}\right) \in H$
$-Z \subseteq H$: set of all terminals histories
- $X: H \backslash Z \rightarrow 2^{A}$: action set selection function
- $P: H \backslash Z \rightarrow N$: player function

Perfect Information Extensive Form Games (PIEFG)

Formal capture

PIEFG $\left\langle N, A, H, X, P,\left(u_{i}\right)_{i \in N}\right\rangle$

- N : a set of players
- A: a set of all possible actions (of all players)
- H : a set of all sequences of actions satisfying
- empty history $\varnothing \in H$
- if $h \in H$, any sub-sequence h^{\prime} of h starting at the root must be in H
- a history $h=\left(a^{(0)}, a^{(1)}, \ldots, a^{(T-1)}\right)$ is terminal if $\nexists a^{(T)} \in A$ s.t.
 $\left(a^{(0)}, a^{(1)}, \ldots, a^{(T)}\right) \in H$
- $Z \subseteq H$: set of all terminals histories
- $X: H \backslash Z \rightarrow 2^{A}$: action set selection function
- $P: H \backslash Z \rightarrow N$: player function
- $u_{i}: Z \rightarrow \mathbb{R}:$ utility of i

Perfect Information Extensive Form Games (PIEFG)

The strategy of a player in an EFG is a tuple of actions at every history where the player plays, i.e.,

$$
S_{i}=\times_{\{h \in H: P(h)=i\}} X(h)
$$

Remember:

- Strategy is a complete contingency plan of the player

Perfect Information Extensive Form Games (PIEFG)

The strategy of a player in an EFG is a tuple of actions at every history where the player plays, i.e.,

$$
S_{i}=\times_{\{h \in H: P(h)=i\}} X(h)
$$

Remember:

- Strategy is a complete contingency plan of the player
- It enumerates potential actions a player can take at every node where she can play, even though some combination of actions may never be executed together

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$
- $\mathrm{Z}=$ $\{(2-0, A),(2-0, R),(1-1, A),(1-1, R),(0-2, A),(0-2, R)\}$

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$
- $\mathrm{Z}=$ $\{(2-0, A),(2-0, R),(1-1, A),(1-1, R),(0-2, A),(0-2, R)\}$

- $X(\varnothing)=\{(2-0),(1-1),(0-2)\}$

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$
- $\mathrm{Z}=$ $\{(2-0, A),(2-0, R),(1-1, A),(1-1, R),(0-2, A),(0-2, R)\}$

- $X(\varnothing)=\{(2-0),(1-1),(0-2)\}$
- $X(2-0)=X(1-1)=X(0-2)=\{A, R\}$

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$
- $\mathrm{Z}=$ $\{(2-0, A),(2-0, R),(1-1, A),(1-1, R),(0-2, A),(0-2, R)\}$

- $X(\varnothing)=\{(2-0),(1-1),(0-2)\}$
- $X(2-0)=X(1-1)=X(0-2)=\{A, R\}$
- $P(\varnothing)=1, P(2-0)=P(1-1)=P(0-2)=2$

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$
- $\mathrm{Z}=$ $\{(2-0, A),(2-0, R),(1-1, A),(1-1, R),(0-2, A),(0-2, R)\}$

- $X(\varnothing)=\{(2-0),(1-1),(0-2)\}$
- $X(2-0)=X(1-1)=X(0-2)=\{A, R\}$
- $P(\varnothing)=1, P(2-0)=P(1-1)=P(0-2)=2$
- $u_{1}(2-0, A)=2, u_{1}(1-1, A)=1, u_{2}(1-1, A)=1, u_{2}(0-2, A)=2$ [utilities are zero at the other terminal histories]

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$
- $\mathrm{Z}=$ $\{(2-0, A),(2-0, R),(1-1, A),(1-1, R),(0-2, A),(0-2, R)\}$

- $X(\varnothing)=\{(2-0),(1-1),(0-2)\}$
- $X(2-0)=X(1-1)=X(0-2)=\{A, R\}$
- $P(\varnothing)=1, P(2-0)=P(1-1)=P(0-2)=2$
- $u_{1}(2-0, A)=2, u_{1}(1-1, A)=1, u_{2}(1-1, A)=1, u_{2}(0-2, A)=2$ [utilities are zero at the other terminal histories]
- $S_{1}=\{2-0,1-1,0-2\}$

Perfect Information Extensive Form Games (PIEFG)

- $N=\{1,2\}$ - Brother and Sister respectively
- $A=\{2-0,1-1,0-2, A, R\}$
- $H=\{\varnothing,(2-0),(1-1),(0-2),(2-0, A),(2-0, R),(1-$ $1, A),(1-1, R),(0-2, A),(0-2, R)\}$
- $\mathrm{Z}=$ $\{(2-0, A),(2-0, R),(1-1, A),(1-1, R),(0-2, A),(0-2, R)\}$

