भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 8

Swaprava Nath
Slide preparation acknowledgments: C. R. Pradhit and Adit Akarsh

ज्ञानम् परमम् ध्येयम्
Knowledge is the supreme goal

Contents

- The Social Choice Setup
- The Gibbard-Satterthwaite Theorem
- Proof of Gibbard-Satterthwaite Theorem
- Domain Restriction
- Median Voting Rule
- Median Voter Theorem: Part 1
- Median Voter Theorem: Part 2

Arrovian Social Welfare setup is too demanding

- It requires a social ordering from a preference profile

Arrovian Social Welfare setup is too demanding

- It requires a social ordering from a preference profile
- Arrow's result says that this is impossible subject to weak Pareto and independence of irrelevant alternatives in a democratic way

Arrovian Social Welfare setup is too demanding

- It requires a social ordering from a preference profile
- Arrow's result says that this is impossible subject to weak Pareto and independence of irrelevant alternatives in a democratic way
- Ways out:

Arrovian Social Welfare setup is too demanding

- It requires a social ordering from a preference profile
- Arrow's result says that this is impossible subject to weak Pareto and independence of irrelevant alternatives in a democratic way
- Ways out:
© consider a social choice setup

Arrovian Social Welfare setup is too demanding

- It requires a social ordering from a preference profile
- Arrow's result says that this is impossible subject to weak Pareto and independence of irrelevant alternatives in a democratic way
- Ways out:
(1) consider a social choice setup
© put restrictions on agent preferences

Arrovian Social Welfare setup is too demanding

- It requires a social ordering from a preference profile
- Arrow's result says that this is impossible subject to weak Pareto and independence of irrelevant alternatives in a democratic way
- Ways out:
(1) consider a social choice setup
(2) put restrictions on agent preferences
- Social choice function (SCF)

$$
f: \mathcal{P}^{n} \rightarrow A
$$

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \\
& N=\{1,2, \ldots, n\} \\
& \mathcal{P}
\end{aligned}
$$

Finite set of alternatives
Finite set of players
Set of all linear preference ordering

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

- Various voting rules exist

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

- Various voting rules exist
- scoring rules: each position of each agent gets a score
$\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores, e.g.,

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

- Various voting rules exist
- scoring rules: each position of each agent gets a score
$\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores, e.g.,
- plurality: $(1,0, \ldots, 0,0)$

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

- Various voting rules exist
- scoring rules: each position of each agent gets a score
$\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores, e.g.,
- plurality: $(1,0, \ldots, 0,0)$
- veto: $(1,1, \ldots, 1,0)$

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

- Various voting rules exist
- scoring rules: each position of each agent gets a score
$\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores, e.g.,
- plurality: $(1,0, \ldots, 0,0)$
- veto: $(1,1, \ldots, 1,0)$
- Borda: named after French mathematician Jean-Charles de Borda ($m-1, m-2, \ldots, 1,0$)

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

- Various voting rules exist
- scoring rules: each position of each agent gets a score
$\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores, e.g.,
- plurality: $(1,0, \ldots, 0,0)$
- veto: $(1,1, \ldots, 1,0)$
- Borda: named after French mathematician Jean-Charles de Borda ($m-1, m-2, \ldots, 1,0$)
- harmonic: $(1,1 / 2,1 / 3, \ldots, 1 / m)$

Examples

- Most representative: voting

$$
\quad \xrightarrow{f} \quad A=\{a, b, c, d\}
$$

- Various voting rules exist
- scoring rules: each position of each agent gets a score
$\left(s_{1}, s_{2}, \ldots, s_{m}\right), s_{i} \geqslant s_{i+1}, i=1,2, \ldots, m-1$, the final ordering is in the decreasing order of the scores, e.g.,
- plurality: $(1,0, \ldots, 0,0)$
- veto: $(1,1, \ldots, 1,0)$
- Borda: named after French mathematician Jean-Charles de Borda ($m-1, m-2, \ldots, 1,0$)
- harmonic: $(1,1 / 2,1 / 3, \ldots, 1 / m)$
- k-approval: $(\underbrace{1,1, \ldots, 1}_{k}, 0,0, \ldots, 0)$

Examples (contd.)

- plurality with runoff: also called two round system (TRS), first round: regular plurality and top two candidates survive, second round: another plurality only between the survived two candidates - used in French presidential election

Examples (contd.)

- plurality with runoff: also called two round system (TRS), first round: regular plurality and top two candidates survive, second round: another plurality only between the survived two candidates - used in French presidential election
- maximin: maximizes the minimum lead against other candidates: $\operatorname{score}(a)=\min _{y}\left|\left\{i: a P_{i} y\right\}\right|$, winner is of the highest score

Examples (contd.)

- plurality with runoff: also called two round system (TRS), first round: regular plurality and top two candidates survive, second round: another plurality only between the survived two candidates - used in French presidential election
- maximin: maximizes the minimum lead against other candidates: $\operatorname{score}(a)=\min _{y}\left|\left\{i: a P_{i} y\right\}\right|$, winner is of the highest score

P			
a	a	c	d
b	b	b	c
c	c	d	b
d	d	a	a

$$
\begin{aligned}
& \operatorname{score}(a)=\min \{2(b), 2(c), 2(d)\}=2 \\
& \operatorname{score}(b)=\min \{2(a), 2(c), 3(d)\}=2 \\
& \operatorname{score}(c)=\min \{2(a), 2(b), 3(d)\}=2 \\
& \operatorname{score}(d)=\min \{2(a), 1(b), 1(c)\}=1
\end{aligned}
$$

Examples (contd.)

- plurality with runoff: also called two round system (TRS), first round: regular plurality and top two candidates survive, second round: another plurality only between the survived two candidates - used in French presidential election
- maximin: maximizes the minimum lead against other candidates: $\operatorname{score}(a)=\min _{y}\left|\left\{i: a P_{i} y\right\}\right|$, winner is of the highest score

P				
a	a	c	d	
b	b	b	c	
c	c	d	b	
d	d	a	a	

$$
\begin{aligned}
& \operatorname{score}(a)=\min \{2(b), 2(c), 2(d)\}=2 \\
& \operatorname{score}(b)=\min \{2(a), 2(c), 3(d)\}=2 \\
& \operatorname{score}(c)=\min \{2(a), 2(b), 3(d)\}=2 \\
& \operatorname{score}(d)=\min \{2(a), 1(b), 1(c)\}=1
\end{aligned}
$$

- Copeland: based on Copeland score $=$ number of wins in pairwise elections

Condorcet consistency

Definition
A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election
- Alas! it may not exist

	P	
a	b	c
b	c	a
c	a	b

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election
- Alas! it may not exist

	P	
a	b	c
b	c	a
c	a	b

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election
- Alas! it may not exist

P							
a	b	c					
b	c	a					
c	a	b	the voting rule can choose anything				
:---	:---	:---	:---				

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election
- Alas! it may not exist

	P			P			
a	b	c	the voting rule can choose any	a	b	c	should choose a
	c	a	the voting rule can choose anything	b		a	should choose a
	a	b		c		b	

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election
- Alas! it may not exist

- Which of the voting rules are Condorcet consistent? plurality, Copeland, maximin?

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election
- Alas! it may not exist

	P			P			
a		c	the voting rule can choose anything	a	b	c	should choos
b	c	a	the voting rule can choose anything	b		a	should choo
	a	b				b	

- Which of the voting rules are Condorcet consistent? plurality, Copeland, maximin?

30%	30%	40%
a	b	c
b	a	a
c	c	b

Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

- Condorcet winner is a candidate who defeats all other candidates in pairwise election
- Alas! it may not exist

- Which of the voting rules are Condorcet consistent? plurality, Copeland, maximin?

30%	30%	40%
a	b	c
b	a	a
c	c	b

Desirable properties of SCF

- Recall, social choice function, $f: \mathcal{P}^{n} \rightarrow A$

Desirable properties of SCF

- Recall, social choice function, $f: \mathcal{P}^{n} \rightarrow A$
- Pareto domination: an alternative a is Pareto dominated by b if $\forall i \in N, b P_{i} a$ (also, a is called Pareto dominated if some such b exists)

Desirable properties of SCF

- Recall, social choice function, $f: \mathcal{P}^{n} \rightarrow A$
- Pareto domination: an alternative a is Pareto dominated by b if $\forall i \in N, b P_{i} a$ (also, a is called Pareto dominated if some such b exists)

Desirable properties of SCF

- Recall, social choice function, $f: \mathcal{P}^{n} \rightarrow A$
- Pareto domination: an alternative a is Pareto dominated by b if $\forall i \in N, b P_{i} a$ (also, a is called Pareto dominated if some such b exists)

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if $\forall P$ and $a \in A$, if a is Pareto dominated, then $f(P) \neq a$.

Desirable properties of SCF

- Recall, social choice function, $f: \mathcal{P}^{n} \rightarrow A$
- Pareto domination: an alternative a is Pareto dominated by b if $\forall i \in N, b P_{i} a$ (also, a is called Pareto dominated if some such b exists)

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if $\forall P$ and $a \in A$, if a is Pareto dominated, then $f(P) \neq a$.

Definition (Unanimity)

An SCF f is unanimous (UN) if $\forall P$ satisfying $P_{1}(1)=P_{2}(1)=\ldots=P_{n}(1)=a\left[P_{i}(k)\right.$ is the k-th favorite alternative of $i]$, it holds that $f(P)=a$.

Desirable properties of SCF

- Recall, social choice function, $f: \mathcal{P}^{n} \rightarrow A$
- Pareto domination: an alternative a is Pareto dominated by b if $\forall i \in N, b P_{i} a$ (also, a is called Pareto dominated if some such b exists)

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if $\forall P$ and $a \in A$, if a is Pareto dominated, then $f(P) \neq a$.

Definition (Unanimity)

An SCF f is unanimous (UN) if $\forall P$ satisfying $P_{1}(1)=P_{2}(1)=\ldots=P_{n}(1)=a\left[P_{i}(k)\right.$ is the k-th favorite alternative of $i]$, it holds that $f(P)=a$.

Which implies which?

Desirable properties of SCF

- Recall, social choice function, $f: \mathcal{P}^{n} \rightarrow A$
- Pareto domination: an alternative a is Pareto dominated by b if $\forall i \in N, b P_{i} a$ (also, a is called Pareto dominated if some such b exists)

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if $\forall P$ and $a \in A$, if a is Pareto dominated, then $f(P) \neq a$.

Definition (Unanimity)

An SCF f is unanimous (UN) if $\forall P$ satisfying $P_{1}(1)=P_{2}(1)=\ldots=P_{n}(1)=a\left[P_{i}(k)\right.$ is the k-th favorite alternative of $i]$, it holds that $f(P)=a$.

Which implies which? if the top choice of all voters is the same, say a, all other alternatives are Pareto dominated by a

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and $\forall a \in A, \exists P^{(a)} \in \mathcal{P}^{n}$ s.t. $f\left(P^{(a)}\right)=a$.

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and $\forall a \in A, \exists P^{(a)} \in \mathcal{P}^{n}$ s.t. $f\left(P^{(a)}\right)=a$.
$\mathrm{UN} \Rightarrow \mathrm{ONTO}$

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and $\forall a \in A, \exists P^{(a)} \in \mathcal{P}^{n}$ s.t. $f\left(P^{(a)}\right)=a$.
$\mathrm{UN} \Rightarrow \mathrm{ONTO}$
Manipulability: an SCF f is manipulable if $\exists i \in N$ and a profile P such that, $f\left(P_{i}^{\prime}, P_{-i}\right) P_{i} f\left(P_{i}, P_{-i}\right)$, for some P_{i}^{\prime}.

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and $\forall a \in A, \exists P^{(a)} \in \mathcal{P}^{n}$ s.t. $f\left(P^{(a)}\right)=a$.

$\mathrm{UN} \Rightarrow \mathrm{ONTO}$

Manipulability: an SCF f is manipulable if $\exists i \in N$ and a profile P such that, $f\left(P_{i}^{\prime}, P_{-i}\right) P_{i} f\left(P_{i}, P_{-i}\right)$, for some P_{i}^{\prime}. Examples:

- Plurality with fixed tie-breaking

$$
\begin{array}{rl|l|l}
a \succ b \succ c \\
4 & 4 & 1 \\
\hline \hline a & b & c \\
b & a & b \\
c & c & a
\end{array}
$$

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and $\forall a \in A, \exists P^{(a)} \in \mathcal{P}^{n}$ s.t. $f\left(P^{(a)}\right)=a$.

