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e Unit amount of task to be shared among 1 agents
e Agent i gets a share s; € [0,1] of the job, Y icnsi =1
* Agent payoff: every agent has a most preferred share of work.

e Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for t; time then gets w - t;
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = ¢;t?
— Net payoff = wt; — citlz — maximized at t; = w/2c;,
and monotone decreasing on both sides
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Task Allocation Domain

e Net payoff = wt; - citlz —> maximized at t; = w/2¢;
e Important: This is single peaked over the share of the task and not over the alternatives

* Suppose, two alternatives are (0.2,0.4,0.4) and (0.2,0.6,0.2): player 1 likes both of them
equally

e For 3 players, the set of alternatives is a simplex

e There cannot be a single common order over the alternatives s.t. the preferences are
single-peaked for all agents
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Task Allocation Domain and Pareto Efficiency

¢ Denote this domain of task allocation with T
* An allocation of the task is a = (a; € [0,1],i € N), set of all task allocations is A
e SCE:f:T"— A
o LetPeT"
— f(P) = (A(P),fa(P), ..., fu(P))
— fi(P) €[0,1], Vie N
— Lienfi(P) =1
* Player i has a peak p; over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a € A such that it is weakly preferred over f(P) by all agents and strictly preferred by
at least one. Mathematically,

aR;f(P) VieN,

€Ast. .
faeAs aPif(P) FeN
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Implications of Pareto Efficiency

Q If Y ;cnpi =1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

@ If Y ;cnpi > 1, there must exist k € N, s.t. fi(P) < py

Question

Can there be an agent j s.t. f;(P) > pj if f is PE?

Answer

No. If such a j exists, increasing k’s share of task and reducing j’s makes both players strictly
better off
Therefore, Vj € N, ﬁ(P) <pj

Q If Yjen pi < 1, by a similar argument, we conclude that Vj € N, f;(P) > p;
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Definition (Anonymity)
An SCF f is anonymous (ANON) if for every agent permutation ) ;- : N — N, the task shares get
permuted accordingly, i.e.,

Vo, fo5)(P7) = fi(P)

Example:

o N=1{1,2,3}, (1) =2,0(2) =3,0(3) = 1
o P=(07,04,03) = P" = (0.3,0.7,0.4)
* £1(0.7,04,0.3) = £2(0.3,0.7,0.4)
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Definition (Serial Dictatorship)

A predetermined sequence of the agents is fixed. Each agent is given either her peak share or the
leftover share of the task. If } ;.5 p; < 1, then the last agent is given the leftover share.

Question
PE, SP, ANON?

Answer

Not ANON. Also quite unfair to the last agent.
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Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. ¢} ey pi = 1

Question

PE, ANON, SpP?

Answer

Not SP.

Suppose peaks are 0.2,0.3,0.1 for 3 players, c = 1/0.6
Player 1 gets 1/3 (more than its peak 0.2)

if the report is 0.1,0.3,0.1, c = 1/0.5, player 1 gets 0.2
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PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

® Suppose, Y ienpi <1

* Begin with everyone’s allocation being 1 (infeasible)

e Keep reducing until } ;cnfi =1

* On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
* Symmetric for ) cnpi > 1

Definition
Q Case Ycnpi = 1: f'(P) = pi

Q Case Yy pi < 1: f/*(P) = max{p;, u(P)}, where y(P) solves Y ;cy max{p;, u} =1
Q Case ) ;cnpi > 1: f/(P) = min{p;, A(P)} , where A(P) solves Y ;cy min{p;, A} =1
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The Uniform Rule

Theorem (Sprumont 1991)
The uniform rule SCF is ANON, PE, and SP

* ANON is obvious: only the peaks matter and not their owners
* PE: the allocation is s.t.

_fu( ) pl’VIeleZIGNpl_l
— fU(P) > p;, Vi € N if Ly pi < 1
— fl-u(P) < pi, Vi € N, if ZiENpi >1
e This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent
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The Uniform Rule: Strategyproofness

e Case ) jcnypi = 1: each agent gets her peak, no reason to deviate

* Case ) cypi < l:thenf!(P) >p;, Vie N

* Manipulation, only for i € N s.t. f(P) > p; = u(P) > p;

¢ The only way i can change the allocation is by reporting p} > p(P) > p;
* Leads to an worse outcome for i than y(P)

* A similar argument for case ) oy p; > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

* See Sprumont (1991) : Division problem with single-peaked preferences
e Envy-free (EF): Agents do not envy each other’s shares — also holds for uniform rule
e SP, PE, ANON, EF, polynomial-time computable
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* Social Choice Function F : © — X
* X: space of all outcomes

