भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 7

Swaprava Nath
Slide preparation acknowledgments: C. R. Pradhit and Adit Akarsh

ज्ञानम् परमम् ध्येयम्
Knowledge is the supreme goal

Contents

- Mechanism Design

- Revelation Principle

- Arrow's Impossibility Result
- Proof of Arrow's Impossibility Result

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players
- X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players
- X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.
- Θ_{i} : set of private information of agent i (type). A type $\theta_{i} \in \Theta_{i}$.

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players
- X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.
- Θ_{i} : set of private information of agent i (type). A type $\theta_{i} \in \Theta_{i}$.
- The type may manifest in the preferences over the outcomes in different ways

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players
- X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.
- Θ_{i} : set of private information of agent i (type). A type $\theta_{i} \in \Theta_{i}$.
- The type may manifest in the preferences over the outcomes in different ways
(1) Ordinal: θ_{i} defines an ordering over the outcome.

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players
- X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.
- Θ_{i} : set of private information of agent i (type). A type $\theta_{i} \in \Theta_{i}$.
- The type may manifest in the preferences over the outcomes in different ways
(1) Ordinal : θ_{i} defines an ordering over the outcome.
(2) Cardinal : an utility function u_{i} maps an (outcome, type) pair to real numbers,

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players
- X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.
- Θ_{i} : set of private information of agent i (type). A type $\theta_{i} \in \Theta_{i}$.
- The type may manifest in the preferences over the outcomes in different ways
(1) Ordinal: θ_{i} defines an ordering over the outcome.
(2) Cardinal : an utility function u_{i} maps an (outcome, type) pair to real numbers,
- $u_{i}: X \times \Theta_{i} \rightarrow \mathbb{R}$ (private value model)

Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license scarce resource (spectrum, cloud), matching students to universities.

General Model

- N : set of players
- X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.
- Θ_{i} : set of private information of agent i (type). A type $\theta_{i} \in \Theta_{i}$.
- The type may manifest in the preferences over the outcomes in different ways
(1) Ordinal: θ_{i} defines an ordering over the outcome.
(2) Cardinal : an utility function u_{i} maps an (outcome, type) pair to real numbers,
- $u_{i}: X \times \Theta_{i} \rightarrow \mathbb{R}$ (private value model)
- $u_{i}: X \times \Theta_{i} \rightarrow \mathbb{R}$ (interdependent value model)

Examples

Voting

- X is the set of candidates.
- θ_{i} is a ranking over this candidates, e.g., $\theta_{i}=(a, b, c)$, i.e., a is preferred more than b which is in turn more preferred than c.

Single Object allocation: an outcome is $x=(\underline{a}, \underline{p}) \in X$

- $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), a_{i} \in\{0,1\}, \sum_{i \in N} a_{i} \leqslant 1$, allocations.
- $\underline{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right), p_{i}$ is the payment charged to i.
- θ_{i} : value of i for the object.
- $u_{i}\left(x, \theta_{i}\right)=a_{i} \theta_{i}-p_{i}$

Social Choice Function

- The designer has an objective and this is captured through a Social Choice Function(SCF).

$$
f: \Theta_{1} \times \Theta_{2} \times \ldots \times \Theta_{n} \rightarrow X
$$

Examples

- in voting, if there is a candidate who beats everyone else in pairwise contests the he/she must be chosen as a winner.
- in public project choice, where $\theta_{i}: X \rightarrow \mathbb{R}$, value for each project pick, $f(\theta) \in \arg \max _{a \in X} \sum_{i \in N} \theta_{i}(a)$

Social Choice Function

- The designer has an objective and this is captured through a Social Choice Function(SCF).

$$
f: \Theta_{1} \times \Theta_{2} \times \ldots \times \Theta_{n} \rightarrow X
$$

Examples

- in voting, if there is a candidate who beats everyone else in pairwise contests the he/she must be chosen as a winner.
- in public project choice, where $\theta_{i}: X \rightarrow \mathbb{R}$, value for each project pick, $f(\theta) \in \arg \max _{a \in \mathrm{X}} \sum_{i \in N} \theta_{i}(a)$

Question

How can we create a game where $f(\theta)$ emerges as an outcome of an equilibrium?

Social Choice Function

- The designer has an objective and this is captured through a Social Choice Function(SCF).

$$
f: \Theta_{1} \times \Theta_{2} \times \ldots \times \Theta_{n} \rightarrow X
$$

Examples

- in voting, if there is a candidate who beats everyone else in pairwise contests the he/she must be chosen as a winner.
- in public project choice, where $\theta_{i}: X \rightarrow \mathbb{R}$, value for each project pick, $f(\theta) \in \arg \max _{a \in X} \sum_{i \in N} \theta_{i}(a)$

Question

How can we create a game where $f(\theta)$ emerges as an outcome of an equilibrium?

We need mechanisms

Mechanisms

Definition

An indirect mechanism is a collection of message spaces and a decision rule $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$

- M_{i} is the message space of agent i
- $g: M_{1} \times M_{2} \times \ldots \times M_{n} \rightarrow X$

A direct mechanism is the same as above with $M_{i}=\Theta_{i}, \forall i \in N, g \equiv f$. The message space is similar to equipping every agent with a card deck and asking to pick some.

Mechanisms

Definition

An indirect mechanism is a collection of message spaces and a decision rule $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$

- M_{i} is the message space of agent i
- $g: M_{1} \times M_{2} \times \ldots \times M_{n} \rightarrow X$

A direct mechanism is the same as above with $M_{i}=\Theta_{i}, \forall i \in N, g \equiv f$. The message space is similar to equipping every agent with a card deck and asking to pick some.

Question

Why these are not so commonplace?

Mechanisms

Definition

An indirect mechanism is a collection of message spaces and a decision rule $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$

- M_{i} is the message space of agent i
- $g: M_{1} \times M_{2} \times \ldots \times M_{n} \rightarrow X$

A direct mechanism is the same as above with $M_{i}=\Theta_{i}, \forall i \in N, g \equiv f$. The message space is similar to equipping every agent with a card deck and asking to pick some.

Question

Why these are not so commonplace?

Answer

Due to a result that will follow.

