ARy e T

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic
Mechanism Design

Week 9

Swaprava Nath

Slide preparation acknowledgments: Rounak Dalmia

Knowledge is the supreme goal

Contents

» Task Allocation Domain

Task Allocation Domain

e Unit amount of task to be shared among 1 agents

Task Allocation Domain

e Unit amount of task to be shared among 1 agents
e Agent i gets a share s; € [0,1] of the job, Y icnsi =1

Task Allocation Domain

e Unit amount of task to be shared among 1 agents
e Agent i gets a share s; € [0,1] of the job, Y icnsi =1
* Agent payoff: every agent has a most preferred share of work.

Task Allocation Domain

e Unit amount of task to be shared among 1 agents

e Agent i gets a share s; € [0,1] of the job, Y icnsi =1

* Agent payoff: every agent has a most preferred share of work.
e Example:

Task Allocation Domain

e Unit amount of task to be shared among 1 agents
e Agent i gets a share s; € [0,1] of the job, Y icnsi =1
* Agent payoff: every agent has a most preferred share of work.

e Example:
— The task has rewards, e.g., wages per unit time = w

Task Allocation Domain

e Unit amount of task to be shared among 1 agents
e Agent i gets a share s; € [0,1] of the job, Y icnsi =1
* Agent payoff: every agent has a most preferred share of work.

e Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for t; time then gets w - t;

Task Allocation Domain

e Unit amount of task to be shared among 1 agents
e Agent i gets a share s; € [0,1] of the job, Y icnsi =1
* Agent payoff: every agent has a most preferred share of work.

e Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for t; time then gets w - t;
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = ¢;t?

Task Allocation Domain

e Unit amount of task to be shared among 1 agents
e Agent i gets a share s; € [0,1] of the job, Y icnsi =1
* Agent payoff: every agent has a most preferred share of work.

e Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for t; time then gets w - t;
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = ¢;t?
— Net payoff = wt; — citlz — maximized at t; = w/2c;,
and monotone decreasing on both sides

Task Allocation Domain

e Net payoff = wt; - citlz —> maximized at t; = w/2¢;

Task Allocation Domain

e Net payoff = wt; - citlz —> maximized at t; = w/2¢;
e Important: This is single peaked over the share of the task and not over the alternatives

Task Allocation Domain

e Net payoff = wt; - citlz —> maximized at t; = w/2¢;
e Important: This is single peaked over the share of the task and not over the alternatives

* Suppose, two alternatives are (0.2,0.4,0.4) and (0.2,0.6,0.2): player 1 likes both of them
equally

Task Allocation Domain

e Net payoff = wt; - citlz —> maximized at t; = w/2¢;
e Important: This is single peaked over the share of the task and not over the alternatives

* Suppose, two alternatives are (0.2,0.4,0.4) and (0.2,0.6,0.2): player 1 likes both of them
equally
e For 3 players, the set of alternatives is a simplex

Task Allocation Domain

e Net payoff = wt; - citlz —> maximized at t; = w/2¢;
e Important: This is single peaked over the share of the task and not over the alternatives

* Suppose, two alternatives are (0.2,0.4,0.4) and (0.2,0.6,0.2): player 1 likes both of them
equally

e For 3 players, the set of alternatives is a simplex

e There cannot be a single common order over the alternatives s.t. the preferences are
single-peaked for all agents

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T
* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T
* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
* SCE:f:T" = A

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T

* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
* SCE:f:T" = A

o LetPeT"

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T
* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
* SCE:f:T" = A
o LetPeT"
— f(P) = (A(P),fa(P), - - . fu(P))

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T

* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
* SCE:f:T" = A

o LetPeT"

— f(P) = (fi(P),f2(P),....fu(P))
— fi(P)€[0,1], Vie N

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T

* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
* SCE:f:T" = A

o LetPeT"

— f(P) = (fi(P),f2(P),....fu(P))
— fi(P)€[0,1], Vie N

— Yienfi(P) =1

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T

* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
* SCE:f:T" = A

o LetPeT"

— f(B) = (fi(P),fa(P),fu(P))
— fi(P) € [0,1], Vie N
— Lienfi(P) =1
* Player i has a peak p; over the shares of the task

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T

* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
* SCE:f:T" = A

o LetPeT"

— f(B) = (fi(P),fa(P),fu(P))
— fi(P) € [0,1], Vie N
— Lienfi(P) =1
* Player i has a peak p; over the shares of the task

Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T
* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
e SCE:f:T"— A
o LetPeT"
— f(P) = (A(P),fa(P), ..., fu(P))
— fi(P) €[0,1], Vie N
— Lienfi(P) =1
* Player i has a peak p; over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a € A such that it is weakly preferred over f(P) by all agents and strictly preferred by
at least one. Mathematically,

aR;f(P) VieN,

€Ast. .
faeAs aPif(P) FeN

Implications of Pareto Efficiency

Q If Y ;cnpi =1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

Implications of Pareto Efficiency

Q If Y ;cnpi =1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

@ If Y ;cnpi > 1, there must exist k € N, s.t. fi(P) < py

Implications of Pareto Efficiency

Q If Y ;cnpi =1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

@ If Y ;cnpi > 1, there must exist k € N, s.t. fi(P) < py

Question

Can there be an agent j s.t. f;(P) > pj if f is PE?

