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Arrovian Social Welfare setup is too demanding

• It requires a social ordering from a preference profile
• Arrow’s result says that this is impossible subject to weak Pareto and independence of irrelevant

alternatives in a democratic way
• Ways out:

1 consider a social choice setup
2 put restrictions on agent preferences

• Social choice function (SCF)
f : Pn → A

A = {a1, a2, . . . , am} Finite set of alternatives
N = {1, 2, . . . , n} Finite set of players
P Set of all linear preference ordering
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Examples

• Most representative: voting

P
a a c d
b b b c
c c d b
d d a a

f→ A = {a, b, c, d}

• Various voting rules exist
• scoring rules: each position of each agent gets a score

(s1, s2, . . . , sm), si ⩾ si+1, i = 1, 2, . . . , m− 1, the final ordering is in the decreasing order of the
scores, e.g.,

— plurality: (1, 0, . . . , 0, 0)
— veto: (1, 1, . . . , 1, 0)
— Borda: named after French mathematician Jean-Charles de Borda (m− 1, m− 2, . . . , 1, 0)
— harmonic: (1, 1/2, 1/3, . . . , 1/m)
— k-approval: (1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, 0, . . . , 0)
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Examples (contd.)

• plurality with runoff: also called two round system (TRS), first round: regular plurality and
top two candidates survive, second round: another plurality only between the survived two
candidates – used in French presidential election

• maximin: maximizes the minimum lead against other candidates: score(a) = miny |{i : aPiy}|,
winner is of the highest score

P
a a c d
b b b c
c c d b
d d a a

score(a) = min{2(b), 2(c), 2(d)} = 2
score(b) = min{2(a), 2(c), 3(d)} = 2
score(c) = min{2(a), 2(b), 3(d)} = 2
score(d) = min{2(a), 1(b), 1(c)} = 1

• Copeland: based on Copeland score = number of wins in pairwise elections
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Condorcet consistency

Definition

A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists

• Condorcet winner is a candidate who defeats all other candidates in pairwise election
• Alas! it may not exist

P
a b c
b c a
c a b

the voting rule can choose anything

P
a b c
b a a
c c b

should choose a

• Which of the voting rules are Condorcet consistent? plurality, Copeland, maximin?

30% 30% 40%
a b c
b a a
c c b

no scoring rule is Condorcet consistent
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Desirable properties of SCF

• Recall, social choice function, f : Pn → A
• Pareto domination: an alternative a is Pareto dominated by b if ∀i ∈ N, bPia (also, a is called

Pareto dominated if some such b exists)

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if ∀P and a ∈ A, if a is Pareto dominated, then f (P) ̸= a.

Definition (Unanimity)

An SCF f is unanimous (UN) if ∀P satisfying P1(1) = P2(1) = . . . = Pn(1) = a [Pi(k) is the k-th
favorite alternative of i], it holds that f (P) = a.

Which implies which? if the top choice of all voters is the same, say a, all other alternatives are
Pareto dominated by a



8

Desirable properties of SCF (contd.)

Definition (Onto)

An SCF f is onto (ONTO) if and ∀a ∈ A, ∃P(a) ∈ Pn s.t. f (P(a)) = a.

UN⇒ ONTO

Manipulability: an SCF f is manipulable if ∃i ∈ N and a profile P such that,
f (P′i , P−i) Pi f (Pi, P−i), for some P′i . Examples:

• Plurality with fixed tie-breaking
a ≻ b ≻ c

4 4 1
a b c
b a b
c c a

⇒

4 4 1
a b b
b a c
c c a

• Copeland with fixed tie-breaking
a ≻ b ≻ c

1 1 1
a b c
b c a
c a b

⇒

1 1 1
a c c
b b a
c a b
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Strategyproofness and its implications

Definition (Strategyproof)

An SCF is strategyproof (SP) if it is not manipulable by any agent at any profile.