Weakly Dominant

Definition

In a mechanism $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$, a message m_{i} is weakly dominant for player i at θ_{i} if

$$
u_{i}\left(g\left(m_{i}, \tilde{m}_{-i}\right), \theta_{i}\right) \geqslant u_{i}\left(g\left(m_{i}^{\prime}, \tilde{m}_{-i}\right), \theta_{i}\right), \forall \tilde{m}_{-i}, \forall m_{i}^{\prime}
$$

All subsequent definitions assume cardinal preferences, however they can be replaced with ordinal, e.g., the above one could be defined as

$$
u_{i}\left(g\left(m_{i}, \tilde{m}_{-i}\right), \theta_{i}\right) \theta_{i} u_{i}\left(g\left(m_{i}^{\prime}, \tilde{m}_{-i}\right), \theta_{i}\right), \forall \tilde{m}_{-i}, \forall m_{i}^{\prime}
$$

Dominant Strategy Implementable (DSI)

Definition

An SCF $f: \Theta \rightarrow X$ is implemented in dominant strategies by $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$ if

- \exists message mappings $s_{i}: \Theta_{i} \rightarrow M_{i}$, s.t, $s_{i}\left(\theta_{i}\right)$ is a dominant strategy for agent i at $\theta_{i}, \forall \theta_{i} \in \Theta_{i}$, $\forall i \in \mathcal{N}$.
- $g\left(s_{1}\left(\theta_{1}\right), \ldots, s_{n}\left(\theta_{n}\right)\right)=f(\theta), \forall \theta \in \Theta$

We call this an indirect implementation, i.e., SCF f is dominant strategy implementable (DSI) by $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$.

Dominant Strategy Incentive Compatible DSIC)

Definition

A direct mechanism $\left\langle\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}, f\right\rangle$ is dominant strategy incentive compatible (DSIC) if

$$
u_{i}\left(g\left(\theta_{i}, \tilde{\theta}_{-i}\right), \theta_{i}\right) \geqslant u_{i}\left(g\left(\theta_{i}^{\prime}, \tilde{\theta}_{-i}\right), \theta_{i}\right), \forall \tilde{\theta}_{-i}, \theta_{i}^{\prime}, \theta_{i}, \forall i \in \mathcal{N}
$$

To find if an SCF f is dominant strategy implementable, we need to search over all possible indirect mechanisms $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$. But luckily, there is a result that reduces the search space.

Contents

- Mechanism Design

- Revelation Principle

- Arrow's Impossibility Result

```
* Proof of Arrow's Impossibility Result
```


Relationship between DSI and DSIC

Revelation Principle (for DSI SCFs)

If there exists an indirect mechanism that implements f in dominant strategies, then f is DSIC. Implication: Can focus on DSIC mechanisms WLOG.

Proof.

Let f is implemented by $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$, hence $\exists s_{i}: \Theta_{i} \rightarrow M_{i}$ s.t., $\forall i \in \mathcal{N}, \forall \tilde{m}_{-i}, m_{i}, \theta_{i}$,

$$
\begin{gather*}
u_{i}\left(g\left(s_{i}\left(\theta_{i}\right), \tilde{m}_{-i}\right), \theta_{i}\right) \geqslant u_{i}\left(g\left(m_{i}^{\prime}, \tilde{m}_{-i}\right), \theta_{i}\right) \tag{1}\\
g\left(s_{i}\left(\theta_{i}\right), s_{-i}\left(\theta_{-i}\right)=f\left(\theta_{i}, \theta_{-i}\right)\right. \tag{2}
\end{gather*}
$$

Eq. 1 holds for all $m_{i}^{\prime}, \tilde{m}_{-i}$, in particular, $m_{i}^{\prime}=s_{i}\left(\theta_{i}^{\prime}\right), \tilde{m}_{-i}=s_{-i}\left(\theta_{-i}\right)$ where θ_{i}^{\prime} and $\tilde{\theta}_{-i}$ are arbitrary. Hence,

$$
u_{i}\left(g\left(s_{i}\left(\theta_{i}\right), s_{-i}\left(\theta_{-i}\right)\right), \theta_{i}\right) \geqslant u_{i}\left(g\left(s_{i}\left(\theta_{i}^{\prime}\right), s_{-i}\left(\theta_{-i}\right)\right), \theta_{i}\right) \Rightarrow u_{i}\left(f\left(\theta_{i}, \tilde{\theta}_{-i}\right), \theta_{i}\right) \geqslant u_{i}\left(f\left(\theta_{i}^{\prime}, \tilde{\theta}_{-i}\right), \theta_{i}\right)
$$

$\Rightarrow f$ is DSIC.

Bayesian extension

- Agents may have probabilistic information about other's types.
- Types are generated from a common prior (common knowledge) and are revealed only to the respective agents.
- Recall : Bayesian games $\left\langle N,\left(M_{i}\right)_{i \in N},\left(\Theta_{i}\right)_{i \in N}, P,\left(\Gamma_{\theta}\right)_{\theta \in \Theta}\right\rangle$

Bayesian extension

Definition

An (indirect) mechanism $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$ implements an SCF f in a Bayesian equilibrium if

- \exists a message mapping profile $\left(s_{1}, \ldots, s_{n}\right)$, s.t., $s_{i}\left(\theta_{i}\right)$ maximizes the ex-interim utility of agent $i, \forall \theta_{i}, \forall i \in \mathbb{N}$, i.e.,

$$
\mathbb{E}_{\theta_{-i} \mid \theta_{i}}\left[u_{i}\left(g\left(s_{i}\left(\theta_{i}\right), s_{-i}\left(\theta_{-i}\right)\right), \theta_{i}\right)\right] \geqslant \mathbb{E}_{\theta_{-i} \mid \theta_{i}}\left[u_{i}\left(g\left(m_{i}^{\prime}, s_{-i}\left(\theta_{-i}\right)\right), \theta_{i}\right)\right] \quad \forall m_{i}^{\prime}, \forall \theta_{i}, \forall i \in \mathbb{N}
$$

- $g\left(s_{i}\left(\theta_{i}\right), s_{-i}\left(\theta_{-i}\right)\right)=f\left(\theta_{i}, \theta_{-i}\right), \forall \theta$

We call f is Bayesian implementable via $\left\langle M_{1}, M_{2}, \ldots, M_{n}, g\right\rangle$ under the prior P .