$\mathrm{UN} \Rightarrow \mathrm{ONTO}$

Manipulability: an SCF f is manipulable if $\exists i \in N$ and a profile P such that, $f\left(P_{i}^{\prime}, P_{-i}\right) P_{i} f\left(P_{i}, P_{-i}\right)$, for some P_{i}^{\prime}. Examples:

- Plurality with fixed tie-breaking

$$
\begin{aligned}
& a \succ b \succ c \\
& \begin{array}{l|l|l}
4 & 4 & 1 \\
\hline \hline a & b & c \\
b & a & b \\
c & c & a
\end{array} \quad \Rightarrow \quad \begin{array}{l|l|l}
4 & 4 & 1 \\
\hline \hline a & b & b \\
b & a & c \\
c & c & a
\end{array}
\end{aligned}
$$

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and $\forall a \in A, \exists P^{(a)} \in \mathcal{P}^{n}$ s.t. $f\left(P^{(a)}\right)=a$.

$\mathrm{UN} \Rightarrow \mathrm{ONTO}$

Manipulability: an SCF f is manipulable if $\exists i \in N$ and a profile P such that, $f\left(P_{i}^{\prime}, P_{-i}\right) P_{i} f\left(P_{i}, P_{-i}\right)$, for some P_{i}^{\prime}. Examples:

- Plurality with fixed tie-breaking

$$
\begin{aligned}
& a \succ b \succ c \\
& \begin{array}{l|l|l}
4 & 4 & 1 \\
\hline \hline a & b & c \\
b & a & b \\
c & c & a
\end{array} \\
& \Rightarrow \quad \begin{array}{c|c|c}
4 & 4 & 1 \\
\hline \hline a & b & b \\
b & a & c \\
c & c & a
\end{array}
\end{aligned}
$$

- Copeland with fixed tie-breaking

\[

\]

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and $\forall a \in A, \exists P^{(a)} \in \mathcal{P}^{n}$ s.t. $f\left(P^{(a)}\right)=a$.

$\mathrm{UN} \Rightarrow \mathrm{ONTO}$

Manipulability: an SCF f is manipulable if $\exists i \in N$ and a profile P such that, $f\left(P_{i}^{\prime}, P_{-i}\right) P_{i} f\left(P_{i}, P_{-i}\right)$, for some P_{i}^{\prime}. Examples:

- Plurality with fixed tie-breaking

$$
\begin{aligned}
& a \succ b \succ c \\
& \begin{array}{l|l|l}
4 & 4 & 1 \\
\hline \hline a & b & c \\
b & a & b \\
c & c & a
\end{array} \\
& \Rightarrow \quad \begin{array}{c|c|c}
4 & 4 & 1 \\
\hline \hline a & b & b \\
b & a & c \\
c & c & a
\end{array}
\end{aligned}
$$

- Copeland with fixed tie-breaking

$$
\begin{aligned}
& a \succ b \succ c \\
& 1 \\
& 1
\end{aligned} 1 \left\lvert\, \begin{array}{l|l}
\\
\hline \hline a & b \\
b & c \\
b & c \\
c & a \\
c & a
\end{array} \quad b \quad \Rightarrow \quad \begin{array}{l|l|l}
1 & 1 & 1 \\
\hline \hline a & c & c \\
b & b & a \\
c & a & b
\end{array}\right.
$$

Strategyproofness and its implications

Definition (Strategyproof)

An SCF is strategyproof (SP) if it is not manipulable by any agent at any profile.

Implications:

- Define dominated set of an alternative a at a preference P_{i} as

$$
D\left(a, P_{i}\right):=\left\{b \in A: a P_{i} b\right\}
$$

Strategyproofness and its implications

Definition (Strategyproof)

An SCF is strategyproof (SP) if it is not manipulable by any agent at any profile.

Implications:

- Define dominated set of an alternative a at a preference P_{i} as

$$
D\left(a, P_{i}\right):=\left\{b \in A: a P_{i} b\right\}
$$

- The set of alternatives below a in P_{i}

$$
P_{i}=\begin{aligned}
& b \\
& a \\
& c \\
& d
\end{aligned} \quad \Rightarrow \quad D\left(a, P_{i}\right)=\{c, d\}
$$

Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P^{\prime} that satisfy $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right)$, for all $i \in N$, it holds that $f\left(P^{\prime}\right)=a$.

Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P^{\prime} that satisfy $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right)$, for all $i \in N$, it holds that $f\left(P^{\prime}\right)=a$.

- The relative position of c has improved from P to $P^{\prime} ;$ if c was the outcome at P, it continues to become the outcome at P^{\prime}

Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P^{\prime} that satisfy $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right)$, for all $i \in N$, it holds that $f\left(P^{\prime}\right)=a$.

- The relative position of c has improved from P to $P^{\prime} ;$ if c was the outcome at P, it continues to become the outcome at P^{\prime}

P			P^{\prime}		
a	a	$c \quad d$	c	a	$c \quad d$
b	b	$b \quad c$	b	c	$b \quad c$
c	c	$d \quad b$	a	b	$d \quad b$
d	d	$a \quad a$	d	d	$a \quad a$

Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P^{\prime} that satisfy $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right)$, for all $i \in N$, it holds that $f\left(P^{\prime}\right)=a$.

- The relative position of c has improved from P to $P^{\prime} ;$ if c was the outcome at P, it continues to become the outcome at P^{\prime}

P				P^{\prime}			
	a	c	d	c	a	c	d
b	b	b	c	b	c	b	c
c	c	d	b	a	b	d	b
d	d	a	a	d	d	a	a

Theorem

An SCF f is strategyproof iff it is monotone.

Contents

- The Social Choice Setup

- The Gibbard-Satterthwaite Theorem
- Proof of Gibbard-Satterthwaite Theorem
- Domain Restriction
- Median Voting Rule
- Median Voter Theorem: Part 1
- Median Voter Theorem: Part 2

Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Proof: $(\mathrm{SP} \Longrightarrow \mathrm{MONO})$

Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Proof: $(\mathrm{SP} \Longrightarrow \mathrm{MONO})$

- Consider the "if" condition of MONO
- P and P^{\prime} with $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right) \forall i \in N$

Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Proof: $(\mathrm{SP} \Longrightarrow \mathrm{MONO})$

- Consider the "if" condition of MONO
- P and P^{\prime} with $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right) \forall i \in N$
- Break the transition from P to P^{\prime} into n stages:

Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Proof: $(\mathrm{SP} \Longrightarrow \mathrm{MONO})$

- Consider the "if" condition of MONO
- P and P^{\prime} with $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right) \forall i \in N$
- Break the transition from P to P^{\prime} into n stages:

$$
\begin{array}{ccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) \\
P=P^{(0)} & P^{(1)}
\end{array}
$$

Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Proof: $(\mathrm{SP} \Longrightarrow \mathrm{MONO})$

- Consider the "if" condition of MONO
- P and P^{\prime} with $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right) \forall i \in N$
- Break the transition from P to P^{\prime} into n stages:

$$
\begin{array}{cccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow \\
P=P^{(0)} & P^{(1)} & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P^{(2)}
\end{array}
$$

Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Proof: $(\mathrm{SP} \Longrightarrow \mathrm{MONO})$

- Consider the "if" condition of MONO
- P and P^{\prime} with $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right) \forall i \in N$
- Break the transition from P to P^{\prime} into n stages:

$$
\begin{array}{ccccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P=P^{(0)} & & & P^{(1)} & \\
\ldots & \rightarrow & \left(P_{1}^{\prime}, \ldots P_{k^{\prime}}^{\prime} P_{k+1}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime} \cdots P_{n}^{\prime}\right) \\
P^{(k)} & & P^{(n)}=P^{\prime}
\end{array}
$$

Proof of $\mathrm{SP} \Leftrightarrow \mathrm{MONO}$

$$
\begin{array}{ccccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P=P^{(0)} & & P^{(1)} & & P^{(2)} \\
\ldots & \rightarrow & \left(P_{1}^{\prime}, \ldots P_{k^{\prime}}^{\prime} P_{k+1}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime} \cdots P_{n}^{\prime}\right) \\
P^{(k)} & & P^{(n)}=P^{\prime}
\end{array}
$$

Claim: $f\left(P^{(k)}\right)=a, \forall k=1, \ldots, n$.

- Suppose not, i.e., $\exists P^{(k-1)}, P^{(k)}$, s.t. $\left.f\left(P^{(k-1}\right)\right)=a, f\left(P^{(k)}\right)=b \neq a$

Proof of $\mathrm{SP} \Leftrightarrow \mathrm{MONO}$

$$
\begin{array}{ccccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P=P^{(0)} & & & & P^{(1)} \\
\ldots & \rightarrow & \left(P_{1}^{\prime}, \ldots P_{k^{\prime}}^{\prime} P_{k+1}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime} \cdots P_{n}^{\prime}\right) \\
P^{(k)} & & P^{(n)}=P^{\prime}
\end{array}
$$

Claim: $f\left(P^{(k)}\right)=a, \forall k=1, \ldots, n$.

- Suppose not, i.e., $\exists P^{(k-1)}, P^{(k)}$, s.t. $\left.f\left(P^{(k-1}\right)\right)=a, f\left(P^{(k)}\right)=b \neq a$
- There can be one of the three cases:

Proof of $\mathrm{SP} \Leftrightarrow \mathrm{MONO}$

$$
\begin{array}{ccccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P=P^{(0)} & & & P^{(1)} & P^{(2)} \\
\ldots & \rightarrow & \left(P_{1}^{\prime}, \ldots P_{k^{\prime}}^{\prime} P_{k+1}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime} \ldots P_{n}^{\prime}\right) \\
P^{(k)} & & P^{(n)}=P^{\prime}
\end{array}
$$

Claim: $f\left(P^{(k)}\right)=a, \forall k=1, \ldots, n$.

- Suppose not, i.e., $\exists P^{(k-1)}, P^{(k)}$, s.t. $\left.f\left(P^{(k-1}\right)\right)=a, f\left(P^{(k)}\right)=b \neq a$
- There can be one of the three cases:
(1) a $P_{k} b$ and $a P_{k}^{\prime} b \rightarrow$ voter k misreports $P_{k}^{\prime} \rightarrow P_{k}$

Proof of $\mathrm{SP} \Leftrightarrow \mathrm{MONO}$

$$
\begin{array}{ccccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P=P^{(0)} & & & P^{(1)} & P^{(2)} \\
\ldots & \rightarrow & \left(P_{1}^{\prime}, \ldots P_{k^{\prime}}^{\prime} P_{k+1}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime} \ldots P_{n}^{\prime}\right) \\
P^{(k)} & & P^{(n)}=P^{\prime}
\end{array}
$$

Claim: $f\left(P^{(k)}\right)=a, \forall k=1, \ldots, n$.

- Suppose not, i.e., $\exists P^{(k-1)}, P^{(k)}$, s.t. $\left.f\left(P^{(k-1}\right)\right)=a, f\left(P^{(k)}\right)=b \neq a$
- There can be one of the three cases:
(1) a $P_{k} b$ and $a P_{k}^{\prime} b \rightarrow$ voter k misreports $P_{k}^{\prime} \rightarrow P_{k}$
(2) $b P_{k} a$ and $b P_{k}^{\prime} a \rightarrow$ voter k misreports $P_{k} \rightarrow P_{k}^{\prime}$

Proof of $\mathrm{SP} \Leftrightarrow \mathrm{MONO}$

$$
\begin{array}{ccccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P=P^{(0)} & & & P^{(1)} & P^{(2)} \\
\ldots & \rightarrow & \left(P_{1}^{\prime}, \ldots P_{k^{\prime}}^{\prime} P_{k+1}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime} \ldots P_{n}^{\prime}\right) \\
P^{(k)} & & P^{(n)}=P^{\prime}
\end{array}
$$

Claim: $f\left(P^{(k)}\right)=a, \forall k=1, \ldots, n$.