Implications:

• Define dominated set of an alternative a at a preference Pi as

D(a, Pi) := {b ∈ A : aPib}

• The set of alternatives below a in Pi

Pi =

b
a
c
d

⇒ D(a, Pi) = {c, d}
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Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P′ that satisfy f (P) = a and
D(a, Pi) ⊆ D(a, P′i), for all i ∈ N, it holds that f (P′) = a.

• The relative position of c has improved from P to P′; if c was the outcome at P, it continues to
become the outcome at P′

P
a a c d
b b b c
c c d b
d d a a

P′

c a c d
b c b c
a b d b
d d a a

Theorem

An SCF f is strategyproof iff it is monotone.
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Strategyproofness and Monotonicity

Theorem

An SCF f is strategyproof iff it is monotone.

Proof: (SP =⇒ MONO)

• Consider the “if” condition of MONO
• P and P′ with f (P) = a and D(a, Pi) ⊆ D(a, P′i) ∀i ∈ N
• Break the transition from P to P′ into n stages:

(P1, P2, P3, . . . , Pn) → (P′1, P2, P3, . . . Pn) → (P′1, P′2, P3, . . . , Pn)

P = P(0) P(1) P(2)

· · · → (P′1, . . . P′k, Pk+1, . . . Pn) → (P′1 · · ·P′n)
P(k) P(n) = P′
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Proof of SP⇔ MONO

(P1, P2, P3, . . . , Pn) → (P′1, P2, P3, . . . Pn) → (P′1, P′2, P3, . . . , Pn)

P = P(0) P(1) P(2)

· · · → (P′1, . . . P′k, Pk+1, . . . Pn) → (P′1 · · ·P′n)
P(k) P(n) = P′

Claim: f (P(k)) = a, ∀k = 1, . . . , n.

• Suppose not, i.e., ∃P(k−1), P(k), s.t. f (P(k−1)) = a, f (P(k)) = b ̸= a
• There can be one of the three cases:

1 a Pk b and a P′k b→ voter k misreports P′k → Pk
2 b Pk a and b P′k a→ voter k misreports Pk → P′k
3 b Pk a and a P′k b→ voter k misreports in both

• Contradiction to f being SP
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Proof of SP⇔ MONO (contd.)

• For (SP ⇐= MONO), we will prove ¬SP =⇒ ¬MONO
• Suppose not, i.e., f is ¬SP but MONO
• ¬SP implies that ∃i, Pi, P′i , P−i, s.t. f (P′i , P−i)︸ ︷︷ ︸

b (say)

Pi f (Pi, P−i)︸ ︷︷ ︸
a (say)

= b Pi a

• Construct P′′ s.t. P′′−i = P−i, P′′i (1) = b, P′′i (2) = a
• Consider two transitions:

1 (Pi, P−i)→ (P′′i , P−i)

D(a, Pi) ⊆ D(a, P′′i )
MONO
====⇒ f (P′′i , P−i) = a

2 (P′i , P−i)→ (P′′i , P−i)

D(b, P′i) ⊆ D(b, P′′i )
MONO
====⇒ f (P′′i , P−i) = b (contradiction)

• This concludes the proof



15

Equivalence of PE, UN, ONTO under SP

Lemma

If an SCF f is MONO and ONTO, then f is PE.

Figure: Relation between SCFs
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Proof

• Suppose not, i.e. f is MONO and ONTO but not PE then ∃ a, b, P s.t., b Pi a ∀i ∈ N but
f (P) = a

• Construct P′′ s.t. P′′i (1) = b, P′′i (2) = a, ∀i ∈ N

• Also D(a, Pi) ⊆ D(a, P′′i ) ∀i ∈ N MONO
====⇒ f (P′′) = a (contradiction)

• Hence proved

Corollary: f is SP+PE ⇐⇒ f is SP+UN ⇐⇒ f is SP+ONTO

Theorem (Gibbard 1973, Satterthwaite 1975)

Suppose |A| ⩾ 3, f is ONTO and SP iff f is dictatorial.