Implications of Pareto Efficiency

Q If Y ;cnpi =1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

@ If Y ;cnpi > 1, there must exist k € N, s.t. fi(P) < py

Question

Can there be an agent j s.t. f;(P) > pj if f is PE?

Answer

No. If such a j exists, increasing k’s share of task and reducing j’s makes both players strictly
better off
Therefore, Vj € N, ﬁ(P) <pj

Q If Yjen pi < 1, by a similar argument, we conclude that Vj € N, f;(P) > p;

Task Allocation Domain and Anonymity

Definition (Anonymity)
An SCF f is anonymous (ANON) if for every agent permutation) ;- : N — N, the task shares get
permuted accordingly, i.e.,

Vo, fo5)(P7) = fi(P)

Task Allocation Domain and Anonymity

Definition (Anonymity)
An SCF f is anonymous (ANON) if for every agent permutation) ;- : N — N, the task shares get
permuted accordingly, i.e.,

Vo, fo5)(P7) = fi(P)

Example:

o N=1{1,2,3}, (1) =2,0(2) =3,0(3) = 1
o P=(07,04,03) = P" = (0.3,0.7,0.4)
* £1(0.7,04,0.3) = £2(0.3,0.7,0.4)

Task Allocation Domain: Some Candidate SCFs

Definition (Serial Dictatorship)

A predetermined sequence of the agents is fixed. Each agent is given either her peak share or the
leftover share of the task. If) ;cn p; < 1, then the last agent is given the leftover share.

Task Allocation Domain: Some Candidate SCFs

Definition (Serial Dictatorship)

A predetermined sequence of the agents is fixed. Each agent is given either her peak share or the
leftover share of the task. If } ;.5 p; < 1, then the last agent is given the leftover share.

Question
PE, SP, ANON?

Task Allocation Domain: Some Candidate SCFs

Definition (Serial Dictatorship)

A predetermined sequence of the agents is fixed. Each agent is given either her peak share or the
leftover share of the task. If } ;.5 p; < 1, then the last agent is given the leftover share.

Question
PE, SP, ANON?

Answer

Not ANON. Also quite unfair to the last agent.

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. ¢} ;cnpi =1

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. ¢} ;cnpi =1

Question
PE, ANON, SP?

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. ¢} ey pi = 1

Question
PE, ANON, SP?

Answer

Not SP.
Suppose peaks are 0.2,0.3,0.1 for 3 players, c = 1/0.6

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. ¢} ey pi = 1

Question
PE, ANON, SP?

Answer
Not SP.

Suppose peaks are 0.2,0.3,0.1 for 3 players, c = 1/0.6
Player 1 gets 1/3 (more than its peak 0.2)

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. ¢} ey pi = 1

Question

PE, ANON, SpP?

Answer

Not SP.

Suppose peaks are 0.2,0.3,0.1 for 3 players, c = 1/0.6
Player 1 gets 1/3 (more than its peak 0.2)

if the report is 0.1,0.3,0.1, c = 1/0.5, player 1 gets 0.2

Contents

» The Uniform Rule

PE, ANON, and SP?

Question
How to ensure PE, ANON, and SP in task allocation domain?

PE, ANON, and SP?

Question
How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

PE, ANON, and SP?

Question
How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

® Suppose, Y ienpi <1

* Begin with everyone’s allocation being 1 (infeasible)

e Keep reducing until } ;cnfi =1

* On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
* Symmetric for) cnpi > 1

PE, ANON, and SP?

Question
How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

® Suppose, Y ienpi <1

* Begin with everyone’s allocation being 1 (infeasible)

e Keep reducing until } ;cnfi =1

* On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
* Symmetric for) cnpi > 1

Definition

Q@ Case Y cypi=1: f(P) =pi

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

® Suppose, Y ienpi <1

* Begin with everyone’s allocation being 1 (infeasible)

e Keep reducing until } ;cnfi =1

* On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
* Symmetric for) cnpi > 1

Definition
Q Case Licnpi = 1: f(P) = pi
Q Case Yy pi < 1: f/*(P) = max{p;, u(P)}, where y(P) solves Y ;cy max{p;, u} =1

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

® Suppose, Y ienpi <1

* Begin with everyone’s allocation being 1 (infeasible)

e Keep reducing until } ;cnfi =1

* On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
* Symmetric for) cnpi > 1

Definition
Q Case Ycnpi = 1: f'(P) = pi

Q Case Yy pi < 1: f/*(P) = max{p;, u(P)}, where y(P) solves Y ;cy max{p;, u} =1
Q Case) ;cnpi > 1: f/(P) = min{p;, A(P)} , where A(P) solves Y ;cy min{p;, A} =1

The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

* ANON is obvious: only the peaks matter and not their owners

The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

* ANON is obvious: only the peaks matter and not their owners
* PE: the allocation is s.t.