- Suppose not, i.e., $\exists P^{(k-1)}, P^{(k)}$, s.t. $\left.f\left(P^{(k-1}\right)\right)=a, f\left(P^{(k)}\right)=b \neq a$
- There can be one of the three cases:
(1) a $P_{k} b$ and $a P_{k}^{\prime} b \rightarrow$ voter k misreports $P_{k}^{\prime} \rightarrow P_{k}$
(2) $b P_{k} a$ and $b P_{k}^{\prime} a \rightarrow$ voter k misreports $P_{k} \rightarrow P_{k}^{\prime}$
(3) $b P_{k} a$ and $a P_{k}^{\prime} b \rightarrow$ voter k misreports in both

Proof of $\mathrm{SP} \Leftrightarrow \mathrm{MONO}$

$$
\begin{array}{ccccc}
\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}, P_{3}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}, \ldots, P_{n}\right) \\
P=P^{(0)} & & & P^{(1)} & P^{(2)} \\
\ldots & \rightarrow & \left(P_{1}^{\prime}, \ldots P_{k^{\prime}}^{\prime} P_{k+1}, \ldots P_{n}\right) & \rightarrow & \left(P_{1}^{\prime} \ldots P_{n}^{\prime}\right) \\
P^{(k)} & & P^{(n)}=P^{\prime}
\end{array}
$$

Claim: $f\left(P^{(k)}\right)=a, \forall k=1, \ldots, n$.

- Suppose not, i.e., $\exists P^{(k-1)}, P^{(k)}$, s.t. $\left.f\left(P^{(k-1}\right)\right)=a, f\left(P^{(k)}\right)=b \neq a$
- There can be one of the three cases:
(1) a $P_{k} b$ and $a P_{k}^{\prime} b \rightarrow$ voter k misreports $P_{k}^{\prime} \rightarrow P_{k}$
(2) $b P_{k} a$ and $b P_{k}^{\prime} a \rightarrow$ voter k misreports $P_{k} \rightarrow P_{k}^{\prime}$
(3) $b P_{k}$ a and $a P_{k}^{\prime} b \rightarrow$ voter k misreports in both
- Contradiction to f being SP

Proof of $\mathrm{SP} \Leftrightarrow \mathrm{MONO}$ (contd.)

- For $(\mathrm{SP} \Longleftarrow \mathrm{MONO})$, we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$

Proof of SP \Leftrightarrow MONO (contd.)

- For (SP $\Longleftarrow \mathrm{MONO}$), we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$
- Suppose not, i.e., f is \neg SP but MONO

Proof of SP \Leftrightarrow MONO (contd.)

- For (SP $\Longleftarrow \mathrm{MONO}$), we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$
- Suppose not, i.e., f is \neg SP but MONO
- \neg SP implies that $\exists i, P_{i}, P_{i}^{\prime}, P_{-i}$, s.t. $\underbrace{f\left(P_{i}^{\prime}, P_{-i}\right)}_{b \text { (say) }} P_{i} \underbrace{f\left(P_{i,}, P_{-i}\right)}_{a \text { (say) }}=b P_{i} a$

Proof of SP \Leftrightarrow MONO (contd.)

- For (SP $\Longleftarrow \mathrm{MONO}$), we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$
- Suppose not, i.e., f is \neg SP but MONO
- \neg SP implies that $\exists i, P_{i}, P_{i}^{\prime}, P_{-i}$, s.t. $\underbrace{f\left(P_{i}^{\prime}, P_{-i}\right)}_{b \text { (say) }} P_{i} \underbrace{f\left(P_{i,}, P_{-i}\right)}_{a \text { (say) }}=b P_{i} a$
- Construct $P^{\prime \prime}$ s.t. $P_{-i}^{\prime \prime}=P_{-i}, P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a$

Proof of SP \Leftrightarrow MONO (contd.)

- For (SP $\Longleftarrow \mathrm{MONO}$), we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$
- Suppose not, i.e., f is \neg SP but MONO
- \neg SP implies that $\exists i, P_{i}, P_{i}^{\prime}, P_{-i}$, s.t. $\underbrace{f\left(P_{i}^{\prime}, P_{-i}\right)}_{b \text { (say) }} P_{i} \underbrace{f\left(P_{i,}, P_{-i}\right)}_{a \text { (say) }}=b P_{i} a$
- Construct $P^{\prime \prime}$ s.t. $P_{-i}^{\prime \prime}=P_{-i}, P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a$
- Consider two transitions:

Proof of SP \Leftrightarrow MONO (contd.)

- For (SP $\Longleftarrow \mathrm{MONO}$), we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$
- Suppose not, i.e., f is \neg SP but MONO
- \neg SP implies that $\exists i, P_{i}, P_{i}^{\prime}, P_{-i}$, s.t. $\underbrace{f\left(P_{i}^{\prime}, P_{-i}\right)}_{b \text { (say) }} P_{i} \underbrace{f\left(P_{i,}, P_{-i}\right)}_{a \text { (say) }}=b P_{i} a$
- Construct $P^{\prime \prime}$ s.t. $P_{-i}^{\prime \prime}=P_{-i}, P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a$
- Consider two transitions:
(1) $\left(P_{i}, P_{-i}\right) \rightarrow\left(P_{i}^{\prime \prime}, P_{-i}\right)$

$$
D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \xrightarrow{\text { MONO }} f\left(P_{i}^{\prime \prime}, P_{-i}\right)=a
$$

Proof of SP \Leftrightarrow MONO (contd.)

- For (SP $\Longleftarrow \mathrm{MONO}$), we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$
- Suppose not, i.e., f is \neg SP but MONO
- \neg SP implies that $\exists i, P_{i}, P_{i}^{\prime}, P_{-i}$, s.t. $\underbrace{f\left(P_{i}^{\prime}, P_{-i}\right)}_{b \text { (say) }} P_{i} \underbrace{f\left(P_{i,}, P_{-i}\right)}_{a \text { (say) }}=b P_{i} a$
- Construct $P^{\prime \prime}$ s.t. $P_{-i}^{\prime \prime}=P_{-i}, P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a$
- Consider two transitions:
(1) $\left(P_{i}, P_{-i}\right) \rightarrow\left(P_{i}^{\prime \prime}, P_{-i}\right)$

$$
D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \xrightarrow{\text { MONO }} f\left(P_{i}^{\prime \prime}, P_{-i}\right)=a
$$

(2) $\left(P_{i}^{\prime}, P_{-i}\right) \rightarrow\left(P_{i}^{\prime \prime}, P_{-i}\right)$

$$
D\left(b, P_{i}^{\prime}\right) \subseteq D\left(b, P_{i}^{\prime \prime}\right) \xrightarrow{\text { MONO }} f\left(P_{i}^{\prime \prime}, P_{-i}\right)=b \text { (contradiction) }
$$

Proof of SP \Leftrightarrow MONO (contd.)

- For (SP $\Longleftarrow \mathrm{MONO}$), we will prove $\neg \mathrm{SP} \Longrightarrow \neg \mathrm{MONO}$
- Suppose not, i.e., f is \neg SP but MONO
- \neg SP implies that $\exists i, P_{i}, P_{i}^{\prime}, P_{-i}$, s.t. $\underbrace{f\left(P_{i}^{\prime}, P_{-i}\right)}_{b \text { (say) }} P_{i} \underbrace{f\left(P_{i,}, P_{-i}\right)}_{a \text { (say) }}=b P_{i} a$
- Construct $P^{\prime \prime}$ s.t. $P_{-i}^{\prime \prime}=P_{-i}, P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a$
- Consider two transitions:
(1) $\left(P_{i}, P_{-i}\right) \rightarrow\left(P_{i}^{\prime \prime}, P_{-i}\right)$

$$
D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \xrightarrow{\text { MONO }} f\left(P_{i}^{\prime \prime}, P_{-i}\right)=a
$$

(c) $\left(P_{i}^{\prime}, P_{-i}\right) \rightarrow\left(P_{i}^{\prime \prime}, P_{-i}\right)$

$$
D\left(b, P_{i}^{\prime}\right) \subseteq D\left(b, P_{i}^{\prime \prime}\right) \xrightarrow{\text { MONO }} f\left(P_{i}^{\prime \prime}, P_{-i}\right)=b \text { (contradiction) }
$$

- This concludes the proof

Equivalence of PE, UN, ONTO under SP

Lemma
If an SCF f is MONO and ONTO, then f is PE.

Equivalence of PE, UN, ONTO under SP

Lemma

If an SCF f is MONO and ONTO, then f is PE.

Figure: Relation between SCFs

Proof

- Suppose not, i.e. f is MONO and ONTO but not PE then $\exists a, b, P$ s.t., $b P_{i} a \forall i \in N$ but $f(P)=a$

Proof

- Suppose not, i.e. f is MONO and ONTO but not PE then $\exists a, b, P$ s.t., $b P_{i} a \forall i \in N$ but $f(P)=a$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a, \forall i \in N$

Proof

- Suppose not, i.e. f is MONO and ONTO but not PE then $\exists a, b, P$ s.t., $b P_{i} a \forall i \in N$ but $f(P)=a$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a, \forall i \in N$
- Also $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \forall i \in N \xrightarrow{\text { MONO }} f\left(P^{\prime \prime}\right)=a$ (contradiction)

Proof

- Suppose not, i.e. f is MONO and ONTO but not PE then $\exists a, b, P$ s.t., $b P_{i} a \forall i \in N$ but $f(P)=a$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a, \forall i \in N$
- Also $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \forall i \in N \stackrel{\text { MONO }}{\longrightarrow} f\left(P^{\prime \prime}\right)=a$ (contradiction)
- Hence proved

Proof

- Suppose not, i.e. f is MONO and ONTO but not PE then $\exists a, b, P$ s.t., $b P_{i} a \forall i \in N$ but $f(P)=a$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a, \forall i \in N$
- Also $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \forall i \in N \stackrel{\text { MONO }}{\longrightarrow} f\left(P^{\prime \prime}\right)=a$ (contradiction)
- Hence proved

Proof

- Suppose not, i.e. f is MONO and ONTO but not PE then $\exists a, b, P$ s.t., $b P_{i} a \forall i \in N$ but $f(P)=a$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a, \forall i \in N$
- Also $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \forall i \in N \xrightarrow{\text { MONO }} f\left(P^{\prime \prime}\right)=a$ (contradiction)
- Hence proved

Corollary: f is $\mathrm{SP}+\mathrm{PE} \Longleftrightarrow f$ is $\mathrm{SP}+\mathrm{UN} \Longleftrightarrow f$ is $\mathrm{SP}+\mathrm{ONTO}$

Proof

- Suppose not, i.e. f is MONO and ONTO but not PE then $\exists a, b, P$ s.t., $b P_{i} a \forall i \in N$ but $f(P)=a$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=b, P_{i}^{\prime \prime}(2)=a, \forall i \in N$
- Also $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime \prime}\right) \forall i \in N \xrightarrow{\text { MONO }} f\left(P^{\prime \prime}\right)=a$ (contradiction)
- Hence proved

Corollary: f is $\mathrm{SP}+\mathrm{PE} \Longleftrightarrow f$ is $\mathrm{SP}+\mathrm{UN} \Longleftrightarrow f$ is $\mathrm{SP}+\mathrm{ONTO}$

Theorem (Gibbard 1973, Satterthwaite 1975)
Suppose $|A| \geqslant 3, f$ is ONTO and SP iff f is dictatorial.

The statements with f is PE (or UN) and SP are equivalent.

Contents

- The Social Choice Setup

- The Gibbard-Satterthwaite Theorem
- Proof of Gibbard-Satterthwaite Theorem
- Domain Restriction
- Median Voting Rule
- Median Voter Theorem: Part 1
- Median Voter Theorem: Part 2

Points to note

($|A|=$ 2: GS theorem does not hold. Plurality with a fixed tie breaking rule is SP, ONTO, and non-dictatorial

Points to note

(1) $|A|=2$: GS theorem does not hold. Plurality with a fixed tie breaking rule is SP, ONTO, and non-dictatorial
(2) The domain is \mathcal{P} : all permutations of the alternatives are feasible. Intuitively, every votes has many options to misreport. If the domain was limited, then GS may not hold.