¢ In this domain, an outcome x € X has two components:
— allocation a
— payment 7 = (711, -+ ,7,), T; € R
* Examples of allocations:
@ A public decision to build a bridge, park, or museum. a4 = {park, bridge, - - - }
@ Allocation of a divisible good, e.g., a shared spectrum, a = (ay,az,- -+ ,a,), a; € [0,1], Liena; = 1,
here a; : fraction of the resource i gets
@ Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1,ay,- - - ,a,), a; € {0,1},
Lienai <1
@ Partitioning indivisible objects, S = set of objects,
A={(A1,---,An) 1 A; CS, VieEN,AiNA; =0, Vi #j}
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Mechanism Design with Transfers

e Type of an agent i is §; € ©; this is a private information of i
* Agent’s benefit from an allocation is defined via the valuation function
* Valuation depends on the allocation and the type of the player

vt AXx0; >R (independent private values)

e Examples:
— if i has a type ‘environmentalist’ 6"V, and a € {Bridge, Park}, then v;(B, 5"") < v;(P, 6"")
— if type changes to ‘business’ 9}’“5, v;(B, 9}’“5) > v;(P, 9}"15)
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Payments = Monetary Transfers

¢ Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

e Payments 77;; € R, Vi e N
e Payment vector 77 = (711, 712, . .., 7Tn)
e Utility of player i, when its type is 6;, and the outcome is x = (a, 77) is given by

ui((a, ), 0;) = vi(a, 0;) — 7 (quasi-linear payoff)
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* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a, ), 0;) = vi(a,6;) — m; (quasi-linear payoff)
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Quasi Linear Domain

* Types 0; that depend on the outcome x = (a, 7r) this way belongs to the quasi-linear domain
ui((a, ), 0;) = vi(a,6;) — m; (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer
* Consider two alternatives (4, 71) and (a, r’), allocation is the same but payments are different
* Suppose 7, < 7; for some i € N

* There cannot be any preference profile in the quasi-linear domain where (4, 7r) is more
preferred than (a, ') for agent i

* Because v;(a,0;) - 7, > v;(a,0;) — m;,V6; € O;
* In the complete domain, both preference orders would have been feasible
* This restriction opens up possibilities of several non-dictatorial mechanisms
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Quasi Linear preferences

* The SCFF = (f, (p1,p2,---,pn)) = (f,p) is decomposed into two components
* Allocation rule component
f:@1 XOy X 0Oy — A
When the types are 0;,i € N, f(61,--- ,0,) =ac A
* Payment function
Pii O X x -0, =R, Vie N

When the types are 0;,i € N, p;i(61,--- ,0,) = 1, € R
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Example Allocation Rules

Q@ Constant rule, f°() =4, V6 € ©
@ Dictatorial rule, fD (0) € arg max,c4 v4(a,04),Y0 € O, for some d € N
@ Allocatively efficient rule / utilitarian rule

AE (a0
f75(0) € arg max Z v;(a, 6;)
ieEN
Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)
Q Affine maximizer rule:

FAM(9) € arg ma}i((z Aivi(a,6;) 4+ x(a)), where A; > 0, not all zero
€A jeN

— Aj=1,Yi € N,k = 0: allocatively efficient; Ay =1,4; = 0,Vj € N\ {d}, x = 0: dictatorial

@ Max-min/egalitarian
MM ;
0) € max minv;(a, 6;
f77(0) € arg uea/i( iG}{II i(a,0;)
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Example Payment Rules

@ No deficit: Y,y pi(0) >0, VO € ©
@ No subsidy: p;(f) >0, V0 € ©,Vie N
@ Budget balanced: Y ;cnpi(0) =0, V6 € ©

Definition (DSIC)

A mechanism (f,p) is dominant strategy incentive compatible (DSIC) if

vi(f(6;,0_;),0;) — pi(6;,0_;) > vi(f(6;,0_;),6;) — pi(6],0_;),V6_; € ©_;,6,,0; € ©;,Vi € N
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Question

What needs to be satisfied for a DSIC mechanism (f,p)?

Example
N={1,2},0; =0, = {,0"},f : ®; x @, — A. The following conditions must hold
Player 1:
v1(f(67,62),6™) — p1 (67, 62) (6%,62),6™) — p1(6",62), V6, € @, )

> v(f
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Implications of DSIC

Question

What needs to be satisfied for a DSIC mechanism (f,p)?

Example
N={1,2},0; =0, = {,0"},f : ®; x @, — A. The following conditions must hold
Player 1:
v1(£(6",62),6™) — p1(67,62)
v1(f(6",62),6%) — p1(6",65)

(61, 6,),6™) — p1(6%,6,),V6, € O, (1)
(67,6,),0%) — p1(67,6,),V6, € ©, 2)

> v(f
> vy (f

Player 2:

(6L, 61),0M) — py(6%,61),V0; € O (3)

UZ(JC(GH/ 61)/ GH) - PZ(GH/ 91) 2 (%)
> (69,61),0%) — pp(67,6,),V6, € ©, (4)

(f
va(f(6",61),6") — pa(6",67) (f

02



Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f



Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

q:(0;,0_;) = pi(0;,0_;) +h;i(6_;),V0,Vie N



Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

qi(0i,0—i) = pi(0,0_;) + hi(6_;), V6, Vi€ N
* Question: Is (f,q) DSIC?

vi(f(0;,0-1),60) —pi(0;,0_) —hi(0_;) = vi(F(0,0-),0;) — pi(6;,0_;) — hi(0_;), V6;,6;,6_;, Vi € N



Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

q:(0;,0_;) = pi(0;,0_;) +h;i(6_;), V0, Vi€ N
* Question: Is (f,q) DSIC?
vi(f(0;,0-1),60) —pi(0;,0_) —hi(0_;) = vi(F(0,0-),0;) — pi(6;,0_;) — hi(0_;), V6;,6;,6_;, Vi € N

e If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it



Properties of the Payment

* Say (f,p) is incentive compatible, i.e., p implements f
¢ Consider another payment

q:(0;,0_;) = pi(0;,0_;) +h;i(6_;), V0, Vi€ N
* Question: Is (f,q) DSIC?
0i(f(6:,65),6:) —pi(6;,0_) —hi(0_) = vi(£(6],0-4),0;) —pi(6;,6 ;) —hi(0 ), ¥6;,6;,0_;,Vie N

e If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

* The converse question: when do the payments that implement f differ only by a factor
hi(6-:)?



Properties of the Payment

* Suppose the allocation is same in two type profiles 6 and § = (9;,6_;)
e ie, f(0) =f(0) = a, then
e if p implements f, then p;(6) = p;(0) [exercise]
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Definition (Pareto Optimal)

A mechanism (f, (p1,...,pn)) is Pareto optimal if at any type profile 6 € ©, there does not exist
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Pareto Optimality in Quasi-linear domain

Definition (Pareto Optimal)

A mechanism (f, (p1,...,pn)) is Pareto optimal if at any type profile 6 € ©, there does not exist
an allocation b # f(0) and payments (771, ..., 7T,) with Y ey 7 = Yienpi(0) s.t.,

v;(b,0;) — M > Ui(f(e),ez') = pl(B),Vz €N,
with the inequality being strict for some i € N
e Pareto optimality is meaningless if there is no restriction on the payment

® One can always put excessive subsidy to every agent to make everyone better off
* So, the condition requires to spend at least the same budget
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* (<=)weprove -PO = —AE
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Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f, (p1,- -+ ,pn)) is Pareto optimal iff it is allocatively efficient

* (<=)weprove -PO = —AE

© _‘PO/ E|b/ 7-[/9 s.t. ZiEN T 2 ZiEN pl(e)

v;i(b,0;) — ; > v;(f(0),0;) — pi(0),Vi € N, strict for some j € N
* summing over the all these inequalities

ZUZbG an>Zvl(f —Zpi(e)

iEN ieEN iEN iEN
Zvi(bzei)_ Zvl(f 0),6;) 2771 Zpi(g) >0
ieN ieEN ieN ieN

o fis ~AE
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* Letd = Yenvi(D,0;) — Lienvi(f(6),6;) >0

* Consider payment 71; = v;(b,6;) — v;(f(0),6;) +pi(6) —6/n,Vi e N
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(= )-AE = —PO

e -AE — J0,b ;éf(e) st Y ien Z)i(b, 91') > YieNn Ul‘(f(g), 91)

* Letd = Yenvi(D,0;) — Lienvi(f(6),6;) >0

* Consider payment 71; = v;(b,6;) — v;(f(0),6;) +pi(6) —6/n,Vi e N
e Hence, (v;(b,6;) — ;) — (v;(f(),6;) —pi(0)) =6/n>0,Vie N

* also Lien 7ti = Lien pi(0)

* Hence f is not PO
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Allocatively Efficient Rule is Implementable

Consider the following payment: p&(6;,60_;) = h;(6_;) — Yj£i V) (FAE(0;,0_)), 0;), where
hi : ©_; = R is an arbitrary function: Groves payment

Example
Single indivisible item allocation N = {1,2,3,4}
01 =10, 6, = 8, 03 = 6, 04 = 4, when they get the object, zero otherwise
Let hi((?_z-) =min6_;
If everyone reports their true type, the values of h; are hy =4, hy =4, h3 =4, hy =6
The efficient allocation gives the item to agent 1
r=4-0=4p,=4—-10= —6,p3=4—-10= —6,p4 = 6 —10 = —4, i.e., only player 1
pays, other get paid
Surprisingly, this is a truthful mechanism
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Theorem

Groves mechanisms are DSIC

¢ Consider player i .
o fAE(0,,0_;) = a, and fAE(0],0_;) =b )
* By definition, Z)l‘(ll, 61) + Zﬁél U]‘(Cl, 9]> > Ui(b, 61) + Zﬁél U]'(b, 9])
e utility of player i when he reports 6; is
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Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

¢ Consider player i .
o fAE(6;,,0_;) = a,and fAE(0],0_;) = b
* By definition, Z)l‘(ll, 61) + Zﬁél U]‘(Cl, 9]> > Ui(b, 61) + Zﬁél U]'(b, 9])
e utility of player i when he reports 6; is
vi(FA5(6;,6-1),6) — pi(6;,6-)
= 0 (FA5(6;,04),6;) — i (6_5) + Yo (F*F (6;,6_), 6))
j#
> 0;(FAF(6],00),0,) — hi(6-5) + Y v;(F*(61,6_,),6))
j#i
= 0;(f**(6],6-:),6;) — pi(6],6)
e Since player i was arbitrary, this holds for all i € N. Hence the claim.
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