The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

* ANON is obvious: only the peaks matter and not their owners
* PE: the allocation is s.t.
_fu() plIVIeNIfZEsz—l

The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

* ANON is obvious: only the peaks matter and not their owners
* PE: the allocation is s.t.

_fu() plIVIeNIfZEsz—l
—f”() Zpi, Vi€ N, if Lienpi <1

The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

* ANON is obvious: only the peaks matter and not their owners
* PE: the allocation is s.t.
_fu() plIVIeNIfZEsz—l

_f“()2 pi, VieNif Yenpi <1
— f{(P) <pi, Vi€ N, if Yienpi > 1

The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

* ANON is obvious: only the peaks matter and not their owners
* PE: the allocation is s.t.

_fu() pl’VIeleZIGNpl_l
— fU(P) > p;, Vi € N if Ly pi < 1
— fl-u(P) < pi, Vi € N, if ZiENpi >1
e This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate
* Case) cypi < l:thenf!(P) >p;, Vie N

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate
* Case) cypi < l:thenf!(P) >p;, Vie N
* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;
* Leads to an worse outcome for i than y(P)

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;
* Leads to an worse outcome for i than y(P)

* A similar argument for case) oy p; > 1

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;
* Leads to an worse outcome for i than y(P)

* A similar argument for case) oy p; > 1

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;
* Leads to an worse outcome for i than y(P)

* A similar argument for case) oy p; > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

* See Sprumont (1991) : Division problem with single-peaked preferences

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;
* Leads to an worse outcome for i than y(P)

* A similar argument for case) oy p; > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

* See Sprumont (1991) : Division problem with single-peaked preferences
* Envy-free (EF): Agents do not envy each other’s shares — also holds for uniform rule

The Uniform Rule: Strategyproofness

e Case) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;
* Leads to an worse outcome for i than y(P)

* A similar argument for case) oy p; > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

* See Sprumont (1991) : Division problem with single-peaked preferences
e Envy-free (EF): Agents do not envy each other’s shares — also holds for uniform rule
e SP, PE, ANON, EF, polynomial-time computable

Contents

» Mechanism Design with Transfers

Mechanism Design with Transfers

e Social Choice Function F: ©@ — X

Mechanism Design with Transfers

* Social Choice Function F: ©@ — X
* X: space of all outcomes

Mechanism Design with Transfers

* Social Choice Function F : © — X
* X: space of all outcomes
¢ In this domain, an outcome x € X has two components:

Mechanism Design with Transfers

* Social Choice Function F : © — X
* X: space of all outcomes

¢ In this domain, an outcome x € X has two components:
— allocation a

Mechanism Design with Transfers

* Social Choice Function F : © — X
* X: space of all outcomes

¢ In this domain, an outcome x € X has two components:

— allocation a
— payment 77 = (711, -+, 7y), T; € R

Mechanism Design with Transfers

* Social Choice Function F : © — X
* X: space of all outcomes

¢ In this domain, an outcome x € X has two components:
— allocation a
— payment 7 = (711, -+ ,7,), T; € R

* Examples of allocations:

Mechanism Design with Transfers

¢ Social Choice Function F: ® — X
* X: space of all outcomes
¢ In this domain, an outcome x € X has two components:
— allocation a
— payment 7 = (711, -+ ,7,), T; € R
* Examples of allocations:
@ A public decision to build a bridge, park, or museum. a4 = {park, bridge, - - - }

Mechanism Design with Transfers

* Social Choice Function F : © — X

* X: space of all outcomes

¢ In this domain, an outcome x € X has two components:
— allocation a
— payment 7 = (711, -+ ,7,), T; € R

* Examples of allocations:

@ A public decision to build a bridge, park, or museum. a4 = {park, bridge, - - - }
@ Allocation of a divisible good, e.g., a shared spectrum, a = (ay,az,- -+ ,a,), a; € [0,1], Liena; = 1,
here a; : fraction of the resource i gets

Mechanism Design with Transfers

* Social Choice Function F : © — X
* X: space of all outcomes

¢ In this domain, an outcome x € X has two components:
— allocation a
— payment 7 = (711, -+ ,7,), T; € R
* Examples of allocations:
@ A public decision to build a bridge, park, or museum. a4 = {park, bridge, - - - }
@ Allocation of a divisible good, e.g., a shared spectrum, a = (ay,az,- -+ ,a,), a; € [0,1], Liena; = 1,
here a; : fraction of the resource i gets
@ Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1,ay,- - - ,a,), a; € {0,1},
Lienai <1