Lemma

If an SCF f dominant strategy implementable, then it is Bayesian implementable.

Proof : Homework

Bayesian Incentive Compatible

Definition

A direct mechanism $\left\langle\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}, f\right\rangle$ is Bayesian Incentive Compatible (BIC) if $\forall \theta_{i}, \theta_{i}^{\prime}, \forall i \in \mathbb{N}$

$$
\mathbb{E}_{\theta_{-i} \mid \theta_{i}}\left[u_{i}\left(f\left(\theta_{i}, \theta_{-i}\right), \theta_{-i}\right), \theta_{i}\right] \geqslant \mathbb{E}_{\theta_{-i} \mid \theta_{i}}\left[u_{i}\left(f\left(\theta_{i}^{\prime}, \theta_{-i}\right), \theta_{-i}\right), \theta_{i}\right]
$$

Revelation Principle for BI SCFs

Revelation Principle (for BI SCFs)

If an $\operatorname{SCF} f$ is implementable in Bayesian equilibrium, then f is BIC.

- Proof idea is similar to the DSI, with expected utilities at appropriate places.
- For truthfulness of these two kinds, we will only consider incentive compatibility.
- These results hold even for ordinal preferences and mechanisms.

Contents

- Mechanism Design

- Revelation Principle
- Arrow's Impossibility Result

Arrow's Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a general setup?

Objective: create social preferences from individual preferences

- Finite set of alternatives $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$

Arrow's Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a general setup?

Objective: create social preferences from individual preferences

- Finite set of alternatives $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- Finite set of players $N=\{1,2, \ldots, n\}$

Arrow's Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a general setup?

Objective: create social preferences from individual preferences

- Finite set of alternatives $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- Finite set of players $N=\{1,2, \ldots, n\}$
- Each player i has a preference order R_{i} over A (A binary relation over $A, a R_{i} b$ means alternative a is at least as good as b to i

Arrow's Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a general setup?

Objective: create social preferences from individual preferences

- Finite set of alternatives $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- Finite set of players $N=\{1,2, \ldots, n\}$
- Each player i has a preference order R_{i} over A (A binary relation over $A, a R_{i} b$ means alternative a is at least as good as b to i
- Properties of R_{i}

Arrow's Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a general setup?

Objective: create social preferences from individual preferences

- Finite set of alternatives $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- Finite set of players $N=\{1,2, \ldots, n\}$
- Each player i has a preference order R_{i} over A (A binary relation over $A, a R_{i} b$ means alternative a is at least as good as b to i
- Properties of R_{i}
(1) Completeness: for every pair of alternatives $a, b \in A$, either $a R_{i} b$ or $b R_{i} a$ or both

Arrow's Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a general setup?

Objective: create social preferences from individual preferences

- Finite set of alternatives $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- Finite set of players $N=\{1,2, \ldots, n\}$
- Each player i has a preference order R_{i} over A (A binary relation over $A, a R_{i} b$ means alternative a is at least as good as b to i
- Properties of R_{i}
(1) Completeness: for every pair of alternatives $a, b \in A$, either $a R_{i} b$ or $b R_{i} a$ or both
(2) Reflexivity: $\forall a \in A, a R_{i} a$

Arrow's Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a general setup?

Objective: create social preferences from individual preferences

- Finite set of alternatives $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- Finite set of players $N=\{1,2, \ldots, n\}$
- Each player i has a preference order R_{i} over A (A binary relation over $A, a R_{i} b$ means alternative a is at least as good as b to i
- Properties of R_{i}
(1) Completeness: for every pair of alternatives $a, b \in A$, either $a R_{i} b$ or $b R_{i} a$ or both
(3) Reflexivity: $\forall a \in A, a R_{i} a$
(0) Transitivity: if $a R_{i} b$ and $b R_{i} c$, then $a R_{i} c, \forall a, b, c \in A$ and $i \in N$

Arrow's Social Welfare Function Setup

- Set of all preference ordering is denoted by \mathcal{R}

Arrow's Social Welfare Function Setup

- Set of all preference ordering is denoted by \mathcal{R}
- An ordering R_{i} is linear if for every $a, b \in A$ s.t. $a R_{i} b$ and $b R_{i} a$ implies $a=b$ (Antisymmetric)

Arrow's Social Welfare Function Setup

- Set of all preference ordering is denoted by \mathcal{R}
- An ordering R_{i} is linear if for every $a, b \in A$ s.t. $a R_{i} b$ and $b R_{i} a$ implies $a=b$ (Antisymmetric)
- Set of all linear preference ordering is denoted by \mathcal{P}

Arrow's Social Welfare Function Setup

- Set of all preference ordering is denoted by \mathcal{R}
- An ordering R_{i} is linear if for every $a, b \in A$ s.t. $a R_{i} b$ and $b R_{i} a$ implies $a=b$ (Antisymmetric)
- Set of all linear preference ordering is denoted by \mathcal{P}
- Any arbitrary ordering R_{i} can be decomposed into its

Arrow's Social Welfare Function Setup

- Set of all preference ordering is denoted by \mathcal{R}
- An ordering R_{i} is linear if for every $a, b \in A$ s.t. $a R_{i} b$ and $b R_{i} a$ implies $a=b$ (Antisymmetric)
- Set of all linear preference ordering is denoted by \mathcal{P}
- Any arbitrary ordering R_{i} can be decomposed into its
(0) asymmetric part P_{i}

Arrow's Social Welfare Function Setup

- Set of all preference ordering is denoted by \mathcal{R}
- An ordering R_{i} is linear if for every $a, b \in A$ s.t. $a R_{i} b$ and $b R_{i} a$ implies $a=b$ (Antisymmetric)
- Set of all linear preference ordering is denoted by \mathcal{P}
- Any arbitrary ordering R_{i} can be decomposed into its
(0) asymmetric part P_{i}
(c) symmetric part I_{i}