Points to note

- $|A|=2$: GS theorem does not hold. Plurality with a fixed tie breaking rule is SP, ONTO, and non-dictatorial
(2) The domain is \mathcal{P} : all permutations of the alternatives are feasible. Intuitively, every votes has many options to misreport. If the domain was limited, then GS may not hold.
- Indifference in preferences: in general, GS theorem does not hold. In the proof, we use some specific constructions. If they are possible, then GS theorem holds.

Points to note

- $|A|=2$: GS theorem does not hold. Plurality with a fixed tie breaking rule is SP, ONTO, and non-dictatorial
(2) The domain is \mathcal{P} : all permutations of the alternatives are feasible. Intuitively, every votes has many options to misreport. If the domain was limited, then GS may not hold.
- Indifference in preferences: in general, GS theorem does not hold. In the proof, we use some specific constructions. If they are possible, then GS theorem holds.
- Cardinalization: GS theorem will hold as long as all possible ordinal ranks are feasible in the cardinal preferences.

Proof of GS Theorem

- For the proof, we will follow a direct approach (Sen 2001)

Proof of GS Theorem

- For the proof, we will follow a direct approach (Sen 2001)
- First prove for $n=2$ and then apply induction on the number of agents

Proof of GS Theorem

- For the proof, we will follow a direct approach (Sen 2001)
- First prove for $n=2$ and then apply induction on the number of agents

Proof of GS Theorem

- For the proof, we will follow a direct approach (Sen 2001)
- First prove for $n=2$ and then apply induction on the number of agents

Lemma

Suppose $|A| \geqslant 3, N=\{1,2\}$, and f is ONTO and SP, then for every preference profile P, $f(P) \in\left\{P_{1}(1), P_{2}(1)\right\}$

Proof of GS Theorem

- For the proof, we will follow a direct approach (Sen 2001)
- First prove for $n=2$ and then apply induction on the number of agents

Lemma

Suppose $|A| \geqslant 3, N=\{1,2\}$, and f is ONTO and SP, then for every preference profile P, $f(P) \in\left\{P_{1}(1), P_{2}(1)\right\}$

Proof:

- If $P_{1}(1)=P_{2}(1)$, then UN implies $f(P)=P_{1}(1)(\mathrm{ONTO} \Longleftrightarrow \mathrm{UN}$ under SP)

Proof of GS Theorem

- For the proof, we will follow a direct approach (Sen 2001)
- First prove for $n=2$ and then apply induction on the number of agents

Lemma

Suppose $|A| \geqslant 3, N=\{1,2\}$, and f is ONTO and SP, then for every preference profile P, $f(P) \in\left\{P_{1}(1), P_{2}(1)\right\}$

Proof:

- If $P_{1}(1)=P_{2}(1)$, then UN implies $f(P)=P_{1}(1)($ ONTO \Longleftrightarrow UN under SP)
- Say $P_{1}(1)=a \neq b=P_{2}(1)$. For contradiction assume $f(P)=c \neq a, b$ (need at least 3 alternatives)

Proof of GS Theorem (contd.)

$$
\begin{array}{ll|ll|ll|ll}
P_{1} & P_{2} & P_{1} & P_{2}^{\prime} & P_{1}^{\prime} & P_{2}^{\prime} & P_{1}^{\prime} & P_{2} \\
\hline \hline a & b & a & b & a & b & a & b \\
\cdot & \cdot & \cdot & a & b & a & b & \cdot \\
\cdot & \cdot
\end{array} \quad f\left(P_{1}, P_{2}\right)=c(\neq a, b)
$$

- Now $f\left(P_{1}, P_{2}^{\prime}\right) \in\{a, b\}$ [because all alternatives except b are Pareto dominated by a]

Proof of GS Theorem (contd.)

P_{1}	P_{2}	P_{1}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}
a	\cdot	a	b	a	b	a	b
\cdot	\cdot	\cdot	a	b	a	b	\cdot
\cdot	$\quad f\left(P_{1}, P_{2}\right)=c(\neq a, b)$						

- Now $f\left(P_{1}, P_{2}^{\prime}\right) \in\{a, b\}$ [because all alternatives except b are Pareto dominated by a]
- But if $f\left(P_{1}, P_{2}^{\prime}\right)=b$, then player 2 manipulates from P_{2} to P_{2}^{\prime}, hence $f\left(P_{1} P_{2}^{\prime}\right)=a$

Proof of GS Theorem (contd.)

P_{1}	P_{2}	P_{1}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}
a	b	a	b	a	b	a	b
\cdot	\cdot	\cdot	a	b	a	b	\cdot
\cdot	$\quad f\left(P_{1}, P_{2}\right)=c(\neq a, b)$						

- Now $f\left(P_{1}, P_{2}^{\prime}\right) \in\{a, b\}$ [because all alternatives except b are Pareto dominated by a]
- But if $f\left(P_{1}, P_{2}^{\prime}\right)=b$, then player 2 manipulates from P_{2} to P_{2}^{\prime}, hence $f\left(P_{1} P_{2}^{\prime}\right)=a$
- By a similar argument, $f\left(P_{1}^{\prime}, P_{2}\right)=b$

Proof of GS Theorem (contd.)

P_{1}	P_{2}	P_{1}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}
a	b	a	b	a	b	a	b
\cdot	\cdot	\cdot	a	b	a	b	\cdot
\cdot	$\quad f\left(P_{1}, P_{2}\right)=c(\neq a, b)$						

- Now $f\left(P_{1}, P_{2}^{\prime}\right) \in\{a, b\}$ [because all alternatives except b are Pareto dominated by a]
- But if $f\left(P_{1}, P_{2}^{\prime}\right)=b$, then player 2 manipulates from P_{2} to P_{2}^{\prime}, hence $f\left(P_{1} P_{2}^{\prime}\right)=a$
- By a similar argument, $f\left(P_{1}^{\prime}, P_{2}\right)=b$
- Now apply MONO

Proof of GS Theorem (contd.)

P_{1}	P_{2}	P_{1}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}
a	b	a	b	a	b	a	b
\cdot	\cdot	\cdot	a	b	a	b	\cdot
\cdot	$\quad f\left(P_{1}, P_{2}\right)=c(\neq a, b)$						

- Now $f\left(P_{1}, P_{2}^{\prime}\right) \in\{a, b\}$ [because all alternatives except b are Pareto dominated by a]
- But if $f\left(P_{1}, P_{2}^{\prime}\right)=b$, then player 2 manipulates from P_{2} to P_{2}^{\prime}, hence $f\left(P_{1} P_{2}^{\prime}\right)=a$
- By a similar argument, $f\left(P_{1}^{\prime}, P_{2}\right)=b$
- Now apply MONO
- $P_{1}^{\prime}, P_{2} \rightarrow P_{1}^{\prime}, P_{2}^{\prime}$ outcome should be b

Proof of GS Theorem (contd.)

P_{1}	P_{2}	P_{1}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}^{\prime}	P_{1}^{\prime}	P_{2}
a	\cdot	a	b	a	b	a	b
\cdot	\cdot	\cdot	a	b	a	b	\cdot
\cdot	$\quad f\left(P_{1}, P_{2}\right)=c(\neq a, b)$						

- Now $f\left(P_{1}, P_{2}^{\prime}\right) \in\{a, b\}$ [because all alternatives except b are Pareto dominated by a]
- But if $f\left(P_{1}, P_{2}^{\prime}\right)=b$, then player 2 manipulates from P_{2} to P_{2}^{\prime}, hence $f\left(P_{1} P_{2}^{\prime}\right)=a$
- By a similar argument, $f\left(P_{1}^{\prime}, P_{2}\right)=b$
- Now apply MONO
- $P_{1}^{\prime}, P_{2} \rightarrow P_{1}^{\prime}, P_{2}^{\prime}$ outcome should be b
$-P_{1}, P_{2}^{\prime} \rightarrow P_{1}^{\prime}, P_{2}^{\prime} \quad$ outcome should be a (contradiction)

Proof of GS Theorem (contd.)

Lemma (Two player version of GS theorem)

Suppose $|A| \geqslant 3, N=\{1,2\}$, and f is ONTO and SP

- Let $P: P_{1}(1)=a \neq b=P_{2}(1), P^{\prime}: P^{\prime}(1)=c, P_{2}^{\prime}(1)=d$
- If $f(P)=a$, then $f\left(P^{\prime}\right)=c$
- If $f(P)=b$, then $f\left(P^{\prime}\right)=d$

Proof of GS Theorem (contd.)

Lemma (Two player version of GS theorem)

Suppose $|A| \geqslant 3, N=\{1,2\}$, and f is ONTO and SP

- Let $P: P_{1}(1)=a \neq b=P_{2}(1), P^{\prime}: P^{\prime}(1)=c, P_{2}^{\prime}(1)=d$
- If $f(P)=a$, then $f\left(P^{\prime}\right)=c$
- If $f(P)=b$, then $f\left(P^{\prime}\right)=d$

Proof: If $c=d$, unanimity proved the lemma. Hence consider $c \neq d$.

cases \downarrow	c	d
1	a	b
2	$\neq a, b$	b
3	$\neq a, b$	$\neq b$
4	a	$\neq a, b$
5	b	$\neq a, b$
6	b	a

- Enough to consider the case: if $f(P)=a \Longrightarrow f\left(P^{\prime}\right)=c$
- The other case is symmetric
- These cases are exhaustive

Proof of GS Theorem (contd.)

Case 1: $c=a, d=b$,

$$
\begin{array}{ll|ll|ll}
P_{1} & P_{2} & P_{1}^{\prime} & P_{2}^{\prime} & \hat{P}_{1} & \hat{P}_{2} \\
\hline \hline a & b & a & b & a & b \\
\cdot & \cdot & \cdot & \cdot & b & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$

- We know (by previous lemma) $f\left(P^{\prime}\right) \in\{a, b\}$

$$
\underset{a}{P_{1} P_{2}} \xrightarrow{\text { MONO }} \underset{a}{\hat{P}_{1}} \hat{P}_{2}
$$

Proof of GS Theorem (contd.)

Case 1: $c=a, d=b$,

$$
\begin{array}{ll|ll|ll}
P_{1} & P_{2} & P_{1}^{\prime} & P_{2}^{\prime} & \hat{P}_{1} & \hat{P}_{2} \\
\hline \hline a & b & a & b & a & b \\
\cdot & \cdot & \cdot & \cdot & b & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$

- We know (by previous lemma) $f\left(P^{\prime}\right) \in\{a, b\}$
- Say for contradiction $f\left(P^{\prime}\right)=b$
$P_{1} P_{2} \xrightarrow{\text { MONO }} \hat{P}_{1} \hat{P}_{2}$
a
a

$$
\underset{b}{P_{1}^{\prime}} P_{2}^{\prime} \xrightarrow{\text { MONO }} \underset{b}{\hat{P}_{1} \hat{P}_{2}}
$$

Proof of GS Theorem (contd.)

Case 2: $c \neq a, b, d=b$,

$$
\begin{array}{ll|ll|ll}
P_{1} & P_{2} & P_{1}^{\prime} & P_{2}^{\prime} & \hat{P}_{1} & P_{2} \\
\hline \hline a & b & c & b & c & b \\
\cdot & \cdot & \cdot & \cdot & a & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$

- We know (by previous lemma) $f\left(P^{\prime}\right) \in\{c, b\}$

$$
P_{b}^{\prime} P_{b}^{\prime} \xrightarrow{\text { MONO }} \quad \underset{b}{\hat{P}_{1} P_{2}}
$$

agent 1 misreports $\hat{P}_{1} \rightarrow P_{1}$ as $a \hat{P}_{1} b$ (apply case 1)

Proof of GS Theorem (contd.)

Case 2: $c \neq a, b, d=b$,

$$
\begin{array}{ll|ll|ll}
P_{1} & P_{2} & P_{1}^{\prime} & P_{2}^{\prime} & \hat{P}_{1} & P_{2} \\
\hline \hline a & b & c & b & c & b \\
\cdot & \cdot & \cdot & \cdot & a & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$

- We know (by previous lemma) $f\left(P^{\prime}\right) \in\{c, b\}$
- Say for contradiction $f\left(P^{\prime}\right)=b$

$$
P_{b}^{\prime} P_{2}^{\prime} \xrightarrow{M O N O} \quad \underset{b}{\hat{P}_{1} P_{2}}
$$

agent 1 misreports $\hat{P}_{1} \rightarrow P_{1}$ as $a \hat{P}_{1} b$ (apply case 1)

Proof of GS Theorem (contd.)