Mechanism Design with Transfers

* Social Choice Function F : © — X
* X: space of all outcomes

¢ In this domain, an outcome x € X has two components:
— allocation a
— payment 7 = (711, -+ ,7,), T; € R
* Examples of allocations:
@ A public decision to build a bridge, park, or museum. a4 = {park, bridge, - - - }
@ Allocation of a divisible good, e.g., a shared spectrum, a = (ay,az,- -+ ,a,), a; € [0,1], Liena; = 1,
here a; : fraction of the resource i gets
@ Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1,ay,- - - ,a,), a; € {0,1},
Lienai <1
@ Partitioning indivisible objects, S = set of objects,
A={(A1,---,An) 1 A; CS, VieEN,AiNA; =0, Vi #j}

Mechanism Design with Transfers

e Type of an agent i is §; € ©; this is a private information of i

Mechanism Design with Transfers

e Type of an agent i is §; € ©; this is a private information of i
* Agent’s benefit from an allocation is defined via the valuation function

Mechanism Design with Transfers

e Type of an agent i is §; € ©; this is a private information of i
* Agent’s benefit from an allocation is defined via the valuation function
* Valuation depends on the allocation and the type of the player

vt AXx0; >R (independent private values)

Mechanism Design with Transfers

e Type of an agent i is §; € ©; this is a private information of i
* Agent’s benefit from an allocation is defined via the valuation function
* Valuation depends on the allocation and the type of the player

vt AXx0; >R (independent private values)

e Examples:

Mechanism Design with Transfers

e Type of an agent i is §; € ©; this is a private information of i
* Agent’s benefit from an allocation is defined via the valuation function
* Valuation depends on the allocation and the type of the player

vt AXx0; >R (independent private values)

e Examples:
— if i has a type ‘environmentalist’ 6"V, and a € {Bridge, Park}, then v;(B, 5"") < v;(P, 6"")

Mechanism Design with Transfers

e Type of an agent i is §; € ©; this is a private information of i
* Agent’s benefit from an allocation is defined via the valuation function
* Valuation depends on the allocation and the type of the player

vt AXx0; >R (independent private values)

e Examples:
— if i has a type ‘environmentalist’ 6"V, and a € {Bridge, Park}, then v;(B, 5"") < v;(P, 6"")
— if type changes to ‘business’ 9}’“5, v;(B, 9}’“5) > v;(P, 9}"15)

Payments = Monetary Transfers

¢ Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

Payments = Monetary Transfers

¢ Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

* Payments 7; € R, Vie N

Payments = Monetary Transfers

¢ Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

* Payments 7; € R, Vie N

e Payment vector 77 = (711, 712, . .., 7Tn)

Payments = Monetary Transfers

¢ Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

e Payments 77;; € R, Vi e N
e Payment vector 77 = (711, 712, . .., 7Tn)
e Utility of player i, when its type is 6;, and the outcome is x = (a, 77) is given by

ui((a,), 0;) = vi(a, 0;) — 7 (quasi-linear payoff)

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain

ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)
Question

Why is this a domain restriction?

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)
Question

Why is this a domain restriction?

Answer

* Consider two alternatives (4, 71) and (a, r’), allocation is the same but payments are different

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)
Question

Why is this a domain restriction?

Answer
* Consider two alternatives (4, 71) and (a, r’), allocation is the same but payments are different
* Suppose 7, < 7; for some i € N

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer
* Consider two alternatives (4, 71) and (a, r’), allocation is the same but payments are different
* Suppose 7, < 7; for some i € N

* There cannot be any preference profile in the quasi-linear domain where (4, 7r) is more
preferred than (a, ') for agent i

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer
* Consider two alternatives (4, 71) and (a, r’), allocation is the same but payments are different
* Suppose 7, < 7; for some i € N

* There cannot be any preference profile in the quasi-linear domain where (4, 7r) is more
preferred than (a, ') for agent i

* Because v;(a,0;) - 7, > v;(a,0;) — m;,V6; € O;

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer
* Consider two alternatives (4, 71) and (a, r’), allocation is the same but payments are different
* Suppose 7, < 7; for some i € N

* There cannot be any preference profile in the quasi-linear domain where (4, 7r) is more
preferred than (a, ') for agent i

* Because v;(a,0;) - 7, > v;(a,0;) — m;,V6; € O;
* In the complete domain, both preference orders would have been feasible

Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a,), 0;) = vi(a,6;) — m; (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer
* Consider two alternatives (4, 71) and (a, r’), allocation is the same but payments are different
* Suppose 7, < 7; for some i € N

* There cannot be any preference profile in the quasi-linear domain where (4, 7r) is more
preferred than (a, ') for agent i

* Because v;(a,0;) - 7, > v;(a,0;) — m;,V6; € O;
* In the complete domain, both preference orders would have been feasible
* This restriction opens up possibilities of several non-dictatorial mechanisms