The statements with f is PE (or UN) and SP are equivalent.
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Points to note

1 |A| = 2: GS theorem does not hold. Plurality with a fixed tie breaking rule is SP, ONTO, and
non-dictatorial

2 The domain is P : all permutations of the alternatives are feasible. Intuitively, every votes has
many options to misreport. If the domain was limited, then GS may not hold.

3 Indifference in preferences: in general, GS theorem does not hold. In the proof, we use
some specific constructions. If they are possible, then GS theorem holds.

4 Cardinalization: GS theorem will hold as long as all possible ordinal ranks are feasible in
the cardinal preferences.
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Proof of GS Theorem

• For the proof, we will follow a direct approach (Sen 2001)
• First prove for n = 2 and then apply induction on the number of agents

Lemma

Suppose |A| ⩾ 3, N = {1, 2}, and f is ONTO and SP, then for every preference profile P,
f (P) ∈ {P1(1), P2(1)}

Proof:

• If P1(1) = P2(1), then UN implies f (P) = P1(1) (ONTO ⇐⇒ UN under SP)
• Say P1(1) = a ̸= b = P2(1). For contradiction assume f (P) = c ̸= a, b (need at least 3

alternatives)
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Proof of GS Theorem (contd.)

P1 P2 P1 P′2 P′1 P′2 P′1 P2

a b a b a b a b
. . . a b a b .
. . . . . . . .

f (P1, P2) = c( ̸= a, b)

• Now f (P1, P′2) ∈ {a, b} [because all alternatives except b are Pareto dominated by a]
• But if f (P1, P′2) = b, then player 2 manipulates from P2 to P′2, hence f (P1 P′2) = a
• By a similar argument, f (P′1, P2) = b
• Now apply MONO

— P′1, P2 → P′1, P′2 outcome should be b
— P1, P′2 → P′1, P′2 outcome should be a (contradiction)
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Proof of GS Theorem (contd.)

Lemma (Two player version of GS theorem)

Suppose |A| ⩾ 3, N = {1, 2}, and f is ONTO and SP
• Let P : P1(1) = a ̸= b = P2(1), P′ : P′(1) = c, P′2(1) = d
• If f (P) = a, then f (P′) = c
• If f (P) = b, then f (P′) = d

Proof: If c = d, unanimity proved the lemma. Hence consider c ̸= d.

cases ↓ c d
1 a b
2 ̸= a, b b
3 ̸= a, b ̸= b
4 a ̸= a, b
5 b ̸= a, b
6 b a

• Enough to consider the case: if
f (P) = a =⇒ f (P′) = c

• The other case is symmetric
• These cases are exhaustive
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Proof of GS Theorem (contd.)

Case 1: c = a, d = b,

P1 P2 P′1 P′2 P̂1 P̂2

a b a b a b
. . . . b a
. . . . . .

• We know (by previous lemma) f (P′) ∈ {a, b}
• Say for contradiction f (P′) = b

P1 P2
MONO−−−−→ P̂1 P̂2

a a
P′1 P′2

MONO−−−−→ P̂1 P̂2
b b
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Proof of GS Theorem (contd.)

Case 2: c ̸= a, b, d = b,

P1 P2 P′1 P′2 P̂1 P2

a b c b c b
. . . . a .
. . . . . .

• We know (by previous lemma) f (P′) ∈ {c, b}
• Say for contradiction f (P′) = b

P′1 P′2
MONO−−−−→ P̂1 P2

b b
(apply case 1)

agent 1 misreports P̂1 → P1 as a P̂1 b
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Proof of GS Theorem (contd.)

Case 3: c ̸= a, b, and d ̸= b,

P1 P2 P′1 P′2 P̂1 P̂2

a b c d c b
. . . . . .
. . . . . .