Case 3: $c \neq a, b$, and $d \neq b$,

P_{1}	P_{2}	P_{1}^{\prime}	P_{2}^{\prime}	\hat{P}_{1}	\hat{P}_{2}
a	b	c	d	c	b
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot

- Say $f\left(P^{\prime}\right)=d$

$$
\begin{array}{ll}
P^{\prime} \rightarrow \hat{P} & f(\hat{P})=b \text { (case 2) } \\
P \rightarrow \hat{P} & f(\hat{P})=d \text { (case 2) }
\end{array}
$$

Proof of GS Theorem (contd.)

Case 4: $c=a$, and $d \neq b, a$

$$
\begin{array}{ll|ll|ll}
P_{1} & P_{2} & P_{1}^{\prime} & P_{2}^{\prime} & \hat{P}_{1} & \hat{P}_{2} \\
\hline \hline a & b & c=a & d & a & b \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$

- Say $f\left(P^{\prime}\right)=d$

$$
\begin{array}{ll}
P^{\prime} \rightarrow \hat{P} & f(\hat{P})=b(\text { case } 2) \\
P \rightarrow \hat{P} & f(\hat{P})=a(\text { case } 1)
\end{array}
$$

Proof of GS Theorem (contd.)

Case 5: $c=b$, and $d \neq b, a$

$$
\begin{array}{ll|ll|ll}
P_{1} & P_{2} & P_{1}^{\prime} & P_{2}^{\prime} & \hat{P}_{1} & \hat{P}_{2} \\
\hline \hline a & b & c=b & d & c & d \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$

- Say $f\left(P^{\prime}\right)=d$

$$
\begin{array}{ll}
P^{\prime} \rightarrow \hat{P} & f(\hat{P})=d(\text { case } 4) \\
P \rightarrow \hat{P} & f(\hat{P})=a(\text { case } 4)
\end{array}
$$

Proof of GS Theorem (contd.)

Case 6: $c=b$, and $d=a$

P_{1}	P_{2}	P_{1}^{\prime}	P_{2}^{\prime}	\hat{P}_{1}	P_{2}^{\prime}	\tilde{P}_{1}	P_{2}^{\prime}
a	b	$c=b$	$d=a$	b	a	x	a
\cdot	\cdot	\cdot	\cdot	x	\cdot	\cdot	\cdot
\cdot							

$$
\begin{aligned}
f\left(P^{\prime}\right) & =a \\
x & \neq a, b
\end{aligned}
$$

$$
\begin{aligned}
& P^{\prime} \rightarrow\left(\hat{P}_{1} P_{2}^{\prime}\right), \\
& P^{\prime} \rightarrow\left(\tilde{P}_{1} P_{2}^{\prime}\right),
\end{aligned}
$$

$$
\left.f\left(\hat{P}_{1} P_{2}^{\prime}\right)=a \text { (case } 1\right)
$$

$$
f\left(\tilde{P}_{1} P_{2}^{\prime}\right)=x(\text { case } 3)
$$

- Player 1 manipulates from $\hat{P}_{1} P_{1}^{\prime} \rightarrow \tilde{P}_{1} P_{2}^{\prime}$, since $x \hat{P}_{1} a$
- This completes the proof of $n=2$ agent case
- $n \geqslant 3$ agent case: induction on the number of agents. See Sen (2001): "A direct proof of GS theorem", Economics Letters

Contents

```
* The Social Choice Setup
- The Gibbard-Satterthwaite Theorem
- Proof of Gibbard-Satterthwaite Theorem
- Domain Restriction
- Median Voting Rule
- Median Voter Theorem: Part 1
- Median Voter Theorem: Part 2
```


GS theorem holds for unrestricted preferences

$$
f: \mathcal{P}^{n} \rightarrow A
$$

- \mathcal{P} contains all strict preferences

GS theorem holds for unrestricted preferences

$$
f: \mathcal{P}^{n} \rightarrow A
$$

- \mathcal{P} contains all strict preferences
- One reason for a restrictive result like GS theorem is that the domain of the SCF is large

GS theorem holds for unrestricted preferences

$$
f: \mathcal{P}^{n} \rightarrow A
$$

- \mathcal{P} contains all strict preferences
- One reason for a restrictive result like GS theorem is that the domain of the SCF is large
- A potential manipulator has many options to manipulate

GS theorem holds for unrestricted preferences

$$
f: \mathcal{P}^{n} \rightarrow A
$$

- \mathcal{P} contains all strict preferences
- One reason for a restrictive result like GS theorem is that the domain of the SCF is large
- A potential manipulator has many options to manipulate
- Strategyproofness (an alternative definition):

$$
f\left(P_{i}, P_{-i}\right) P_{i} f\left(P_{i}^{\prime}, P_{-i}\right) \text { OR } f\left(P_{i}, P_{-i}\right)=f\left(P_{i}^{\prime}, P_{-i}\right), \forall P_{i}, P_{i}^{\prime} \in \mathcal{P}, \forall i \in N, \forall P_{-i} \in \mathcal{P}^{n-1}
$$

GS theorem holds for unrestricted preferences

$$
f: \mathcal{P}^{n} \rightarrow A
$$

- \mathcal{P} contains all strict preferences
- One reason for a restrictive result like GS theorem is that the domain of the SCF is large
- A potential manipulator has many options to manipulate
- Strategyproofness (an alternative definition):

$$
f\left(P_{i}, P_{-i}\right) P_{i} f\left(P_{i}^{\prime}, P_{-i}\right) \text { OR } f\left(P_{i}, P_{-i}\right)=f\left(P_{i}^{\prime}, P_{-i}\right), \forall P_{i}, P_{i}^{\prime} \in \mathcal{P}, \forall i \in N, \forall P_{-i} \in \mathcal{P}^{n-1}
$$

- If we reduce the set of feasible preferences from \mathcal{P} to $\mathcal{S} \subset \mathcal{P}$

GS theorem holds for unrestricted preferences

$$
f: \mathcal{P}^{n} \rightarrow A
$$

- \mathcal{P} contains all strict preferences
- One reason for a restrictive result like GS theorem is that the domain of the SCF is large
- A potential manipulator has many options to manipulate
- Strategyproofness (an alternative definition):

$$
f\left(P_{i}, P_{-i}\right) P_{i} f\left(P_{i}^{\prime}, P_{-i}\right) \text { OR } f\left(P_{i}, P_{-i}\right)=f\left(P_{i}^{\prime}, P_{-i}\right), \forall P_{i}, P_{i}^{\prime} \in \mathcal{P}, \forall i \in N, \forall P_{-i} \in \mathcal{P}^{n-1}
$$

- If we reduce the set of feasible preferences from \mathcal{P} to $\mathcal{S} \subset \mathcal{P}$
- the $\operatorname{SCF} f$ strategyproof on \mathcal{P} continues to be strategyproof over \mathcal{S}

GS theorem holds for unrestricted preferences

$$
f: \mathcal{P}^{n} \rightarrow A
$$

- \mathcal{P} contains all strict preferences
- One reason for a restrictive result like GS theorem is that the domain of the SCF is large
- A potential manipulator has many options to manipulate
- Strategyproofness (an alternative definition):

$$
f\left(P_{i}, P_{-i}\right) P_{i} f\left(P_{i}^{\prime}, P_{-i}\right) \text { OR } f\left(P_{i}, P_{-i}\right)=f\left(P_{i}^{\prime}, P_{-i}\right), \forall P_{i}, P_{i}^{\prime} \in \mathcal{P}, \forall i \in N, \forall P_{-i} \in \mathcal{P}^{n-1}
$$

- If we reduce the set of feasible preferences from \mathcal{P} to $\mathcal{S} \subset \mathcal{P}$
- the $\operatorname{SCF} f$ strategyproof on \mathcal{P} continues to be strategyproof over \mathcal{S}
- but there can potentially be more f^{\prime} 's that can be strategyproof on the restricted domain

Domain restrictions

- Single peaked preferences
(3) Divisible goods allocation
- Quasi-linear preferences

Each of these domains have interesting non-dictatorial SCFs that are strategyproof

Single peaked preferences

- Temperature of a room

Single peaked preferences

- Temperature of a room
- For every agent, most comfortable temperature t_{i}^{*}

Single peaked preferences

- Temperature of a room
- For every agent, most comfortable temperature t_{i}^{*}
- Anything above or below are monotonically less preferred

Single peaked preferences

- Temperature of a room
- For every agent, most comfortable temperature t_{i}^{*}
- Anything above or below are monotonically less preferred

Single peaked preferences

- Temperature of a room
- For every agent, most comfortable temperature t_{i}^{*}
- Anything above or below are monotonically less preferred

Figure: Single peaked temperature preference

Single peaked preferences

- One common order over the alternatives

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order
- Other examples:

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order
- Other examples:
(1) Facility location: School/Hospital/Post office

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order
- Other examples:
(1) Facility location: School/Hospital/Post office
(2) Political ideology: Left, Center, Right

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order
- Other examples:
(1) Facility location: School/Hospital/Post office
(2) Political ideology: Left, Center, Right
- The common ordering of the alternatives is denoted via $<$ [as in real numbers]

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order
- Other examples:
(1) Facility location: School/Hospital/Post office
(2) Political ideology: Left, Center, Right
- The common ordering of the alternatives is denoted via $<$ [as in real numbers]
- Any relation over the alternatives that is transitive and antisymmetric. In this course, we will assume:

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order
- Other examples:
(1) Facility location: School/Hospital/Post office
(2) Political ideology: Left, Center, Right
- The common ordering of the alternatives is denoted via $<$ [as in real numbers]
- Any relation over the alternatives that is transitive and antisymmetric. In this course, we will assume:
(1) alternatives live on a real line

Single peaked preferences

- One common order over the alternatives
- Agent preferences are single peaked w.r.t. that common order
- Other examples:
(1) Facility location: School/Hospital/Post office
(2) Political ideology: Left, Center, Right
- The common ordering of the alternatives is denoted via $<$ [as in real numbers]
- Any relation over the alternatives that is transitive and antisymmetric. In this course, we will assume:
(alternatives live on a real line
(2) consider only one-dimensional single-peakedness

Single peaked preferences

How is it a domain restriction?

Consider $a<b<c$, all possible orderings:

a	b	b	c	a	c
b	a	c	b	c	a
c	c	a	a	b	b

Definition (Single peaked preferences)

A preference ordering P_{i} (linear over A) of agent i is single-peaked w.r.t. the common order $<$ of the alternatives if
(1) $\forall b, c \in A$ with $b<c \leqslant P_{i}(1), c P_{i} b$
(2) $\forall b, c \in A$ with $P_{i}(1) \leqslant b<c, b P_{i} c$

Single peaked preferences

- Let \mathcal{S} be the set of single peaked preferences. The SCF: $f: \mathcal{S}^{n} \rightarrow A$

Single peaked preferences

- Let \mathcal{S} be the set of single peaked preferences. The SCF: $f: \mathcal{S}^{n} \rightarrow A$

Question

How does it circumvent GS theorem?

Single peaked preferences

- Let \mathcal{S} be the set of single peaked preferences. The SCF: $f: \mathcal{S}^{n} \rightarrow A$

Question

How does it circumvent GS theorem?

Answer

Each player's preference has a peak. Suppose, f picks the leftmost peak. For the agent having the leftmost peak, no reason to misreport. For any other agent, the only way she can change the outcome is by reporting her peak to be left of the leftmost - but that is strictly worse than the current outcome.

Repeat this argument for any fixed $k^{\text {th }}$ peak from left. Even the rightmost peak choosing SCF is also strategyproof, so is the median $\left(k=\left[\frac{n}{2}\right]\right)$

Contents

```
- The Social Choice Setup
- The Gibbard-Satterthwaite Theorem
- Proof of Gibbard-Satterthwaite Theorem
Domain Restriction
- Median Voting Rule
- Median Voter Theorem: Part 1
- Median Voter Theorem: Part 2
```


Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median $(B$, peaks $(P))$ for all preference profiles $P \in \mathcal{S}$

Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median $(B$, peaks $(P))$ for all preference profiles $P \in \mathcal{S}$

- Here, the median is w.r.t. the common order $<$

Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median(B, peaks (P)) for all preference profiles $P \in \mathcal{S}$

- Here, the median is w.r.t. the common order $<$
- The points in B are called the peaks of phantom voters

Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median(B, peaks (P)) for all preference profiles $P \in \mathcal{S}$

- Here, the median is w.r.t. the common order $<$
- The points in B are called the peaks of phantom voters
- Note: B is fixed for f and does not change with P

Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median(B, peaks (P)) for all preference profiles $P \in \mathcal{S}$

- Here, the median is w.r.t. the common order $<$
- The points in B are called the peaks of phantom voters
- Note: B is fixed for f and does not change with P
- Why phantom voters?

Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median(B, peaks (P)) for all preference profiles $P \in \mathcal{S}$

- Here, the median is w.r.t. the common order $<$
- The points in B are called the peaks of phantom voters
- Note: B is fixed for f and does not change with P
- Why phantom voters?
- $f^{\text {leftmost }} \equiv\left(B_{\text {left }}\right.$, peaks $\left.(P)\right) ; B_{\text {left }}=\left\{y_{L}, \ldots, y_{L}\right\}$, i.e., if all phantom peaks are on the left, it corresponds to leftmost peak SCF

Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median(B, peaks (P)) for all preference profiles $P \in \mathcal{S}$

- Here, the median is w.r.t. the common order $<$
- The points in B are called the peaks of phantom voters
- Note: B is fixed for f and does not change with P
- Why phantom voters?
- $f^{\text {leftmost }} \equiv\left(B_{\text {left }}\right.$, peaks $\left.(P)\right) ; B_{\text {left }}=\left\{y_{L}, \ldots, y_{L}\right\}$, i.e., if all phantom peaks are on the left, it corresponds to leftmost peak SCF
- Similarly, frightmost (\cdot) can be found in a similar way

Median voter SCF

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is a median voter SCF if there exists $B=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ s.t. $f(P)=$ median(B, peaks (P)) for all preference profiles $P \in \mathcal{S}$

- Here, the median is w.r.t. the common order $<$
- The points in B are called the peaks of phantom voters
- Note: B is fixed for f and does not change with P
- Why phantom voters?
- $f^{\text {leftmost }} \equiv\left(B_{\text {left }}\right.$, peaks $\left.(P)\right) ; B_{\text {left }}=\left\{y_{L}, \ldots, y_{L}\right\}$, i.e., if all phantom peaks are on the left, it corresponds to leftmost peak SCF
- Similarly, frightmost (\cdot) can be found in a similar way
- Phantom voters give a complete spectrum of the median voter SCFs

Median voter SCF

Theorem (Moulin 1980)

Every median voter SCF is strategyproof.

Median voter SCF

Theorem (Moulin 1980)

Every median voter SCF is strategyproof.

Proof Sketch:

- if $f(P)=a$ and a player has a peak $P_{i}(1)$ to the left of a, it has no benefit by misreporting the peak to be on the right of a, which is the only way of changing the outcome of f
- similar for $P_{i}(1)$ on the right of a

Median voter SCF

Theorem (Moulin 1980)

Every median voter SCF is strategyproof.

Proof Sketch:

- if $f(P)=a$ and a player has a peak $P_{i}(1)$ to the left of a, it has no benefit by misreporting the peak to be on the right of a, which is the only way of changing the outcome of f
- similar for $P_{i}(1)$ on the right of a

Note: mean does not have this property

Median voter SCF

Claim

Let $p_{\text {min }}$ and $p_{\text {max }}$ be the leftmost and rightmost peaks of P according to $<$, then f is PE iff $f(P) \in\left[p_{\min }, p_{\max }\right]$

Median voter SCF

Claim

Let $p_{\text {min }}$ and $p_{\text {max }}$ be the leftmost and rightmost peaks of P according to $<$, then f is PE iff $f(P) \in\left[p_{\min }, p_{\max }\right]$

Proof: (\Longrightarrow) Suppose $f(P) \notin\left[p_{\text {min }}, p_{\text {max }}\right]$, WLOG, $f(P)<p_{\text {min }}$.

Median voter SCF

Claim

Let $p_{\text {min }}$ and $p_{\text {max }}$ be the leftmost and rightmost peaks of P according to $<$, then f is PE iff $f(P) \in\left[p_{\min }, p_{\max }\right]$

Proof: (\Longrightarrow) Suppose $f(P) \notin\left[p_{\text {min }}, p_{\text {max }}\right]$, WLOG, $f(P)<p_{\text {min }}$. Then every agent prefers $p_{\text {min }}$ over $f(P)$, i.e., $f(P)$ is Pareto dominated. Contradiction

Median voter SCF

Claim

Let $p_{\text {min }}$ and $p_{\text {max }}$ be the leftmost and rightmost peaks of P according to $<$, then f is PE iff $f(P) \in\left[p_{\min }, p_{\max }\right]$

Proof: (\Longrightarrow) Suppose $f(P) \notin\left[p_{\text {min }}, p_{\text {max }}\right]$, WLOG, $f(P)<p_{\text {min }}$. Then every agent prefers $p_{\text {min }}$ over $f(P)$, i.e., $f(P)$ is Pareto dominated. Contradiction
(\Longleftarrow) If $f(P) \in\left[p_{\text {min }}, p_{\text {max }}\right]$,

Median voter SCF

Claim

Let $p_{\text {min }}$ and $p_{\text {max }}$ be the leftmost and rightmost peaks of P according to $<$, then f is PE iff $f(P) \in\left[p_{\min }, p_{\max }\right]$

Proof: (\Longrightarrow) Suppose $f(P) \notin\left[p_{\min }, p_{\text {max }}\right]$, WLOG, $f(P)<p_{\text {min }}$. Then every agent prefers $p_{\text {min }}$ over $f(P)$, i.e., $f(P)$ is Pareto dominated. Contradiction
(\Longleftarrow) If $f(P) \in\left[p_{\min }, p_{\max }\right]$, then the condition $b P_{i} f(P), \forall i \in N$ never occurs - there does not exist an alternative b that Pareto dominates $f(P)$.

Median voter SCF

Claim

Let $p_{\text {min }}$ and $p_{\text {max }}$ be the leftmost and rightmost peaks of P according to $<$, then f is PE iff $f(P) \in\left[p_{\min }, p_{\max }\right]$

Proof: (\Longrightarrow) Suppose $f(P) \notin\left[p_{\text {min }}, p_{\text {max }}\right]$, WLOG, $f(P)<p_{\text {min }}$. Then every agent prefers $p_{\text {min }}$ over $f(P)$, i.e., $f(P)$ is Pareto dominated. Contradiction
(\Longleftarrow) If $f(P) \in\left[p_{\min }, p_{\max }\right]$, then the condition $b P_{i} f(P), \forall i \in N$ never occurs - there does not exist an alternative b that Pareto dominates $f(P)$. Hence $f(P)$ is PE.

Median voter SCF and Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P^{\prime} that satisfy $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right)$, for all $i \in N$, it holds that $f\left(P^{\prime}\right)=a$.

Median voter SCF and Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P^{\prime} that satisfy $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right)$, for all $i \in N$, it holds that $f\left(P^{\prime}\right)=a$.

- The relative position of c has improved from P to $P^{\prime} ;$ if c was the outcome at P, it continues to become the outcome at P^{\prime}

Median voter SCF and Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P^{\prime} that satisfy $f(P)=a$ and $D\left(a, P_{i}\right) \subseteq D\left(a, P_{i}^{\prime}\right)$, for all $i \in N$, it holds that $f\left(P^{\prime}\right)=a$.

- The relative position of c has improved from P to $P^{\prime} ;$ if c was the outcome at P, it continues to become the outcome at P^{\prime}

Median voter SCF and Monotonicity

The results are similar to unrestricted preferences in this restricted domain of single peaked preferences, but the proofs differ since we cannot construct preferences as freely as before.

Median voter SCF and Monotonicity

The results are similar to unrestricted preferences in this restricted domain of single peaked preferences, but the proofs differ since we cannot construct preferences as freely as before.

Theorem

f is $S P \Longrightarrow f$ is MONO

Median voter SCF and Monotonicity

The results are similar to unrestricted preferences in this restricted domain of single peaked preferences, but the proofs differ since we cannot construct preferences as freely as before.

Theorem

f is $S P \Longrightarrow f$ is MONO

This proof is similar to the previous one. To prove the reverse implication one needs to argue why the construction is valid in the single peaked domain. (or provide counterexample)

Equivalence of ONTO, UN, and PE

Theorem

Let $f: \mathcal{S}^{n} \rightarrow A$ is a SP SCF. Then, f is ONTO $\Longleftrightarrow f$ is UN $\Longleftrightarrow f$ is PE

Equivalence of ONTO, UN, and PE

Theorem

Let $f: \mathcal{S}^{n} \rightarrow A$ is a SP SCF. Then, f is ONTO $\Longleftrightarrow f$ is UN $\Longleftrightarrow f$ is PE

Proof:

- We know $P E \Longrightarrow U N \Longrightarrow O N T O$

Figure: Arrangement of a, b, c

Equivalence of ONTO, UN, and PE

Theorem

Let $f: \mathcal{S}^{n} \rightarrow A$ is a SP SCF. Then, f is ONTO $\Longleftrightarrow f$ is $U N \Longleftrightarrow f$ is $P E$

Proof:

- We know $P E \Longrightarrow U N \Longrightarrow O N T O$
- Need to show: ONTO implies PE when f is SP

Figure: Arrangement of a, b, c

Equivalence of ONTO, UN, and PE

Theorem

Let $f: \mathcal{S}^{n} \rightarrow A$ is a SP SCF. Then, f is ONTO $\Longleftrightarrow f$ is UN $\Longleftrightarrow f$ is PE

Proof:

- We know $P E \Longrightarrow U N \Longrightarrow O N T O$
- Need to show: ONTO implies PE when f is SP
- Suppose, for contradiction, f is SP and ONTO, but not PE

Figure: Arrangement of a, b, c

Equivalence of ONTO, UN, and PE

Theorem

Let $f: \mathcal{S}^{n} \rightarrow A$ is a SP SCF. Then, f is ONTO $\Longleftrightarrow f$ is UN $\Longleftrightarrow f$ is PE

Proof:

- We know $P E \Longrightarrow U N \Longrightarrow O N T O$
- Need to show: ONTO implies PE when f is SP
- Suppose, for contradiction, f is SP and ONTO, but not PE
- Then $\exists a, b \in A$ s.t. $a P_{i} b \forall \in N$ but $f(P)=b$

Figure: Arrangement of a, b, c

Equivalence of ONTO, UN, and PE

Theorem

Let $f: \mathcal{S}^{n} \rightarrow A$ is a SP SCF. Then, f is ONTO $\Longleftrightarrow f$ is $U N \Longleftrightarrow f$ is $P E$

Proof:

- We know $P E \Longrightarrow U N \Longrightarrow O N T O$
- Need to show: ONTO implies PE when f is SP
- Suppose, for contradiction, f is SP and ONTO, but not PE
- Then $\exists a, b \in A$ s.t. $a P_{i} b \forall \in N$ but $f(P)=b$

- Since preferences are single peaked, \exists another alternative $c \in A$, which is a neighbour of b s.t. $c P_{i} b \forall i \in N$ (c can be a itself)

Figure: Arrangement of a, b, c

Proof (contd.)

- $\mathrm{ONTO} \Longrightarrow \exists P^{\prime}$ s.t. $f\left(P^{\prime}\right)=c$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=c, P^{\prime \prime}(2)=b, \forall i \in N$
- $P \rightarrow P^{\prime \prime}$, MONO $\Longrightarrow f\left(P^{\prime \prime}\right)=b$
- $P^{\prime} \rightarrow P^{\prime \prime}$. MONO $\Longrightarrow f\left(P^{\prime \prime}\right)=c$
- Contradiction

Proof (contd.)