Contents

» Quasi Linear Preferences

Quasi Linear preferences

* The SCFF = (f, (p1,p2,---,pn)) = (f,p) is decomposed into two components

Quasi Linear preferences

* The SCFF = (f, (p1,p2,---,pn)) = (f,p) is decomposed into two components

* Allocation rule component
f:@1 XOy X 0Oy — A

When the types are 0;,i € N, f(61,--- ,0,) =ac A

Quasi Linear preferences

* The SCFF = (f, (p1,p2,---,pn)) = (f,p) is decomposed into two components
* Allocation rule component
f:@1 XOy X 0Oy — A
When the types are 0;,i € N, f(61,--- ,0,) =ac A
* Payment function
Pii O X x -0, =R, Vie N

When the types are 0;,i € N, p;i(61,--- ,0,) = 1, € R

Example Allocation Rules

Q@ Constant rule, f°() =4, V6 € ©

Example Allocation Rules

Q@ Constant rule, f°() =4, V6 € ©
@ Dictatorial rule, fD (0) € arg max,c4 v4(a,04),Y0 € O, for some d € N

Example Allocation Rules

Q@ Constant rule, f°() =4, V6 € ©
@ Dictatorial rule, fD (0) € arg max,c4 v4(a,04),Y0 € O, for some d € N
@ Allocatively efficient rule / utilitarian rule
fAE(8) € arg max Y vi(a,6;)
acA jen
Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)

Example Allocation Rules

Q@ Constant rule, f°() =4, V6 € ©
@ Dictatorial rule, fD (0) € arg max,c4 v4(a,04),Y0 € O, for some d € N
@ Allocatively efficient rule / utilitarian rule
fAE(8) € arg max Y vi(a,6;)
ach jen

Note: This is different from Pareto efficiency (PE is a property defined for the outcome

which also considers the payment)
Q Affine maximizer rule:

FAM(9) € arg ma}i((z Aivi(a,6;) 4+ x(a)), where A; > 0, not all zero
€A jeN

Example Allocation Rules

Q@ Constant rule, f°() =4, V6 € ©
@ Dictatorial rule, fD (0) € arg max,c4 v4(a,04),Y0 € O, for some d € N
@ Allocatively efficient rule / utilitarian rule
fAE(8) € arg max Y vi(a,6;)
ach jen

Note: This is different from Pareto efficiency (PE is a property defined for the outcome

which also considers the payment)
Q Affine maximizer rule:

FAM(9) € arg ma}i((z Aivi(a,6;) 4+ x(a)), where A; > 0, not all zero
€A jeN

— Aj=1,Yi € N,k = 0: allocatively efficient; Ay =1,4; = 0,Vj € N\ {d}, x = 0: dictatorial

Example Allocation Rules

Q@ Constant rule, f°() =4, V6 € ©
@ Dictatorial rule, fD (0) € arg max,c4 v4(a,04),Y0 € O, for some d € N
@ Allocatively efficient rule / utilitarian rule

AE (a0
f75(0) € arg max Z v;(a, 6;)
ieEN
Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)
Q Affine maximizer rule:

FAM(9) € arg ma}i((z Aivi(a,6;) 4+ x(a)), where A; > 0, not all zero
€A jeN

— Aj=1,Yi € N,k = 0: allocatively efficient; Ay =1,4; = 0,Vj € N\ {d}, x = 0: dictatorial

@ Max-min/egalitarian
MM ;
0) € max minv;(a, 6;
f77(0) € arg uea/i(iG}{II i(a,0;)

Example Payment Rules

@ No deficit: Y,y pi(0) >0, VO € ©

Example Payment Rules

@ No deficit: Y,y pi(0) >0, VO € ©
@ No subsidy: p;(f) >0, V0 € ©,Vie N

Example Payment Rules

@ No deficit: Y,y pi(0) >0, VO € ©
@ No subsidy: p;(f) >0, V0 € ©,Vie N
@ Budget balanced: Y ;cnpi(0) =0, V6 € ©

Example Payment Rules

@ No deficit: Y,y pi(0) >0, VO € ©
@ No subsidy: p;(f) >0, V0 € ©,Vie N
@ Budget balanced: Y ;cnpi(0) =0, V6 € ©

Example Payment Rules

@ No deficit: Y,y pi(0) >0, VO € ©
@ No subsidy: p;(f) >0, V0 € ©,Vie N
@ Budget balanced: Y ;cnpi(0) =0, V6 € ©

Definition (DSIC)

A mechanism (f,p) is dominant strategy incentive compatible (DSIC) if

vi(f(6;,0_;),0;) — pi(6;,0_;) > vi(f(6;,0_;),6;) — pi(6],0_;),V6_; € ©_;,6,,0; € ©;,Vi € N

e DSIC means truthtelling is a weakly DSE

e DSIC means truthtelling is a weakly DSE

* We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f
is implementable in dominant strategies (by a payment rule)

e DSIC means truthtelling is a weakly DSE

* We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f
is implementable in dominant strategies (by a payment rule)