- $X(\varnothing)=\{(2-0),(1-1),(0-2)\}$
- $X(2-0)=X(1-1)=X(0-2)=\{A, R\}$
- $P(\varnothing)=1, P(2-0)=P(1-1)=P(0-2)=2$
- $u_{1}(2-0, A)=2, u_{1}(1-1, A)=1, u_{2}(1-1, A)=1, u_{2}(0-2, A)=2$ [utilities are zero at the other terminal histories]
- $S_{1}=\{2-0,1-1,0-2\}$
- $S_{2}=\{A, R\} \times\{A, R\} \times\{A, R\}=\{A A A, A A R, A R A, A R R, R A A, R A R, R R A, R R R\}$

Transforming PIEFG into NFG

Once we have the S_{1} and S_{2}, the game can be represented as an NFG

Sister

	AAA	AAR	ARA	ARR	RAA	RAR	RRA	RRR
2-0	2,0	2,0	2,0	2,0	0,0	0,0	0,0	0,0
亏. 1-1	1,1	1,1	0,0	0,0	1,1	1,1	0,0	0,0
0-2	0,2	0,0	0,2	0,0	0,2	0,0	0,2	0,0

Transforming PIEFG into NFG

- Nash equilibrium like ($2-0, R R A$) not quite reasonable, e.g., why R at $1-1$?

Transforming PIEFG into NFG

	Sister							
	AAA	AAR	ARA	ARR	RAA	RAR	RRA	RRR
2-0	2,0	2,0	2,0	2,0	0,0	0,0	0,0	0,0
亏1-1	1,1	1,1	0,0	0,0	1,1	1,1	0,0	0,0
0-2	0,2	0,0	0,2	0,0	0,2	0,0	0,2	0,0

- Nash equilibrium like ($2-0, R R A$) not quite reasonable, e.g., why R at $1-1$?
- Similarly, $(2-0, R R R)$ is not a credible threat, i.e., if the game ever reaches the history $1-1$, Player 2's rational choice is not R

Transforming PIEFG into NFG

- Nash equilibrium like ($2-0, R R A$) not quite reasonable, e.g., why R at $1-1$?
- Similarly, $(2-0, R R R)$ is not a credible threat, i.e., if the game ever reaches the history $1-1$, Player 2's rational choice is not R
- Hence this equilibrium concept (PSNE) is not good enough for predicting outcomes in PIEFGs

Transforming PIEFG into NFG

AAA		AAR	ARA	ARR	RAA	RAR	RRA	RRR
22,0								
2,0								

- Nash equilibrium like ($2-0, R R A$) not quite reasonable, e.g., why R at $1-1$?
- Similarly, $(2-0, R R R)$ is not a credible threat, i.e., if the game ever reaches the history $1-1$, Player 2's rational choice is not R
- Hence this equilibrium concept (PSNE) is not good enough for predicting outcomes in PIEFGs
- Also the representation of a sequential game as NFG has huge redundancy - EFG is succinct

Contents

- Recap
- Correlated Strategy and Equilibrium
- Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection
- Limitations of SPNE

PIEFG to NFG

Equilibrium guarantees are weak for PIEFG in an NFG representation

- Strategies of Player 1 : $A G, A H, B G, B H$

PIEFG to NFG

Equilibrium guarantees are weak for PIEFG in an NFG representation

- Strategies of Player 1 : $A G, A H, B G, B H$
- Strategies of Player 2 : $C E, C F, D E, D F$

PIEFG to NFG

Equilibrium guarantees are weak for PIEFG in an NFG representation

- Strategies of Player 1 : $A G, A H, B G, B H$
- Strategies of Player 2 : $C E, C F, D E, D F$
- PSNEs?

PIEFG to NFG

Equilibrium guarantees are weak for PIEFG in an NFG representation

- Strategies of Player 1 : $A G, A H, B G, B H$
- Strategies of Player 2 : $C E, C F, D E, D F$
- PSNEs?
- $(A G, C F),(A H, C F),(B H, C E)$ - is there any non-credible threat

PIEFG to NFG

Equilibrium guarantees are weak for PIEFG in an NFG representation

- Strategies of Player 1 : $A G, A H, B G, B H$
- Strategies of Player 2 : $C E, C F, D E, D F$
- PSNEs?
- $(A G, C F),(A H, C F),(B H, C E)$ - is there any non-credible threat
- Better notion of rational outcome will be that which considers a history and ensures utility maximization

Subgame and subgame perfection

Subgame: Game rooted at an intermediate vertex

Subgame and subgame perfection

Subgame: Game rooted at an intermediate vertex

Definition (Subgame)

The subgame of a PIEFG G rooted at a history h is the restriction of G to the descendants of h.

Subgame and subgame perfection

Subgame: Game rooted at an intermediate vertex

Definition (Subgame)

The subgame of a PIEFG G rooted at a history h is the restriction of G to the descendants of h.

The set of subgames of G is the collection of all subgames at some history of G

Subgame and subgame perfection

Subgame: Game rooted at an intermediate vertex

Definition (Subgame)

The subgame of a PIEFG G rooted at a history h is the restriction of G to the descendants of h.