- $\mathrm{ONTO} \Longrightarrow \exists P^{\prime}$ s.t. $f\left(P^{\prime}\right)=c$
- Construct $P^{\prime \prime}$ s.t. $P_{i}^{\prime \prime}(1)=c, P^{\prime \prime}(2)=b, \forall i \in N$
- $P \rightarrow P^{\prime \prime}$, MONO $\Longrightarrow f\left(P^{\prime \prime}\right)=b$
- $P^{\prime} \rightarrow P^{\prime \prime}$. MONO $\Longrightarrow f\left(P^{\prime \prime}\right)=c$
- Contradiction

We are interested in non-dictatorial SCFs, hence a necessary property is anonymity

Anonymity

- Anonymity: outcome insensitive to agent identities

Anonymity

- Anonymity: outcome insensitive to agent identities
- Permutation of agents $\sigma: N \rightarrow N$

Anonymity

- Anonymity: outcome insensitive to agent identities
- Permutation of agents $\sigma: N \rightarrow N$
- We apply a permuation σ to a profile P to construct another profile as: the preference of i goes to agent $\sigma(i)$ in the new profile

Anonymity

- Anonymity: outcome insensitive to agent identities
- Permutation of agents $\sigma: N \rightarrow N$
- We apply a permuation σ to a profile P to construct another profile as: the preference of i goes to agent $\sigma(i)$ in the new profile
- Denote this new profile as P^{σ}

Anonymity

- Anonymity: outcome insensitive to agent identities
- Permutation of agents $\sigma: N \rightarrow N$
- We apply a permuation σ to a profile P to construct another profile as: the preference of i goes to agent $\sigma(i)$ in the new profile
- Denote this new profile as P^{σ}
- Example: $N=\{1,2,3\}, \sigma: \sigma(1)=2, \sigma(2)=3, \sigma(3)=1$

P_{1}	P_{2}	P_{3}	P_{1}^{σ}	P_{2}^{σ}	P_{3}^{σ}
a	b	b	b	a	b
b	a	c	c	b	a
c	c	a	a	c	c

Anonymity

- Anonymity: outcome insensitive to agent identities
- Permutation of agents $\sigma: N \rightarrow N$
- We apply a permuation σ to a profile P to construct another profile as: the preference of i goes to agent $\sigma(i)$ in the new profile
- Denote this new profile as P^{σ}
- Example: $N=\{1,2,3\}, \sigma: \sigma(1)=2, \sigma(2)=3, \sigma(3)=1$

P_{1}	P_{2}	P_{3}	P_{1}^{σ}	P_{2}^{σ}	P_{3}^{σ}
a	b	b	b	a	b
b	a	c	c	b	a
c	c	a	a	c	c

Anonymity

- Anonymity: outcome insensitive to agent identities
- Permutation of agents $\sigma: N \rightarrow N$
- We apply a permuation σ to a profile P to construct another profile as: the preference of i goes to agent $\sigma(i)$ in the new profile
- Denote this new profile as P^{σ}
- Example: $N=\{1,2,3\}, \sigma: \sigma(1)=2, \sigma(2)=3, \sigma(3)=1$

P_{1}	P_{2}	P_{3}	P_{1}^{σ}	P_{2}^{σ}	P_{3}^{σ}
a	b	b	b	a	b
b	a	c	c	b	a
c	c	a	a	c	c

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is anonymous (ANON) if for every profile P and for every permutation of the agents $\sigma, f\left(P^{\sigma}\right)=f(P)$

Anonymity

- Anonymity: outcome insensitive to agent identities
- Permutation of agents $\sigma: N \rightarrow N$
- We apply a permuation σ to a profile P to construct another profile as: the preference of i goes to agent $\sigma(i)$ in the new profile
- Denote this new profile as P^{σ}
- Example: $N=\{1,2,3\}, \sigma: \sigma(1)=2, \sigma(2)=3, \sigma(3)=1$

P_{1}	P_{2}	P_{3}	P_{1}^{σ}	P_{2}^{σ}	P_{3}^{σ}
a	b	b	b	a	b
b	a	c	c	b	a
c	c	a	a	c	c

Definition

An SCF $f: \mathcal{S}^{n} \rightarrow A$ is anonymous (ANON) if for every profile P and for every permutation of the agents $\sigma, f\left(P^{\sigma}\right)=f(P)$

Contents

```
* The Social Choice Setup
- The Gibbard-Satterthwaite Theorem
- Proof of Gibbard-Satterthwaite Theorem
Domain Restriction
- Median Voting Rule
- Median Voter Theorem: Part 1

\section*{Median Voter Theorem}

Seen the equivalence of \(\mathrm{SP}, \mathrm{ONTO}, \mathrm{ANON}\) and median voting rule in single peaked domain

\section*{Theorem}

Let \(f: \mathcal{S}^{n} \rightarrow A\) is a SP SCF. Then, \(f\) is ONTO \(\Longleftrightarrow f\) is UN \(\Longleftrightarrow f\) is PE

\section*{Median Voter Theorem}

Seen the equivalence of \(\mathrm{SP}, \mathrm{ONTO}, \mathrm{ANON}\) and median voting rule in single peaked domain

\section*{Theorem}

Let \(f: \mathcal{S}^{n} \rightarrow A\) is a SP SCF. Then, \(f\) is ONTO \(\Longleftrightarrow f\) is UN \(\Longleftrightarrow f\) is PE

\section*{Theorem (Moulin 1980)}

A strategyproof SCF \(f\) is ONTO and anonymous iff it is a median voter SCF.

\section*{Median Voter Theorem}

Seen the equivalence of \(\mathrm{SP}, \mathrm{ONTO}, \mathrm{ANON}\) and median voting rule in single peaked domain

\section*{Theorem}

Let \(f: \mathcal{S}^{n} \rightarrow A\) is a SP SCF. Then, \(f\) is ONTO \(\Longleftrightarrow f\) is UN \(\Longleftrightarrow f\) is PE

\section*{Theorem (Moulin 1980)}

A strategyproof SCF \(f\) is ONTO and anonymous iff it is a median voter SCF.

Proof: \((\Longleftarrow)\)
- Median voter SCF is SP (previous theorem)

\section*{Median Voter Theorem}

Seen the equivalence of \(\mathrm{SP}, \mathrm{ONTO}, \mathrm{ANON}\) and median voting rule in single peaked domain

\section*{Theorem}

Let \(f: \mathcal{S}^{n} \rightarrow A\) is a SP SCF. Then, \(f\) is ONTO \(\Longleftrightarrow f\) is UN \(\Longleftrightarrow f\) is PE

\section*{Theorem (Moulin 1980)}

A strategyproof SCF \(f\) is ONTO and anonymous iff it is a median voter SCF.
Proof: \((\Longleftarrow)\)
- Median voter SCF is SP (previous theorem)
- It is anonymous: if we permute the agents with peaks unchanged, the outcome does not change

\section*{Median Voter Theorem}

Seen the equivalence of \(\mathrm{SP}, \mathrm{ONTO}, \mathrm{ANON}\) and median voting rule in single peaked domain

\section*{Theorem}

Let \(f: \mathcal{S}^{n} \rightarrow A\) is a SP SCF. Then, \(f\) is ONTO \(\Longleftrightarrow f\) is UN \(\Longleftrightarrow f\) is PE

\section*{Theorem (Moulin 1980)}

A strategyproof SCF \(f\) is ONTO and anonymous iff it is a median voter SCF.

\section*{Proof: \((\Longleftarrow)\)}
- Median voter SCF is SP (previous theorem)
- It is anonymous: if we permute the agents with peaks unchanged, the outcome does not change
- It is ONTO, pick any arbitrary alternative \(a\), put peaks of all players at \(a\) : the outcome will be \(a\) irrespective of the positions of the phantom peaks (since there are \((n-1)\) phantom peaks and \(n\) agent peaks)

\section*{Proof (contd.)}
\(\Longrightarrow\) Given, \(f: \mathcal{S}^{n} \rightarrow A\) is SP, ANON, and ONTO.

\section*{Proof (contd.)}
\(\Longrightarrow\) Given, \(f: \mathcal{S}^{n} \rightarrow A\) is SP, ANON, and ONTO.
- define, \(P_{i}^{0}\) : agent \(i^{\prime}\) s preference with peak at leftmost w.r.t. \(<\)
- \(P_{i}^{1}\) : agent \(i^{\prime} s\) preference with peak at rightmost w.r.t. \(<\)

\section*{Proof (contd.)}
\(\Longrightarrow\) Given, \(f: \mathcal{S}^{n} \rightarrow A\) is SP, ANON, and ONTO.
- define, \(P_{i}^{0}\) : agent \(i^{\prime}\) s preference with peak at leftmost w.r.t. \(<\)
- \(P_{i}^{1}\) : agent \(i^{\prime} s\) preference with peak at rightmost w.r.t. \(<\)


Figure: Two preferences

\section*{Proof (contd.)}

The proof is constructive, we will construct the median voting rule (which needs the phantom peaks to be defined) s.t. the outcome of an arbitrary \(f\) matches the outcome of the median SCF

\section*{Proof (contd.)}

The proof is constructive, we will construct the median voting rule (which needs the phantom peaks to be defined) s.t. the outcome of an arbitrary \(f\) matches the outcome of the median SCF
- First construct phantom peaks
\[
y_{j}=f(\underbrace{P_{1}^{0}, P_{2}^{0}, \ldots, P_{n-j}^{0}}_{n-j \text { peaks leftmost }}, \underbrace{P_{n-j+1}^{1}, \ldots, P_{n}^{1}}_{j \text { peaks rightmost }}), j=1, \ldots, n-1
\]

Which agents have which peaks does not matter because of anonymity

\section*{Proof (contd.)}

The proof is constructive, we will construct the median voting rule (which needs the phantom peaks to be defined) s.t. the outcome of an arbitrary \(f\) matches the outcome of the median SCF
- First construct phantom peaks
\[
y_{j}=f(\underbrace{P_{1}^{0}, P_{2}^{0}, \ldots, P_{n-j}^{0}}_{n-j \text { peaks leftmost }}, \underbrace{P_{n-j+1}^{1}, \ldots, P_{n}^{1}}_{j \text { peaks rightmost }}), j=1, \ldots, n-1
\]

Which agents have which peaks does not matter because of anonymity
- Claim: \(y_{j} \leqslant y_{j+1}, j=1, \ldots, n-2\), i.e., peaks are non-decreasing

\section*{Proof (contd.)}

The proof is constructive, we will construct the median voting rule (which needs the phantom peaks to be defined) s.t. the outcome of an arbitrary \(f\) matches the outcome of the median SCF
- First construct phantom peaks
\[
y_{j}=f(\underbrace{P_{1}^{0}, P_{2}^{0}, \ldots, P_{n-j}^{0}}_{n-j \text { peaks leftmost }}, \underbrace{P_{n-j+1}^{1}, \ldots, P_{n}^{1}}_{j \text { peaks rightmost }}), j=1, \ldots, n-1
\]

Which agents have which peaks does not matter because of anonymity
- Claim: \(y_{j} \leqslant y_{j+1}, j=1, \ldots, n-2\), i.e., peaks are non-decreasing
- Proof: \(y_{j+1}=f\left(P_{1}^{0}, P_{2}^{0}, \ldots, P_{n-j-1}^{0}, P_{n-j}^{1}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)\). Due to SP, \(y_{j} P_{n-j}^{0} y_{j+1}\), or they are same, but \(P_{n-j}^{0}\) is single peaked with peak at 0 , hence \(y_{j} \leqslant y_{j+1}\)

\section*{Proof (contd.)}
- Consider an arbitrary profile, \(P=\left(P_{1}, P_{2}, \ldots, P_{n}\right), P_{i}(1)=p_{i}\) (the peaks)

\section*{Proof (contd.)}
- Consider an arbitrary profile, \(P=\left(P_{1}, P_{2}, \ldots, P_{n}\right), P_{i}(1)=p_{i}\) (the peaks)
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)

\section*{Proof (contd.)}
- Consider an arbitrary profile, \(P=\left(P_{1}, P_{2}, \ldots, P_{n}\right), P_{i}(1)=p_{i}\) (the peaks)
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON

\section*{Proof (contd.)}
- Consider an arbitrary profile, \(P=\left(P_{1}, P_{2}, \ldots, P_{n}\right), P_{i}(1)=p_{i}\) (the peaks)
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak, say \(a=y_{j}\) for some \(j \in\{1,2, \ldots, n-1\}\)

\section*{Proof (contd.)}
- Consider an arbitrary profile, \(P=\left(P_{1}, P_{2}, \ldots, P_{n}\right), P_{i}(1)=p_{i}\) (the peaks)
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak, say \(a=y_{j}\) for some \(j \in\{1,2, \ldots, n-1\}\)
- This is a median of \(2 n-1\) points of which \((j-1)\) phantom peaks lie on the left (see the claim before), the rest \((n-j)\) points are agent peaks
\[
\quad(n-1-j) \text { phantom } \begin{aligned}
& j \text { agent }
\end{aligned}
\]

\section*{Proof (contd.)}
- Consider an arbitrary profile, \(P=\left(P_{1}, P_{2}, \ldots, P_{n}\right), P_{i}(1)=p_{i}\) (the peaks)
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak, say \(a=y_{j}\) for some \(j \in\{1,2, \ldots, n-1\}\)
- This is a median of \(2 n-1\) points of which \((j-1)\) phantom peaks lie on the left (see the claim before), the rest \((n-j)\) points are agent peaks
\begin{tabular}{|l|l|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
\((j-1)\) phantom \\
\((n-j)\) agent
\end{tabular}\(\quad y_{j} \quad(n-1-j)\) phantom } \\
\(j\) agent
\end{tabular}
- Hence, \(p_{1} \leqslant \cdots \leqslant p_{n-j} \leqslant y_{j}=a \leqslant p_{n-j+1} \leqslant \cdots \leqslant p_{n}\)

\section*{Proof (contd.)}
- Use a similar transformation as we used earlier
\[
\begin{aligned}
f\left(P_{1}^{0}, P_{2}^{0}, \ldots, P_{n-j}^{0}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right) & =y_{j}(\text { definition }) \\
f\left(P_{1}, P_{2}^{0}, \ldots, P_{n-j}^{0}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right) & =b \text { (say) } \\
\text { By SP, } y_{j} P_{1}^{0} b & \Longrightarrow y_{j} \leqslant b
\end{aligned}
\]

Again by SP, \(b P_{1} y_{j}\), but \(p_{1} \leqslant y_{j} \stackrel{\text { single peaked }}{ } b \leqslant y_{j}\)
Hence, \(b=y_{j}\)

\section*{Proof (contd.)}
- Use a similar transformation as we used earlier
\[
\begin{aligned}
& f\left(P_{1}^{0}, P_{2}^{0}, \ldots, P_{n-j}^{0}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)=y_{j} \text { (definition) } \\
& f\left(P_{1}, P_{2}^{0}, \ldots, P_{n-j}^{0}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)=b \text { (say) } \\
& \text { By SP, } y_{j} P_{1}^{0} b \Longrightarrow y_{j} \leqslant b \\
& \text { Again by SP, } b P_{1} y_{j}, \text { but } p_{1} \leqslant y_{j} \xlongequal{\text { single peaked }} b \leqslant y_{j} \\
& \text { Hence, } b=y_{j}
\end{aligned}
\]
- repeat this argument for the first \((n-j)\) agents to get
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)=y_{j}
\]

\section*{Proof (contd.)}
- We have
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)=y_{j}
\]

\section*{Proof (contd.)}
- We have
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)=y_{j}
\]
- Consider
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}\right)=b \text { (say) }
\]

\section*{Proof (contd.)}
- We have
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)=y_{j}
\]
- Consider
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}\right)=b \text { (say) }
\]
- Apply very similar argument
\[
\left.\begin{array}{l}
y_{j} P_{n}^{1} b \Longrightarrow b \leqslant y_{j} \\
b P_{n} y_{j} \text { and } y_{j} \leqslant p_{n} \Longrightarrow y_{j} \leqslant b
\end{array}\right\} b=y_{j}
\]

\section*{Proof (contd.)}
- We have
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}^{1}\right)=y_{j}
\]
- Consider
\[
f\left(P_{1}, P_{2}, \ldots, P_{n-j}, P_{n-j+1}^{1}, \ldots, P_{n}\right)=b \text { (say) }
\]
- Apply very similar argument
\[
\left.\begin{array}{l}
y_{j} P_{n}^{1} b \Longrightarrow b \leqslant y_{j} \\
b P_{n} y_{j} \text { and } y_{j} \leqslant p_{n} \Longrightarrow y_{j} \leqslant b
\end{array}\right\} b=y_{j}
\]
- Hence,
\[
f\left(P-1, \ldots, P_{n}\right)=y_{j}
\]

\section*{Contents}
```