¢ In QL domain, we are often more interested in the allocation rule than the whole SCF (which
also includes payment)

e DSIC means truthtelling is a weakly DSE

* We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f
is implementable in dominant strategies (by a payment rule)

¢ In QL domain, we are often more interested in the allocation rule than the whole SCF (which
also includes payment)

e DSIC means truthtelling is a weakly DSE

* We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f
is implementable in dominant strategies (by a payment rule)

¢ In QL domain, we are often more interested in the allocation rule than the whole SCF (which
also includes payment)

Question
What needs to be satisfied for a DSIC mechanism (f,p)?

Implications of DSIC

Question
What needs to be satisfied for a DSIC mechanism (f,p)?

Implications of DSIC

Question
What needs to be satisfied for a DSIC mechanism (f,p)?

Example

N={1,2},0; =0, = {,0"},f : ®; x @, — A. The following conditions must hold

Implications of DSIC

Question

What needs to be satisfied for a DSIC mechanism (f,p)?

Example
N={1,2},0; =0, = {,0"},f : ®; x @, — A. The following conditions must hold
Player 1:
v1(f(67,62),6™) — p1 (67, 62) (6%,62),6™) — p1(6",62), V6, € @,)

> v(f
(%1 (f(eL’ 92)/ BL) - Pl(eL/ 92) 2 01 (f(eH’ 62)/ GL) - Pl (OH/ 62)/ VGZ S ®2 (2)

Implications of DSIC

Question

What needs to be satisfied for a DSIC mechanism (f,p)?

Example
N={1,2},0; =0, = {,0"},f : ®; x @, — A. The following conditions must hold
Player 1:
v1(£(6",62),6™) — p1(67,62)
v1(f(6",62),6%) — p1(6",65)

(61, 6,),6™) — p1(6%,6,),V6, € O, (1)
(67,6,),0%) — p1(67,6,),V6, € ©, 2)

> v(f
> vy (f

Player 2:

(6L, 61),0M) — py(6%,61),V0; € O (3)

UZ(JC(GH/ 61)/ GH) - PZ(GH/ 91) 2 (%)
> (69,61),0%) — pp(67,6,),V6, € ©, (4)

(f
va(f(6",61),6") — pa(6",67) (f

02

Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f

Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

q:(0;,0_;) = pi(0;,0_;) +h;i(6_;),V0,Vie N

Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

qi(0i,0—i) = pi(0,0_;) + hi(6_;), V6, Vi€ N
* Question: Is (f,q) DSIC?

vi(f(0;,0-1),60) —pi(0;,0_) —hi(0_;) = vi(F(0,0-),0;) — pi(6;,0_;) — hi(0_;), V6;,6;,6_;, Vi € N

Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

q:(0;,0_;) = pi(0;,0_;) +h;i(6_;), V0, Vi€ N
* Question: Is (f,q) DSIC?
vi(f(0;,0-1),60) —pi(0;,0_) —hi(0_;) = vi(F(0,0-),0;) — pi(6;,0_;) — hi(0_;), V6;,6;,6_;, Vi € N

e If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

q:(0;,0_;) = pi(0;,0_;) +h;i(6_;), V0, Vi€ N
* Question: Is (f,q) DSIC?
0i(f(6:,65),6:) —pi(6;,0_) —hi(0_) = vi(£(6],0-4),0;) —pi(6;,6 ;) —hi(0), ¥6;,6;,0_;,Vie N

e If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

* The converse question: when do the payments that implement f differ only by a factor
hi(6-:)?

Properties of the Payment

* Suppose the allocation is same in two type profiles 6 and § = (9;,6_;)
e ie, f(0) =f(0) = a, then
e if p implements f, then p;(6) = p;(0) [exercise]

Contents

» Pareto Optimality and Groves Payments

Pareto Optimality in Quasi-linear domain

Definition (Pareto Optimal)

A mechanism (f, (p1,...,pn)) is Pareto optimal if at any type profile 6 € ©, there does not exist
an allocation b # f(0) and payments (771, ..., 7T,) with Y ey 7 = Yienpi(0) s.t.,

vi(brei) = 75 = Ui(f(e),ez') —pi(B),Vi €N,

with the inequality being strict for some i € N

Pareto Optimality in Quasi-linear domain

Definition (Pareto Optimal)

A mechanism (f, (p1,...,pn)) is Pareto optimal if at any type profile 6 € ©, there does not exist
an allocation b # f(0) and payments (771, ..., 7T,) with Y ey 7 = Yienpi(0) s.t.,

v;(b,0;) — M > Ui(f(e),ez') = pl(B),Vz €N,
with the inequality being strict for some i € N
e Pareto optimality is meaningless if there is no restriction on the payment