The set of subgames of G is the collection of all subgames at some history of G
Subgame perfection: Best response at every subgame

Subgame and subgame perfection

Subgame: Game rooted at an intermediate vertex

Definition (Subgame)

The subgame of a PIEFG G rooted at a history h is the restriction of G to the descendants of h.

The set of subgames of G is the collection of all subgames at some history of G
Subgame perfection: Best response at every subgame

Definition (Subgame Perfect Nash Equilibrium (SPNE))

A subgame perfect Nash Equilibrium (SPNE) of a PIEFG G is a strategy profile $s \in S$ s.t. for every subgame G^{\prime} of G, the restriction of s to G^{\prime} is a PSNE of G^{\prime}

Example

- PSNEs : $(A H, C F),(B H, C E),(A G, C F)$

Example

- PSNEs : $(A H, C F),(B H, C E),(A G, C F)$
- Are they all SPNEs?

Example

- PSNEs : $(A H, C F),(B H, C E),(A G, C F)$
- Are they all SPNEs?
- How to compute them?

Subgame Perfection

Algorithm 1: Backward Induction

Function BACK IND (history h):

$2 \quad$ if $h \in Z$ then
L return $u(h), \varnothing$
best_util $_{P(h)} \longleftarrow-\infty$
foreach $a \in X(h)$ do
util_at_child $_{P(h)} \longleftarrow$ BACK_IND $((h, a))$
if util_at_child $_{P(h)}>$ best_util $_{P(h)}$ then
$\left\lfloor\right.$ best_util $_{P(h)} \longleftarrow$ util_at_child $_{P(h)}$, best_action $_{P(h)} \longleftarrow a$
return best_util $_{P(h)}$, best_action $_{P(h)}$

Contents

```
- Recap
```

- Correlated Strategy and Equilibrium
- Computing Correlated Equilibrium
- Perfect Information Extensive Form Games (PIEFG)
- Subgame Perfection
- Limitations of SPNE

Limitations of SPNE

The idea of subgame perfection inherently is based on backward induction Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)

Disdvantages and criticisms:

Limitations of SPNE

The idea of subgame perfection inherently is based on backward induction

Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist

Disdvantages and criticisms:

Limitations of SPNE

The idea of subgame perfection inherently is based on backward induction

Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist
- The algorithm to find SPNE is quite simple

Disdvantages and criticisms:

Limitations of SPNE

The idea of subgame perfection inherently is based on backward induction

Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist
- The algorithm to find SPNE is quite simple

Disdvantages and criticisms:

- The whole tree has to be parsed to find the SPNE: which can be computationally expensive (or maybe impossible), e.g., chess has $\sim 10^{150}$ vertices

Limitations of SPNE

The idea of subgame perfection inherently is based on backward induction

Advantages:

- SPNE is guaranteed to exist in finite PIEFGs (requires proof)
- An SPNE is a PSNE: found a class of games where PSNE is guaranteed to exist
- The algorithm to find SPNE is quite simple

Disdvantages and criticisms:

- The whole tree has to be parsed to find the SPNE: which can be computationally expensive (or maybe impossible), e.g., chess has $\sim 10^{150}$ vertices
- Cognitive limit of real players may prohibit playing an SPNE

Centipede game

Centipede game

Question

What is/are the SPNE(s) of this game?

Question

What is the problem with that prediction?

Arguments

- This game has been experimented with various populations

Arguments

- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.

Arguments

- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)

Arguments

- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- Reasons claimed: altruism, limited computational capacity of individuals, incentive difference

Arguments

- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- Reasons claimed: altruism, limited computational capacity of individuals, incentive difference
- Criticism of the defining principle of SPNE: It talks about "what action if the game reached this history" but the equilibrium in some stage above can show that it "cannot reach that history"

Arguments

- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- Reasons claimed: altruism, limited computational capacity of individuals, incentive difference
- Criticism of the defining principle of SPNE: It talks about "what action if the game reached this history" but the equilibrium in some stage above can show that it "cannot reach that history"
- Works in explaining outcomes in certain games, but there is another way to extend this idea

Arguments

- This game has been experimented with various populations
- Random participants, university students, grandmasters, etc.
- Most of the subjects (except grandmasters) continue till a few rounds (and not quit at the first round)
- Reasons claimed: altruism, limited computational capacity of individuals, incentive difference
- Criticism of the defining principle of SPNE: It talks about "what action if the game reached this history" but the equilibrium in some stage above can show that it "cannot reach that history"
- Works in explaining outcomes in certain games, but there is another way to extend this idea
- Using the idea of belief of the players

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

[^0]: ${ }^{1}$ take \log of both quantities to understand this point

[^1]: ${ }^{1}$ take \log of both quantities to understand this point

[^2]: ${ }^{1}$ take \log of both quantities to understand this point

[^3]: ${ }^{1}$ take \log of both quantities to understand this point