- The Social Choice Setup
- The Gibbard-Satterthwaite Theorem
- Proof of Gibbard-Satterthwaite Theorem
Domain Restriction
- Median Voting Rule
- Median Voter Theorem: Part 1
- Median Voter Theorem: Part 2

```

\section*{Median Voter Theorem: Proof}
- The claim we are proving

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved
- Case 2: \(a\) is an agent peak

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved
- Case 2: \(a\) is an agent peak
- We will prove this for 2 players, the general case repeats this argument

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved
- Case 2: \(a\) is an agent peak
- We will prove this for 2 players, the general case repeats this argument
- Claim: \(\mathrm{N}=\{1,2\}\), let \(P\) and \(P^{\prime}\) be such that \(P_{i}(1)=P_{i}^{\prime}(1), \forall i \in N\). Then \(f(P)=f\left(P^{\prime}\right)\)

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved
- Case 2: \(a\) is an agent peak
- We will prove this for 2 players, the general case repeats this argument
- Claim: \(\mathrm{N}=\{1,2\}\), let \(P\) and \(P^{\prime}\) be such that \(P_{i}(1)=P_{i}^{\prime}(1), \forall i \in N\). Then \(f(P)=f\left(P^{\prime}\right)\)
- Proof: Let \(a=P_{1}(1)=P_{1}^{\prime}(1)\), and \(P_{2}(1)=P_{2}^{\prime}(1)=b . f(P)=x\) and \(f\left(P_{1}^{\prime}, P_{2}\right)=y\)

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved
- Case 2: \(a\) is an agent peak
- We will prove this for 2 players, the general case repeats this argument
- Claim: \(\mathrm{N}=\{1,2\}\), let \(P\) and \(P^{\prime}\) be such that \(P_{i}(1)=P_{i}^{\prime}(1), \forall i \in N\). Then \(f(P)=f\left(P^{\prime}\right)\)
- Proof: Let \(a=P_{1}(1)=P_{1}^{\prime}(1)\), and \(P_{2}(1)=P_{2}^{\prime}(1)=b . f(P)=x\) and \(f\left(P_{1}^{\prime}, P_{2}\right)=y\)
- Since \(f\) is SP, \(x P_{1} y\) and \(y P_{1}^{\prime} x\)

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved
- Case 2: \(a\) is an agent peak
- We will prove this for 2 players, the general case repeats this argument
- Claim: \(\mathrm{N}=\{1,2\}\), let \(P\) and \(P^{\prime}\) be such that \(P_{i}(1)=P_{i}^{\prime}(1), \forall i \in N\). Then \(f(P)=f\left(P^{\prime}\right)\)
- Proof: Let \(a=P_{1}(1)=P_{1}^{\prime}(1)\), and \(P_{2}(1)=P_{2}^{\prime}(1)=b . f(P)=x\) and \(f\left(P_{1}^{\prime}, P_{2}\right)=y\)
- Since \(f\) is SP, \(x P_{1} y\) and \(y P_{1}^{\prime} x\)
- Since peaks of \(P_{1}\) and \(P_{1}^{\prime}\) are the same, if \(x, y\) are on the same side of the peak, they must be the same, as the domain is single peaked

\section*{Median Voter Theorem: Proof}
- The claim we are proving
- Claim: Suppose \(f\) satisfies SP, ONTO, ANON, then \(f(P)=\) median \(\left(p_{1}, \ldots, p_{n}, y_{1}, \ldots, y_{n-1}\right)\)
- WLOG, can assume \(p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}\) due to ANON
- Case 1: \(a\) is a phantom peak: proved
- Case 2: \(a\) is an agent peak
- We will prove this for 2 players, the general case repeats this argument
- Claim: \(\mathrm{N}=\{1,2\}\), let \(P\) and \(P^{\prime}\) be such that \(P_{i}(1)=P_{i}^{\prime}(1), \forall i \in N\). Then \(f(P)=f\left(P^{\prime}\right)\)
- Proof: Let \(a=P_{1}(1)=P_{1}^{\prime}(1)\), and \(P_{2}(1)=P_{2}^{\prime}(1)=b . f(P)=x\) and \(f\left(P_{1}^{\prime}, P_{2}\right)=y\)
- Since \(f\) is SP, \(x P_{1} y\) and \(y P_{1}^{\prime} x\)
- Since peaks of \(P_{1}\) and \(P_{1}^{\prime}\) are the same, if \(x, y\) are on the same side of the peak, they must be the same, as the domain is single peaked
- The only other possibility is that \(x\) and \(y\) fall on different sides of the peak: we show that this is not possible.

\section*{Proof (contd.)}
- WLOG \(x<a<y\) and \(a<b\)
- \(f\) is \(\mathrm{SP}+\mathrm{ONTO} \Longleftrightarrow \mathrm{f}\) is \(\mathrm{SP}+\mathrm{PE}\)
- PE requires \(f(P) \in[a, b]\), but \(f(P)=x<a \rightarrow \leftarrow\)
- Repeat this argument for \(\left(P_{1}^{\prime}, P_{2}\right) \rightarrow\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \square\)

\section*{Proof (contd.)}
- WLOG \(x<a<y\) and \(a<b\)
- \(f\) is \(\mathrm{SP}+\mathrm{ONTO} \Longleftrightarrow \mathrm{f}\) is \(\mathrm{SP}+\mathrm{PE}\)
- PE requires \(f(P) \in[a, b]\), but \(f(P)=x<a \rightarrow \leftarrow\)
- Repeat this argument for \(\left(P_{1}^{\prime}, P_{2}\right) \rightarrow\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \square\)

Profile: \(\left(P_{1}, P_{2}\right)=P, P_{1}(1)=a, P_{2}(1)=b, y_{1}\) is the phantom peak, and by assumption, median \(\left(a, b, y_{1}\right)\) is an agent peak
- WLOG assume that the median is \(a\)
- Assume for contradiction \(f(P)=c \neq a\)
- By PE, \(c\) must be within \(a\) and \(b\)
- We have two cases to consider: \(b<a<y_{1}\) and \(y_{1}<a<b\)

\section*{Proof (contd.)}

Case 2.1: \(b<a<y_{1}\), by PE \(c<a\)
- Construct \(P_{1}^{\prime}\) s.t. \(P_{1}^{\prime}(1)=a=P_{1}(1)\) and \(y P_{1}^{\prime} c\) (possible since they are on different sides of \(a\) )
- By the earlier claim, \(f(P)=c \Longrightarrow f\left(P_{1}^{\prime}, P_{2}\right)=c\)
- Now consider the profile \(\left(P_{1}^{1}, P_{2}\right)\left(P_{1}^{1}\right.\) has its peak at the rightmost point)
- \(P_{2}(1)=b<y \leqslant P_{1}^{1}(1)\), hence the median of \(\left\{b, y_{1}, P_{1}^{1}(1)\right\}\) is \(y_{1}\) (which is a phantom peak, hence case 1 applies)
- We get \(f\left(P_{1}^{1}, P_{2}\right)=y_{1}\)
- But \(y P_{1}^{\prime} c\) (by construction) and \(f\left(P_{1}^{\prime}, P_{2}\right)=c\)
- Agent 1 manipulates \(P_{1}^{\prime} \rightarrow P_{1}^{1}\), contradiction to \(f\) being SP

\section*{Proof (contd.)}

Case 2.2: \(y_{1}<a<b\), by PE \(a<c\)
- Construct \(P_{1}^{\prime}\) s.t. \(P_{1}^{\prime}(1)=a=P_{1}(1)\) and \(y P_{1}^{\prime} c\)
- \(f\left(P_{1}^{\prime}, P_{2}\right)=c\) (by claim)
- Consider \(\left(P_{1}^{0}, P_{2}\right), P_{1}^{0}(1) \leqslant y_{1}<b \Longrightarrow f\left(P_{1}^{0}, P_{2}\right)=y_{1}\) but \(y_{1} P_{1}^{\prime} c\), hence manipulable by agent 1
- This completes the proof for two agents (case 2)
- For the generalization to \(n\) players, see Moulin (1980) "On strategyproofness and single-peakedness"


भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay```