® One can always put excessive subsidy to every agent to make everyone better off
* So, the condition requires to spend at least the same budget

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f, (p1,- -+ ,pn)) is Pareto optimal iff it is allocatively efficient

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f, (p1,- -+ ,pn)) is Pareto optimal iff it is allocatively efficient

* (<=)weprove -PO = —AE

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f, (p1,- -+ ,pn)) is Pareto optimal iff it is allocatively efficient

* (<=)weprove -PO = —AE
° —|PO, E'b, 7T,9 s.t. ZiEN 7T 2 ZiEN pl(G)

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f, (p1,- -+ ,pn)) is Pareto optimal iff it is allocatively efficient

* (<=)weprove -PO = —AE
© _‘PO/ E|b/ 7-[/9 s.t. ZiEN T 2 ZiEN pl(e)
* vi(b,0;) —m; > vi(f(0),6;) —pi(),Vi € N, strict for some j € N

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f, (p1,- -+ ,pn)) is Pareto optimal iff it is allocatively efficient

* (<=)weprove -PO = —AE

© _‘PO/ E|b/ 7-[/9 s.t. ZiEN T 2 ZiEN pl(e)

v;i(b,0;) — ; > v;(f(0),0;) — pi(0),Vi € N, strict for some j € N
* summing over the all these inequalities

ZUZbG an>Zvl(f —Zpi(e)

iEN ieEN iEN iEN

Zvi(bfei) - Zvl(f 0),0:) Z T — Zpi(g) =0

ieN ieN ieN ieN

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f, (p1,- -+ ,pn)) is Pareto optimal iff it is allocatively efficient

* (<=)weprove -PO = —AE

© _‘PO/ E|b/ 7-[/9 s.t. ZiEN T 2 ZiEN pl(e)

v;i(b,0;) — ; > v;(f(0),0;) — pi(0),Vi € N, strict for some j € N
* summing over the all these inequalities

ZUZbG an>Zvl(f —Zpi(e)

iEN ieEN iEN iEN
Zvi(bzei)_ Zvl(f 0),6;) 2771 Zpi(g) >0
ieN ieEN ieN ieN

o fis ~AE

Proof (contd.)

e (=) -AE = -PO

Proof (contd.)

¢ (—)—-AE — —PO
* 2AE = 30,b #f(0) s.t. Lien0i(b,0;) > Lienvi(f(6),6;)

Proof (contd.)

¢ (—)=AE — -PO
* 2AE = 30,b #f(0) s.t. Lien0i(b,0;) > Lienvi(f(6),6;)
e Let 0 = Yen0i(b,0;) — Lien vi(f(0),0;) >0

Proof (contd.)

(=)—AE — —PO
* 2AE = 30,b #f(0) s.t. Lien0i(b,0;) > Lienvi(f(6),6;)

* Letd = Yenvi(D,0;) — Lienvi(f(6),6;) >0

* Consider payment 71; = v;(b,6;) — v;(f(0),6;) +pi(6) —6/n,Vi e N

Proof (contd.)

¢ (=)-AE — —PO

* 2AE = 30,b #f(0) s.t. Lien0i(b,0;) > Lienvi(f(6),6;)

* Letd = Yenvi(D,0;) — Lienvi(f(6),6;) >0

* Consider payment 71; = v;(b,6;) — v;(f(0),6;) +pi(6) —6/n,Vi e N
e Hence, (v;(b,6;) — ;) — (v;(f(),6;) —pi(0)) =6/n>0,Vie N

Proof (contd.)

(=)—AE — —PO

* 2AE = 30,b #f(0) s.t. Lien0i(b,0;) > Lienvi(f(6),6;)

* Letd = Yenvi(D,0;) — Lienvi(f(6),6;) >0

* Consider payment 71; = v;(b,6;) — v;(f(0),6;) +pi(6) —6/n,Vi e N
e Hence, (v;(b,6;) — ;) — (v;(f(),6;) —pi(0)) =6/n>0,Vie N

e also Lien i = Lienpi(0)

Proof (contd.)