• Say f (P′) = d

P′ → P̂ f (P̂) = b (case 2)

P→ P̂ f (P̂) = d (case 2)
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Proof of GS Theorem (contd.)

Case 4: c = a, and d ̸= b, a

P1 P2 P′1 P′2 P̂1 P̂2

a b c = a d a b
. . . . . .
. . . . . .

• Say f (P′) = d

P′ → P̂ f (P̂) = b (case 2)

P→ P̂ f (P̂) = a (case 1)
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Proof of GS Theorem (contd.)

Case 5: c = b, and d ̸= b, a

P1 P2 P′1 P′2 P̂1 P̂2

a b c = b d c d
. . . . . .
. . . . . .

• Say f (P′) = d

P′ → P̂ f (P̂) = d (case 4)

P→ P̂ f (P̂) = a (case 4)
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Proof of GS Theorem (contd.)

Case 6: c = b, and d = a

P1 P2 P′1 P′2 P̂1 P′2 P̃1 P′2
a b c = b d = a b a x a
. . . . x . . .
. . . . . . . .

f (P′) = a
x ̸= a, b

P′ → (P̂1 P′2), f (P̂1 P′2) = a (case 1)

P′ → (P̃1 P′2), f (P̃1 P′2) = x (case 3)

• Player 1 manipulates from P̂1 P′1 → P̃1 P′2, since x P̂1 a
• This completes the proof of n = 2 agent case
• n ⩾ 3 agent case: induction on the number of agents. See Sen (2001): “A direct proof of GS

theorem”, Economics Letters
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GS theorem holds for unrestricted preferences

f : Pn → A

• P contains all strict preferences
• One reason for a restrictive result like GS theorem is that the domain of the SCF is large
• A potential manipulator has many options to manipulate
• Strategyproofness (an alternative definition):

f (Pi, P−i) Pi f (P′i , P−i) OR f (Pi, P−i) = f (P′i , P−i), ∀Pi, P′i ∈ P , ∀i ∈ N, ∀P−i ∈ Pn−1

• If we reduce the set of feasible preferences from P to S ⊂ P
— the SCF f strategyproof on P continues to be strategyproof over S
— but there can potentially be more f ’s that can be strategyproof on the restricted domain
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Domain restrictions

1 Single peaked preferences
2 Divisible goods allocation
3 Quasi-linear preferences

Each of these domains have interesting non-dictatorial SCFs that are strategyproof
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Single peaked preferences

• Temperature of a room
• For every agent, most comfortable temperature t∗i
• Anything above or below are monotonically less preferred

Figure: Single peaked temperature preference
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Single peaked preferences

• One common order over the alternatives
• Agent preferences are single peaked w.r.t. that common order
• Other examples:

1 Facility location: School/Hospital/Post office
2 Political ideology: Left, Center, Right

• The common ordering of the alternatives is denoted via < [as in real numbers]
• Any relation over the alternatives that is transitive and antisymmetric. In this course, we will

assume:
1 alternatives live on a real line
2 consider only one-dimensional single-peakedness
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Single peaked preferences

How is it a domain restriction?

Consider a < b < c, all possible orderings:

a b b c a c
b a c b c a
c c a a b b

Definition (Single peaked preferences)

A preference ordering Pi (linear over A) of agent i is single-peaked w.r.t. the common order < of
the alternatives if

1 ∀b, c ∈ A with b < c ⩽ Pi(1), cPib
2 ∀b, c ∈ A with Pi(1) ⩽ b < c, bPic
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Single peaked preferences

• Let S be the set of single peaked preferences. The SCF: f : Sn → A

Question

How does it circumvent GS theorem?

Answer

Each player’s preference has a peak. Suppose, f picks the leftmost peak. For the agent having the
leftmost peak, no reason to misreport. For any other agent, the only way she can change the
outcome is by reporting her peak to be left of the leftmost – but that is strictly worse than the
current outcome.