Arrow's Social Welfare Function Setup

- Set of all preference ordering is denoted by \mathcal{R}
- An ordering R_{i} is linear if for every $a, b \in A$ s.t. $a R_{i} b$ and $b R_{i} a$ implies $a=b$ (Antisymmetric)
- Set of all linear preference ordering is denoted by \mathcal{P}
- Any arbitrary ordering R_{i} can be decomposed into its
(1) asymmetric part P_{i}
(0) symmetric part I_{i}
- Example:

$$
\begin{aligned}
R_{i} & =\left[\begin{array}{c}
a \\
b, c \\
d
\end{array}\right]=\{(a, b),(a, c),(a, d),(b, c),(c, b),(b, d),(c, d)\} \\
\Rightarrow P_{i} & =\left[\begin{array}{ll}
a & a \\
b & c \\
d & d
\end{array}\right]=\{(a, b),(a, c),(a, d),(b, d),(c, d)\}, \quad I_{i}=\{(b, c),(c, b)\}
\end{aligned}
$$

Arrovian Social Welfare Function (ASWF)

$$
F: \mathcal{R}^{n} \rightarrow \mathcal{R} \quad \text { domain and co-domain are both rankings }
$$

- Motivation: the function F captures the collective ordering of the society, if the most preferred is not feasible, the society can move to the next and so on

Arrovian Social Welfare Function (ASWF)

$$
F: \mathcal{R}^{n} \rightarrow \mathcal{R} \quad \text { domain and co-domain are both rankings }
$$

- Motivation: the function F captures the collective ordering of the society, if the most preferred is not feasible, the society can move to the next and so on
- $F(R)=F\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ is an ordering over the alternatives

Arrovian Social Welfare Function (ASWF)

$$
F: \mathcal{R}^{n} \rightarrow \mathcal{R} \quad \text { domain and co-domain are both rankings }
$$

- Motivation: the function F captures the collective ordering of the society, if the most preferred is not feasible, the society can move to the next and so on
- $F(R)=F\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ is an ordering over the alternatives
- $\hat{F}(R)$ is the asymmetric part of $F(R)$

Arrovian Social Welfare Function (ASWF)

$$
F: \mathcal{R}^{n} \rightarrow \mathcal{R} \quad \text { domain and co-domain are both rankings }
$$

- Motivation: the function F captures the collective ordering of the society, if the most preferred is not feasible, the society can move to the next and so on
- $F(R)=F\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ is an ordering over the alternatives
- $\hat{F}(R)$ is the asymmetric part of $F(R)$
- $\bar{F}(R)$ is the symmetric part of $F(R)$

Pareto or Unanimity

Definition (Weak Pareto)

An ASWF F satisfies weak Pareto if $\forall a, b \in A$ and for every strict preference profile P, if $a P_{i} b$ forall $i \in N$, then $a \hat{F}(R) b$.

Pareto or Unanimity

Definition (Weak Pareto)

An ASWF F satisfies weak Pareto if $\forall a, b \in A$ and for every strict preference profile P, if $a P_{i} b$ forall $i \in N$, then $a \hat{F}(R) b$.

Important: there can be P's where the 'if' condition does not hold, then the implication is vacuously true

Pareto or Unanimity

Definition (Weak Pareto)

An ASWF F satisfies weak Pareto if $\forall a, b \in A$ and for every strict preference profile P, if $a P_{i} b$ forall $i \in N$, then $a \hat{F}(R) b$.

Important: there can be P's where the 'if' condition does not hold, then the implication is vacuously true

Definition (Strong Pareto)

An ASWF F satisfies strong Pareto if $\forall a, b \in A$ and for every preference profile R, if $a R_{i} b$ forall $i \in N$ and $a P_{j} b$ for some $j \in N$, then $a \hat{F}(R) b$.

Pareto or Unanimity

Definition (Weak Pareto)

An ASWF F satisfies weak Pareto if $\forall a, b \in A$ and for every strict preference profile P, if $a P_{i} b$ forall $i \in N$, then $a \hat{F}(R) b$.

Important: there can be P's where the 'if' condition does not hold, then the implication is vacuously true

Definition (Strong Pareto)

An ASWF F satisfies strong Pareto if $\forall a, b \in A$ and for every preference profile R, if $a R_{i} b$ forall $i \in N$ and $a P_{j} b$ for some $j \in N$, then $a \hat{F}(R) b$.

Question

Which property implies the other?

Independence of Irrelevant Alternatives

- We say $R_{i}, R_{i}^{\prime} \in \mathcal{R}$ agree on $\{a, b\}$ for agent i if

$$
a P_{i} b \Leftrightarrow a P_{i}^{\prime} b, b P_{i} a \Leftrightarrow b P_{i}^{\prime} a, a I_{i} b \Leftrightarrow a I_{i}^{\prime} b
$$

Independence of Irrelevant Alternatives

- We say $R_{i}, R_{i}^{\prime} \in \mathcal{R}$ agree on $\{a, b\}$ for agent i if

$$
a P_{i} b \Leftrightarrow a P_{i}^{\prime} b, b P_{i} a \Leftrightarrow b P_{i}^{\prime} a, a I_{i} b \Leftrightarrow a I_{i}^{\prime} b
$$

- We use the shorthand $\left.R_{i}\right|_{a, b}=\left.R_{i}^{\prime}\right|_{a, b}$ to denote this for agent i

Independence of Irrelevant Alternatives

- We say $R_{i}, R_{i}^{\prime} \in \mathcal{R}$ agree on $\{a, b\}$ for agent i if

$$
a P_{i} b \Leftrightarrow a P_{i}^{\prime} b, b P_{i} a \Leftrightarrow b P_{i}^{\prime} a, a I_{i} b \Leftrightarrow a I_{i}^{\prime} b
$$

- We use the shorthand $\left.R_{i}\right|_{a, b}=\left.R_{i}^{\prime}\right|_{a, b}$ to denote this for agent i
- If this holds for every $i \in N,\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$

Independence of Irrelevant Alternatives

- We say $R_{i}, R_{i}^{\prime} \in \mathcal{R}$ agree on $\{a, b\}$ for agent i if

$$
a P_{i} b \Leftrightarrow a P_{i}^{\prime} b, b P_{i} a \Leftrightarrow b P_{i}^{\prime} a, a I_{i} b \Leftrightarrow a I_{i}^{\prime} b
$$