(=)-AE = —PO

e -AE — J0,b ;éf(e) st Y ien Z)i(b, 91') > YieNn Ul‘(f(g), 91)

* Letd = Yenvi(D,0;) — Lienvi(f(6),6;) >0

* Consider payment 71; = v;(b,6;) — v;(f(0),6;) +pi(6) —6/n,Vi e N
e Hence, (v;(b,6;) — ;) — (v;(f(),6;) —pi(0)) =6/n>0,Vie N

* also Lien 7ti = Lien pi(0)

* Hence f is not PO

Allocatively Efficient Rule is Implementable

¢ Consider the following payment: p%(6;,0_;) = h;(6_;) — Y4i0j (FAE(6;,6-7),6)), where
hi : ©_; = R is an arbitrary function: Groves payment

Allocatively Efficient Rule is Implementable

¢ Consider the following payment: p¢(6;,6_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment

Example

e Single indivisible item allocation N = {1,2,3,4}

Allocatively Efficient Rule is Implementable

¢ Consider the following payment: p¢(6;,6_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment
Example
e Single indivisible item allocation N = {1,2,3,4}
° 01 =10, 0, =8, 03 = 6, 04 = 4, when they get the object, zero otherwise

Allocatively Efficient Rule is Implementable

Consider the following payment: p&(6;,60_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment

Example
e Single indivisible item allocation N = {1,2,3,4}

° 01 =10, 0, =8, 03 = 6, 04 = 4, when they get the object, zero otherwise
Let hi((?_i) =min6_;

Allocatively Efficient Rule is Implementable

Consider the following payment: p&(6;,60_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment

Example
e Single indivisible item allocation N = {1,2,3,4}
° 01 =10, 0, =8, 03 = 6, 04 = 4, when they get the object, zero otherwise
Let hi((?_i) =min6_;
e If everyone reports their true type, the values of h; are hy =4, hp =4, h3 =4, hy = 6

Allocatively Efficient Rule is Implementable

Consider the following payment: p&(6;,60_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment

Example
e Single indivisible item allocation N = {1,2,3,4}
° 01 =10, 0, =8, 03 = 6, 04 = 4, when they get the object, zero otherwise
o Let hi((?_z-) =min6_;
e If everyone reports their true type, the values of h; are hy =4, hp =4, h3 =4, hy = 6
* The efficient allocation gives the item to agent 1

Allocatively Efficient Rule is Implementable

Consider the following payment: p&(6;,60_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment

Example
Single indivisible item allocation N = {1,2,3,4}
01 =10, 6, = 8, 03 = 6, 04 = 4, when they get the object, zero otherwise
Let hi((?_z-) =min6_;
If everyone reports their true type, the values of h; are hy =4, hy =4, h3 =4, hy =6
The efficient allocation gives the item to agent 1
r=4-0=4p,=4—-10= —6,p3=4—-10= —6,p4 = 6 —10 = —4, i.e., only player 1
pays, other get paid

Allocatively Efficient Rule is Implementable

Consider the following payment: p&(6;,60_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment

Example
Single indivisible item allocation N = {1,2,3,4}
01 =10, 6, = 8, 03 = 6, 04 = 4, when they get the object, zero otherwise
Let hi((?_z-) =min6_;
If everyone reports their true type, the values of h; are hy =4, hy =4, h3 =4, hy =6
The efficient allocation gives the item to agent 1
r=4-0=4p,=4—-10= —6,p3=4—-10= —6,p4 = 6 —10 = —4, i.e., only player 1
pays, other get paid
Surprisingly, this is a truthful mechanism

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

e Consider player i

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

¢ Consider player i .
° fAE(Gi/ 971') =4a, andeE(Gl(r 971') =b

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

¢ Consider player i
o fAE(6;,,0_;) = a,and fAE(0],0_;) = b
* By definition, v;(a, 6;) + Z]# vi(a,0;) > vi(b,6;) + Y+i9j(b,6))

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

¢ Consider player i .
o fAE(0,,0_;) = a, and fAE(0],0_;) =b)
* By definition, Z)l‘(ll, 61) + Zﬁél U]‘(Cl, 9]> > Ui(b, 61) + Zﬁél U]'(b, 9])
e utility of player i when he reports 6; is
0 (FAE(6,,6_),0;) — pi(6:,0_7)
= 0 (FA5(6;,04),6;) — i (6_5) + Yo (F*F (6;,6_), 6))
j#
> 0;(FAF(6],00),0,) — hi(6-5) + Y v;(F*(61,6_,),6))
j#i
= o(FAE(0],0_),0;) — pi(0,0_;)

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

¢ Consider player i .
o fAE(6;,,0_;) = a,and fAE(0],0_;) = b
* By definition, Z)l‘(ll, 61) + Zﬁél U]‘(Cl, 9]> > Ui(b, 61) + Zﬁél U]'(b, 9])
e utility of player i when he reports 6; is
vi(FA5(6;,6-1),6) — pi(6;,6-)
= 0 (FA5(6;,04),6;) — i (6_5) + Yo (F*F (6;,6_), 6))
j#
> 0;(FAF(6],00),0,) — hi(6-5) + Y v;(F*(61,6_,),6))
j#i
= 0;(f**(6],6-:),6;) — pi(6],6)
e Since player i was arbitrary, this holds for all i € N. Hence the claim.

TR eI T ged
Indian Institute of Technology Bombay

	Task Allocation Domain
	The Uniform Rule
	Mechanism Design with Transfers
	Quasi Linear Preferences
	Pareto Optimality and Groves Payments