Repeat this argument for any fixed kth peak from left. Even the rightmost peak choosing SCF is
also strategyproof, so is the median (k =

[ n
2
]
)
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Median voter SCF

Definition

An SCF f : Sn → A is a median voter SCF if there exists B = {y1, y2, . . . , yn−1} s.t. f (P) =
median(B, peaks(P)) for all preference profiles P ∈ S

• Here, the median is w.r.t. the common order <
• The points in B are called the peaks of phantom voters
• Note: B is fixed for f and does not change with P
• Why phantom voters?

• f leftmost ≡ (Bleft, peaks(P)); Bleft = {yL, . . . , yL}, i.e., if all phantom peaks are on the left, it
corresponds to leftmost peak SCF

• Similarly, f rightmost(·) can be found in a similar way
• Phantom voters give a complete spectrum of the median voter SCFs
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Median voter SCF

Theorem (Moulin 1980)

Every median voter SCF is strategyproof.

Proof Sketch:

• if f (P) = a and a player has a peak Pi(1) to the left of a, it has no benefit by misreporting the
peak to be on the right of a, which is the only way of changing the outcome of f

• similar for Pi(1) on the right of a

Note: mean does not have this property
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Median voter SCF

Claim

Let pmin and pmax be the leftmost and rightmost peaks of P according to <, then f is PE iff
f (P) ∈ [pmin, pmax]

Proof: ( =⇒ ) Suppose f (P) /∈ [pmin, pmax], WLOG, f (P) < pmin. Then every agent prefers pmin
over f (P), i.e., f (P) is Pareto dominated. Contradiction

(⇐= ) If f (P) ∈ [pmin, pmax], then the condition bPif (P), ∀i ∈ N never occurs – there does not exist
an alternative b that Pareto dominates f (P). Hence f (P) is PE.
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Median voter SCF and Monotonicity

Definition (Monotonicity)

An SCF is monotone (MONO) if for every two profiles P and P′ that satisfy f (P) = a and
D(a, Pi) ⊆ D(a, P′i), for all i ∈ N, it holds that f (P′) = a.

• The relative position of c has improved from P to P′; if c was the outcome at P, it continues to
become the outcome at P′

P
a a c d
b b b c
c c d b
d d a a

P′

c a c d
b b b c
a c d b
d d a a
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Median voter SCF and Monotonicity

The results are similar to unrestricted preferences in this restricted domain of single peaked
preferences, but the proofs differ since we cannot construct preferences as freely as before.

Theorem

f is SP =⇒ f is MONO

This proof is similar to the previous one. To prove the reverse implication one needs to argue
why the construction is valid in the single peaked domain. (or provide counterexample)
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Equivalence of ONTO, UN, and PE

Theorem

Let f : Sn → A is a SP SCF. Then, f is ONTO ⇐⇒ f is UN ⇐⇒ f is PE

Proof:

• We know PE =⇒ UN =⇒ ONTO
• Need to show: ONTO implies PE when f is SP
• Suppose, for contradiction, f is SP and ONTO, but not PE
• Then ∃ a, b ∈ A s.t. a Pi b ∀ ∈ N but f (P) = b
• Since preferences are single peaked, ∃ another alternative

c ∈ A, which is a neighbour of b s.t. c Pi b ∀i ∈ N (c can be
a itself)

Figure: Arrangement of
a, b, c
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Proof (contd.)

• ONTO =⇒ ∃ P′ s.t. f (P′) = c
• Construct P′′ s.t. P′′i (1) = c, P′′(2) = b, ∀ i ∈ N
• P→ P′′, MONO =⇒ f (P′′) = b
• P′ → P′′. MONO =⇒ f (P′′) = c
• Contradiction

We are interested in non-dictatorial SCFs, hence a necessary property is anonymity
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Anonymity

• Anonymity: outcome insensitive to agent identities
• Permutation of agents σ : N → N
• We apply a permuation σ to a profile P to construct another profile as: the preference of i

goes to agent σ(i) in the new profile
• Denote this new profile as Pσ

• Example: N = {1, 2, 3}, σ : σ(1) = 2, σ(2) = 3, σ(3) = 1

P1 P2 P3 Pσ
1 Pσ

2 Pσ
3

a b b b a b
b a c c b a
c c a a c c

Definition

An SCF f : Sn → A is anonymous (ANON) if for every profile P and for every permutation of the
agents σ, f (Pσ) = f (P)

The social outcome should not alter due to agent renaming.