- We use the shorthand $\left.R_{i}\right|_{a, b}=\left.R_{i}^{\prime}\right|_{a, b}$ to denote this for agent i
- If this holds for every $i \in N,\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$

Independence of Irrelevant Alternatives

- We say $R_{i}, R_{i}^{\prime} \in \mathcal{R}$ agree on $\{a, b\}$ for agent i if

$$
a P_{i} b \Leftrightarrow a P_{i}^{\prime} b, b P_{i} a \Leftrightarrow b P_{i}^{\prime} a, a I_{i} b \Leftrightarrow a I_{i}^{\prime} b
$$

- We use the shorthand $\left.R_{i}\right|_{a, b}=\left.R_{i}^{\prime}\right|_{a, b}$ to denote this for agent i
- If this holds for every $i \in N,\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$

Definition (Independence of Irrelevant Alternatives)

An ASWF F satisfies independence of irrelevant alternatives (IIA) if for all $a, b \in A$, and for every pair of preference profiles R and R^{\prime}, if $\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$, then $\left.F(R)\right|_{a, b}=\left.F\left(R^{\prime}\right)\right|_{a, b}$.

Independence of Irrelevant Alternatives

- We say $R_{i}, R_{i}^{\prime} \in \mathcal{R}$ agree on $\{a, b\}$ for agent i if

$$
a P_{i} b \Leftrightarrow a P_{i}^{\prime} b, b P_{i} a \Leftrightarrow b P_{i}^{\prime} a, a I_{i} b \Leftrightarrow a I_{i}^{\prime} b
$$

- We use the shorthand $\left.R_{i}\right|_{a, b}=\left.R_{i}^{\prime}\right|_{a, b}$ to denote this for agent i
- If this holds for every $i \in N,\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$

Definition (Independence of Irrelevant Alternatives)

An ASWF F satisfies independence of irrelevant alternatives (IIA) if for all $a, b \in A$, and for every pair of preference profiles R and R^{\prime}, if $\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$, then $\left.F(R)\right|_{a, b}=\left.F\left(R^{\prime}\right)\right|_{a, b}$.

If the relative positions of two alternatives are the same in two different preference profiles, then the aggregate should also match the relative positions of those two alternatives

Example

If the relative positions of two alternatives are the same in two different preference profiles, then the aggregate should also match the relative positions of those two alternatives

R			
a	a	c	d
b	c	b	c
c	b	a	b
d	d	d	a

R^{\prime}			
d	c	b	b
a	a	c	a
b	b	a	d
c	d	d	c

Example

If the relative positions of two alternatives are the same in two different preference profiles, then the aggregate should also match the relative positions of those two alternatives

R				
a	a	c	d	
b	c	b	c	
c	b	a	b	
d	d	d	a	

R^{\prime}			
d	c	b	b
a	a	c	a
b	b	a	d
c	d	d	c

- IIA says $\left.F(R)\right|_{a, b}=\left.F\left(R^{\prime}\right)\right|_{a, b}$

Example

If the relative positions of two alternatives are the same in two different preference profiles, then the aggregate should also match the relative positions of those two alternatives

R			
a	a	c	d
b	c	b	c
c	b	a	b
d	d	d	a

R^{\prime}			
d	c	b	b
a	a	c	a
b	b	a	d
c	d	d	c

- IIA says $\left.F(R)\right|_{a, b}=\left.F\left(R^{\prime}\right)\right|_{a, b}$
- Simple aggregation rules, e.g., scoring rules: each position of each agent gets a score $\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores

Example

If the relative positions of two alternatives are the same in two different preference profiles, then the aggregate should also match the relative positions of those two alternatives

R			
a	a	c	d
b	c	b	c
c	b	a	b
d	d	d	a

R^{\prime}			
d	c	b	b
a	a	c	a
b	b	a	d
c	d	d	c

- IIA says $\left.F(R)\right|_{a, b}=\left.F\left(R^{\prime}\right)\right|_{a, b}$
- Simple aggregation rules, e.g., scoring rules: each position of each agent gets a score $\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores
- One special scoring rule: plurality, $s_{1}=1, s_{i}=0, i=2, \ldots, m$.

Satisfaction of IIA

Question

Does plurality satisfy IIA?

$$
\quad \begin{array}{lllll}
\\
\hline
\end{array} \quad \begin{array}{lllll}
\\
a & c & c & b & b \\
b & b & a & d \\
c & d & d & c
\end{array}
$$

Satisfaction of IIA

Question

Does plurality satisfy IIA?

R			
a	a	c	d
b	c	b	c
c	b	a	b
d	d	d	a

R^{\prime}			
d	c	b	b
a	a	c	a
b	b	a	d
c	d	d	c

Check: $a F_{\mathrm{plu}}(R) b$, but $b F_{\mathrm{plu}}\left(R^{\prime}\right) a$, even though $\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$

Satisfaction of IIA

Question

Does plurality satisfy IIA?

		R	R^{\prime}			
a	a	$c \quad d$	d	c	b	b
	c	$b c$	a	a	c	a
c	b	$a b$	b	b	a	d
d	d	d a			d	

Check: $a F_{\mathrm{plu}}(R) b$, but $b F_{\mathrm{plu}}\left(R^{\prime}\right) a$, even though $\left.R\right|_{a, b}=\left.R^{\prime}\right|_{a, b}$

Question

Does dictatorship satisfy IIA?

A dictatorship ASWF is where there exists a pre-determined agent d and $F^{d}(R)=R_{d}$

Arrow's impossibility result

Theorem (Arrow 1951)

For $|A| \geqslant 3$, if an ASWF F satisfies WP and IIA, then it must be dictatorial.

Arrow's impossibility result

Theorem (Arrow 1951)

For $|A| \geqslant 3$, if an ASWF F satisfies WP and IIA, then it must be dictatorial.

We cannot aggregate reasonably even when there is no truthfulness constraint

Contents

- Mechanism Design

- Revelation Principle
- Arrow's Impossibility Result
- Proof of Arrow's Impossibility Result

Decisiveness

Definition

Let $F: \mathcal{R}^{n} \rightarrow \mathcal{R}$ be given, $G \subseteq N, G \neq \varnothing$.
(1) G is almost decisive over $\{a, b\}$ if for every R satisfying

$$
a P_{i} b, \forall i \in G, \quad b P_{j} a, \forall j \in N \backslash G
$$

we have $a \hat{F}(R) b$.
We will write this with the shorthand $\bar{D}_{G}(a, b)$: G is almost decisive over $\{a, b\}$ w.r.t. F.
(2) G is decisive over $\{a, b\}$ if for every R satisfying

$$
a P_{i} b, \forall i \in G
$$

we have $a \hat{F}(R) b$.
We will write this with the shorthand $D_{G}(a, b): G$ is almost decisive over $\{a, b\}$ w.r.t. F.

Decisiveness

Definition

Let $F: \mathcal{R}^{n} \rightarrow \mathcal{R}$ be given, $G \subseteq N, G \neq \varnothing$.
(1) G is almost decisive over $\{a, b\}$ if for every R satisfying

$$
a P_{i} b, \forall i \in G, \quad b P_{j} a, \forall j \in N \backslash G
$$

we have $a \hat{F}(R) b$.
We will write this with the shorthand $\bar{D}_{G}(a, b)$: G is almost decisive over $\{a, b\}$ w.r.t. F.
(2) G is decisive over $\{a, b\}$ if for every R satisfying

$$
a P_{i} b, \forall i \in G
$$

we have $a \hat{F}(R) b$.
We will write this with the shorthand $D_{G}(a, b): G$ is almost decisive over $\{a, b\}$ w.r.t. F.

Observation: $D_{G}(a, b) \Rightarrow \bar{D}_{G}(a, b)$

Proof of Arrow's theorem

The proof proceeds in two parts:

Proof of Arrow's theorem

The proof proceeds in two parts:
Part 1 Field expansion lemma: If a group is almost decisive over a pair of alternatives, it is decisive over all pairs of alternatives

Proof of Arrow's theorem

The proof proceeds in two parts:
Part 1 Field expansion lemma: If a group is almost decisive over a pair of alternatives, it is decisive over all pairs of alternatives

Part 2 Group contraction lemma: If a group is decisive, then a strict non-empty subset of that group is also decisive.

Proof of Arrow's theorem

The proof proceeds in two parts:
Part 1 Field expansion lemma: If a group is almost decisive over a pair of alternatives, it is decisive over all pairs of alternatives

Part 2 Group contraction lemma: If a group is decisive, then a strict non-empty subset of that group is also decisive.

Note: these two lemmas immediately proves the theorem

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y) .
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.
Cases to consider (ordered for the convenience of the proof):
(0) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.
Cases to consider (ordered for the convenience of the proof):
(1) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
(2) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.
Cases to consider (ordered for the convenience of the proof):
(1) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
(2) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
(3) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y), x, y \neq a, b$

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.
Cases to consider (ordered for the convenience of the proof):
(1) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
(2) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
(3) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y), x, y \neq a, b$
(a) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, a), x \neq a, b$

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.
Cases to consider (ordered for the convenience of the proof):
(1) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
(2) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
(3) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y), x, y \neq a, b$
(9) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, a), x \neq a, b$
(3) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(b, y), y \neq a, b$

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.
Cases to consider (ordered for the convenience of the proof):
(1) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
(2) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
(3) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y), x, y \neq a, b$
(9) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, a), x \neq a, b$
(6) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(b, y), y \neq a, b$
(6) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, b)$

Field expansion lemma

Lemma

Let F satisfy WP and IIA, then $\forall a, b, x, y, G \subseteq N, G \neq \varnothing, a \neq b, x \neq y$

$$
\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y)
$$

It implies that under WP and IIA, the two notions of decisiveness are equivalent.
Cases to consider (ordered for the convenience of the proof):
(1) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
(2) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
(3) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, y), x, y \neq a, b$
(9) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, a), x \neq a, b$
(3) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(b, y), y \neq a, b$
(6) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, b)$
(1) $\bar{D}_{G}(a, b) \Rightarrow D_{G}(b, a)$

Proof of FEL

- Case 1: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$

Proof of FEL

- Case 1: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $a P_{i} y, \forall i \in G$

Proof of FEL

- Case 1: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $a P_{i} y, \forall i \in G$
- Need to show: $a \hat{F}(R) y$

Proof of FEL

- Case 1: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $a P_{i} y, \forall i \in G$
- Need to show: $a \hat{F}(R) y$
- Construct R^{\prime} s.t.

\[

\]

$$
\text { positions of } a \text { and } y \text { in } N \backslash G \text { s.t. }\left.R^{\prime}\right|_{a, y}=\left.R\right|_{a, y}
$$

Proof of FEL

- Case 1: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $a P_{i} y, \forall i \in G$
- Need to show: $a \hat{F}(R) y$
- Construct R^{\prime} s.t.

\[

\]

$$
\text { positions of } a \text { and } y \text { in } N \backslash G \text { s.t. }\left.R^{\prime}\right|_{a, y}=\left.R\right|_{a, y}
$$

- $\bar{D}_{G}(a, b) \Rightarrow a \hat{F}\left(R^{\prime}\right) b$

Proof of FEL

- Case 1: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $a P_{i} y, \forall i \in G$
- Need to show: $a \hat{F}(R) y$
- Construct R^{\prime} s.t.

$$
\text { positions of } a \text { and } y \text { in } N \backslash G \text { s.t. }\left.R^{\prime}\right|_{a, y}=\left.R\right|_{a, y}
$$

- $\bar{D}_{G}(a, b) \Rightarrow a \hat{F}\left(R^{\prime}\right) b$
- WP over $b, y, \Rightarrow b \hat{F}\left(R^{\prime}\right) y$, transitivity $\Rightarrow a \hat{F}\left(R^{\prime}\right) y$

Proof of FEL

- Case 1: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(a, y), y \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $a P_{i} y, \forall i \in G$
- Need to show: $a \hat{F}(R) y$
- Construct R^{\prime} s.t.

$$
\quad \text { positions of } a \text { and } y \text { in } N \backslash G \text { s.t. }\left.R^{\prime}\right|_{a, y}=\left.R\right|_{a, y}
$$

- $\bar{D}_{G}(a, b) \Rightarrow a \hat{F}\left(R^{\prime}\right) b$
- WP over $b, y, \Rightarrow b \hat{F}\left(R^{\prime}\right) y$, transitivity $\Rightarrow a \hat{F}\left(R^{\prime}\right) y$
- IIA $\Rightarrow a \hat{F}(R) y$. Hence, $D_{G}(a, y)$

Proof of FEL (contd.)