Dictatorship is not anonymous



44

Contents

▶ The Social Choice Setup

▶ The Gibbard-Satterthwaite Theorem

▶ Proof of Gibbard-Satterthwaite Theorem

▶ Domain Restriction

▶ Median Voting Rule

▶ Median Voter Theorem: Part 1

▶ Median Voter Theorem: Part 2



45

Median Voter Theorem

Seen the equivalence of SP, ONTO, ANON and median voting rule in single peaked domain

Theorem

Let f : Sn → A is a SP SCF. Then, f is ONTO ⇐⇒ f is UN ⇐⇒ f is PE

Theorem (Moulin 1980)

A strategyproof SCF f is ONTO and anonymous iff it is a median voter SCF.

Proof: (⇐= )

• Median voter SCF is SP (previous theorem)
• It is anonymous: if we permute the agents with peaks unchanged, the outcome does not

change
• It is ONTO, pick any arbitrary alternative a, put peaks of all players at a: the outcome will be

a irrespective of the positions of the phantom peaks (since there are (n− 1) phantom peaks
and n agent peaks)
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Proof (contd.)

=⇒ Given, f : Sn → A is SP, ANON, and ONTO.

• define, P0
i : agent i’s preference with peak at leftmost w.r.t. <

• P1
i : agent i′s preference with peak at rightmost w.r.t. <

Figure: Two preferences
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Proof (contd.)

The proof is constructive, we will construct the median voting rule (which needs the phantom
peaks to be defined) s.t. the outcome of an arbitrary f matches the outcome of the median SCF

• First construct phantom peaks

yj = f (P0
1, P0

2, . . . , P0
n−j︸ ︷︷ ︸

n− j peaks leftmost

, P1
n−j+1, . . . , P1

n︸ ︷︷ ︸
j peaks rightmost

), j = 1, . . . , n− 1

Which agents have which peaks does not matter because of anonymity
• Claim: yj ⩽ yj+1, j = 1, . . . , n− 2, i.e., peaks are non-decreasing

• Proof: yj+1 = f (P0
1, P0

2, . . . , P0
n−j−1, P1

n−j, P1
n−j+1, . . . , P1

n). Due to SP, yj P0
n−j yj+1, or they are

same, but P0
n−j is single peaked with peak at 0, hence yj ⩽ yj+1
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Proof (contd.)

• Consider an arbitrary profile, P = (P1, P2, . . . , Pn), Pi(1) = pi (the peaks)
• Claim: Suppose f satisfies SP, ONTO, ANON, then f (P) = median(p1, . . . , pn, y1, . . . , yn−1)

• WLOG, can assume p1 ⩽ p2 ⩽ · · · ⩽ pn due to ANON
• Case 1: a is a phantom peak, say a = yj for some j ∈ {1, 2, . . . , n− 1}
• This is a median of 2n− 1 points of which (j− 1) phantom peaks lie on the left (see the claim

before), the rest (n− j) points are agent peaks

←− spectrum of the peaks −→
(j− 1) phantom yj (n− 1− j) phantom
(n− j) agent j agent

• Hence, p1 ⩽ · · · ⩽ pn−j ⩽ yj = a ⩽ pn−j+1 ⩽ · · · ⩽ pn
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Proof (contd.)

• Use a similar transformation as we used earlier

f (P0
1, P0

2, . . . , P0
n−j, P1

n−j+1, . . . , P1
n) = yj (definition)

f (P1, P0
2, . . . , P0

n−j, P1
n−j+1, . . . , P1

n) = b (say)

By SP, yj P0
1 b =⇒ yj ⩽ b

Again by SP, b P1 yj, but p1 ⩽ yj
single peaked
=======⇒ b ⩽ yj

Hence, b = yj

• repeat this argument for the first (n− j) agents to get

f (P1, P2, . . . , Pn−j, P1
n−j+1, . . . , P1

n) = yj
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Proof (contd.)

• We have
f (P1, P2, . . . , Pn−j, P1

n−j+1, . . . , P1
n) = yj

• Consider
f (P1, P2, . . . , Pn−j, P1

n−j+1, . . . , Pn) = b (say)

• Apply very similar argument

yj P1
n b =⇒ b ⩽ yj

b Pn yj and yj ⩽ pn =⇒ yj ⩽ b

}
b = yj

• Hence,
f (P− 1, . . . , Pn) = yj
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Median Voter Theorem: Proof

• The claim we are proving
• Claim: Suppose f satisfies SP, ONTO, ANON, then f (P) = median(p1, . . . , pn, y1, . . . , yn−1)

• WLOG, can assume p1 ⩽ p2 ⩽ · · · ⩽ pn due to ANON
• Case 1: a is a phantom peak: proved
• Case 2: a is an agent peak
• We will prove this for 2 players, the general case repeats this argument
• Claim: N={1,2}, let P and P′ be such that Pi(1) = P′i(1), ∀ i ∈ N. Then f (P) = f (P′)
• Proof: Let a = P1(1) = P′1(1), and P2(1) = P′2(1) = b. f (P) = x and f (P′1, P2) = y
• Since f is SP, x P1 y and y P′1 x
• Since peaks of P1 and P′1 are the same, if x, y are on the same side of the peak, they must be

the same, as the domain is single peaked
• The only other possibility is that x and y fall on different sides of the peak: we show that this

is not possible.
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Proof (contd.)

• WLOG x < a < y and a < b
• f is SP+ONTO ⇐⇒ f is SP+PE
• PE requires f (P) ∈ [a, b], but f (P) = x < a→←
• Repeat this argument for (P′1, P2)→ (P′1, P′2) □

Profile: (P1, P2) = P, P1(1) = a, P2(1) = b, y1 is the phantom peak, and by assumption,
median(a, b, y1) is an agent peak

• WLOG assume that the median is a
• Assume for contradiction f (P) = c ̸= a
• By PE, c must be within a and b
• We have two cases to consider: b < a < y1 and y1 < a < b
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Proof (contd.)

Case 2.1: b < a < y1, by PE c < a

• Construct P′1 s.t. P′1(1) = a = P1(1) and y P′1 c (possible since they are on different sides of a)
• By the earlier claim, f (P) = c =⇒ f (P′1, P2) = c

• Now consider the profile (P1
1, P2) (P1

1 has its peak at the rightmost point)

• P2(1) = b < y ⩽ P1
1(1), hence the median of {b, y1, P1

1(1)} is y1 (which is a phantom peak,
hence case 1 applies)

• We get f (P1
1, P2) = y1

• But y P′1 c (by construction) and f (P′1, P2) = c

• Agent 1 manipulates P′1 → P1
1, contradiction to f being SP
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Proof (contd.)

Case 2.2: y1 < a < b, by PE a < c

• Construct P′1 s.t. P′1(1) = a = P1(1) and y P′1 c
• f (P′1, P2) = c (by claim)

• Consider (P0
1, P2), P0

1(1) ⩽ y1 < b =⇒ f (P0
1, P2) = y1 but y1 P′1 c, hence manipulable by

agent 1
• This completes the proof for two agents (case 2)
• For the generalization to n players, see Moulin (1980) “On strategyproofness and

single-peakedness”
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