- Case 2: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$

Proof of FEL (contd.)

- Case 2: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $x P_{i} b, \forall i \in G$

Proof of FEL (contd.)

- Case 2: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $x P_{i} b, \forall i \in G$
- Need to show: $x \hat{F}(R) b$

Proof of FEL (contd.)

- Case 2: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $x P_{i} b, \forall i \in G$
- Need to show: $x \hat{F}(R) b$
- Construct R^{\prime} s.t.

\[

\]

positions of x and b in $N \backslash G$ s.t. $\left.R^{\prime}\right|_{x, b}=\left.R\right|_{x, b}$

Proof of FEL (contd.)

- Case 2: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $x P_{i} b, \forall i \in G$
- Need to show: $x \hat{F}(R) b$
- Construct R^{\prime} s.t.

G		$N \backslash G$	
x	x	x	b
\vdots	\vdots	\vdots	\vdots
a	a	b	x
\vdots	\vdots	\vdots	\vdots
b	b	a	a

positions of x and b in $N \backslash G$ s.t. $\left.R^{\prime}\right|_{x, b}=\left.R\right|_{x, b}$

- $\bar{D}_{G}(a, b) \Rightarrow a \hat{F}\left(R^{\prime}\right) b$

Proof of FEL (contd.)

- Case 2: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $x P_{i} b, \forall i \in G$
- Need to show: $x \hat{F}(R) b$
- Construct R^{\prime} s.t.

\[

\]

$$
\text { positions of } x \text { and } b \text { in } N \backslash G \text { s.t. }\left.R^{\prime}\right|_{x, b}=\left.R\right|_{x, b}
$$

- $\bar{D}_{G}(a, b) \Rightarrow a \hat{F}\left(R^{\prime}\right) b$
- WP over $x, a, \Rightarrow x \hat{F}\left(R^{\prime}\right) a$, transitivity $\Rightarrow x \hat{F}\left(R^{\prime}\right) b$

Proof of FEL (contd.)

- Case 2: $\bar{D}_{G}(a, b) \Rightarrow D_{G}(x, b), x \neq a, b$
- Pick an arbitrary $R \in \mathcal{R}^{n}$, s.t., $x P_{i} b, \forall i \in G$
- Need to show: $x \hat{F}(R) b$
- Construct R^{\prime} s.t.

$$
\text { positions of } x \text { and } b \text { in } N \backslash G \text { s.t. }\left.R^{\prime}\right|_{x, b}=\left.R\right|_{x, b}
$$

- $\bar{D}_{G}(a, b) \Rightarrow a \hat{F}\left(R^{\prime}\right) b$
- WP over $x, a, \Rightarrow x \hat{F}\left(R^{\prime}\right) a$, transitivity $\Rightarrow x \hat{F}\left(R^{\prime}\right) b$
- IIA $\Rightarrow x \hat{F}(R) b$. Hence, $D_{G}(x, b)$

Proof of FEL (other cases)

- Case 3: $\bar{D}_{G}(a, b) \stackrel{(\text { case 1) }}{\Longrightarrow} D_{G}(a, y)(y \neq a, b) \stackrel{\text { definition) }}{\Longrightarrow} \bar{D}_{G}(a, y) \stackrel{\text { (case 2) }}{\Longrightarrow} D_{G}(x, y)(x \neq a, y)$
- Case 4: $\bar{D}_{G}(a, b) \stackrel{\text { (case 2) }}{\Longrightarrow} D_{G}(x, b)(x \neq a, b) \stackrel{(\text { definition) }}{\Longrightarrow} \bar{D}_{G}(x, b) \stackrel{\text { (case 1) }}{\Longrightarrow} D_{G}(x, a)(x \neq a, b)$
- Case 5: $\bar{D}_{G}(a, b) \stackrel{(\text { case 1) }}{\Longrightarrow} D_{G}(a, y)(y \neq a, b) \xrightarrow{\text { definition) }} \bar{D}_{G}(a, y) \xrightarrow{\text { (case 2) }} D_{G}(b, y)(y \neq a, b)$
- Case 6: $\bar{D}_{G}(a, b) \stackrel{(\text { case 2) }}{\Longrightarrow} D_{G}(x, b)(x \neq a, b) \stackrel{(\text { definition })}{\Longrightarrow} \bar{D}_{G}(x, b) \stackrel{(\text { case 2) }}{\Longrightarrow} D_{G}(a, b)$
- Case 7: $\bar{D}_{G}(a, b) \stackrel{(\text { case 5) }}{\Longrightarrow} D_{G}(b, y)(y \neq a, b) \stackrel{(\text { definition })}{\Longrightarrow} \bar{D}_{G}(b, y) \stackrel{\text { (case 1) }}{\Longrightarrow} D_{G}(b, a)$

Group contraction lemma

Lemma

Let F satisfy WP and IIA, and let $G \subseteq N, G \neq \varnothing,|G| \geqslant 2$ be decisive. Then $\exists G^{\prime} \subset G, G^{\prime} \neq \varnothing$ which is also decisive.

Proof:

- $G,|G| \geqslant 2$ is given. Let $G_{1} \subset G, G_{2}=G \backslash G_{1}, G_{1}, G_{2} \neq \varnothing$, arbitrary.

Group contraction lemma

Lemma

Let F satisfy WP and IIA, and let $G \subseteq N, G \neq \varnothing,|G| \geqslant 2$ be decisive. Then $\exists G^{\prime} \subset G, G^{\prime} \neq \varnothing$ which is also decisive.

Proof:

- $G,|G| \geqslant 2$ is given. Let $G_{1} \subset G, G_{2}=G \backslash G_{1}, G_{1}, G_{2} \neq \varnothing$, arbitrary.
- Construct R

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

$$
a P_{i} b, \forall i \in G \text { and } G \text { decisive } \Rightarrow a \hat{F}(R) b
$$

Group contraction lemma

Lemma

Let F satisfy WP and IIA, and let $G \subseteq N, G \neq \varnothing,|G| \geqslant 2$ be decisive. Then $\exists G^{\prime} \subset G, G^{\prime} \neq \varnothing$ which is also decisive.

Proof:

- $G,|G| \geqslant 2$ is given. Let $G_{1} \subset G, G_{2}=G \backslash G_{1}, G_{1}, G_{2} \neq \varnothing$, arbitrary.
- Construct R

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

$$
a P_{i} b, \forall i \in G \text { and } G \text { decisive } \Rightarrow a \hat{F}(R) b
$$

- Where can c stand in $F(R)$ w.r.t. a ? We will show in every possible case, either G_{1} or G_{2} will be decisive

Proof of GCL

Case 1: $a \hat{F}(R) c$

- Consider G_{1}

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

Proof of GCL

Case 1: $a \hat{F}(R) c$

$$
\begin{array}{c||c||c}
G_{1} & G_{2} & N \backslash G \\
\hline \hline a & c & b \\
b & a & c \\
c & b & a
\end{array} \text { have seen } \Rightarrow a \hat{F}(R) b
$$

- Consider G_{1}
- $a P_{i} c, \forall i \in G_{1}, c P_{i} a, \forall i \in N \backslash G_{1}$

Proof of GCL

Case 1: $a \hat{F}(R) c$

$$
\begin{array}{c||c||c}
G_{1} & G_{2} & N \backslash G \\
\hline \hline a & c & b \\
b & a & c \\
c & b & a
\end{array} \quad \text { have seen } \Rightarrow a \hat{F}(R) b
$$

- Consider G_{1}
- $a P_{i} c, \forall i \in G_{1}, c P_{i} a, \forall i \in N \backslash G_{1}$
- Consider each R^{\prime} where the above relation holds

Proof of GCL

Case 1: $a \hat{F}(R) c$

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

- Consider G_{1}
- $a P_{i} c, \forall i \in G_{1}, c P_{i} a, \forall i \in N \backslash G_{1}$
- Consider each R^{\prime} where the above relation holds
- by IIA $a \hat{F}\left(R^{\prime}\right) c$

Proof of GCL

Case 1: $a \hat{F}(R) c$

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

- Consider G_{1}
- $a P_{i} c, \forall i \in G_{1}, c P_{i} a, \forall i \in N \backslash G_{1}$
- Consider each R^{\prime} where the above relation holds
- by IIA $a \hat{F}\left(R^{\prime}\right) c$
- Hence $\bar{D}_{G_{1}}(a, c) \stackrel{(\mathrm{FEL})}{\Longrightarrow} D_{G_{1}}$

Proof of GCL (contd.)

Case 2: $\neg(a \hat{F}(R) c) \Longrightarrow c F(R) a$

- $a \hat{F}(R) b$ and $c F(R) a$ give $c \hat{F}(R) b$

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

Proof of GCL (contd.)

Case 2: $\neg(a \hat{F}(R) c) \Longrightarrow c F(R) a$

- $a \hat{F}(R) b$ and $c F(R) a$ give $c \hat{F}(R) b$
- Consider G_{2}

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

Proof of GCL (contd.)

Case 2: $\neg(a \hat{F}(R) c) \Longrightarrow c F(R) a$

$$
\begin{array}{c||c||c}
G_{1} & G_{2} & N \backslash G \\
\hline \hline a & c & b \\
b & a & c \\
c & b & a
\end{array} \text { have seen } \Rightarrow a \hat{F}(R) b
$$

- $a \hat{F}(R) b$ and $c F(R) a$ give $c \hat{F}(R) b$
- Consider G_{2}
- $c P_{i} b, \forall i \in G_{2}, b P_{i} c, \forall i \in N \backslash G_{2}$

Proof of GCL (contd.)

Case 2: $\neg(a \hat{F}(R) c) \Longrightarrow c F(R) a$

$$
\begin{array}{c||c||c}
G_{1} & G_{2} & N \backslash G \\
\hline \hline a & c & b \\
b & a & c \\
c & b & a
\end{array} \text { have seen } \Rightarrow a \hat{F}(R) b
$$

- $a \hat{F}(R) b$ and $c F(R) a$ give $c \hat{F}(R) b$
- Consider G_{2}
- $c P_{i} b, \forall i \in G_{2}, b P_{i} c, \forall i \in N \backslash G_{2}$
- Consider each R^{\prime} where the above relation holds

Proof of GCL (contd.)

Case 2: $\neg(a \hat{F}(R) c) \Longrightarrow c F(R) a$

$$
\begin{array}{c||c||c}
G_{1} & G_{2} & N \backslash G \\
\hline \hline a & c & b \\
b & a & c \\
c & b & a
\end{array} \text { have seen } \Rightarrow a \hat{F}(R) b
$$

- $a \hat{F}(R) b$ and $c F(R) a$ give $c \hat{F}(R) b$
- Consider G_{2}
- $c P_{i} b, \forall i \in G_{2}, b P_{i} c, \forall i \in N \backslash G_{2}$
- Consider each R^{\prime} where the above relation holds
- by IIA $c \hat{F}\left(R^{\prime}\right) b$

Proof of GCL (contd.)

Case 2: $\neg(a \hat{F}(R) c) \Longrightarrow c F(R) a$

G_{1}	G_{2}	$N \backslash G$
a	c	b
b	a	c
c	b	a

- $a \hat{F}(R) b$ and $c F(R) a$ give $c \hat{F}(R) b$
- Consider G_{2}
- $c P_{i} b, \forall i \in G_{2}, b P_{i} c, \forall i \in N \backslash G_{2}$
- Consider each R^{\prime} where the above relation holds
- by IIA $c \hat{F}\left(R^{\prime}\right) b$
- Hence $\bar{D}_{G_{2}}(c, b) \stackrel{(\mathrm{FEL})}{\Longrightarrow} D_{G_{2}}$

भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay

