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The Vickrey-Clarke-Groves Mechanism (VCG)

• The most popular mechanism in the Groves class

• Also known as the pivotal mechanism (V’61, C’71, G’73)
• Given by a unique hi(θ−i) function in the Groves class

hi(θ−i) = max
a∈A

∑
j ̸=i

vj(a, θj)

pVCG
i (θi, θ−i) = max

a∈A
∑
j ̸=i

vj(a, θj)−∑
j ̸=i

vj(f AE(θi, θ−i), θj)

• Interpretation of the payment: sum value of others (in absence of i − in presence of i)
• Interpretation of the utility under VCG mechanism:

vi(f AE(θi, θ−i), θi)− pVCG
i (θi, θ−i) = ∑

j∈N
vj(f AE(θi, θ−i), θj)−max

a∈A
∑
j ̸=i

vj(a, θj)

= marginal contribution of i in the social welfare
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An Observation on VCG Mechanism

Utility under VCG mechanism:

vi(f AE(θi, θ−i), θi)− pVCG
i (θi, θ−i) = ∑

j∈N
vj(f AE(θi, θ−i), θj)−max

a∈A
∑
j ̸=i

vj(a, θj)

• Note: utility is non-negative, i.e., VCG is individually rational
(for public goods or object allocation)

• Can be generalized using properties choice set monotonicity and no negative externality –
later

• Intuition:

— choice set monotonicity says that with more agents, set of alternatives never reduces
— no negative externality says if an agent is removed, that agent does not have a negative value

towards the AE allocation without that agent
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Examples

1 Single Object Allocation
Type = value of the object if allocated, the agent get this value and zero otherwise

pVCG
i (θi, θ−i) = max

a∈A
∑
j ̸=i

vj(a, θj)−∑
j ̸=i

vj(f AE(θi, θ−i), θj) (1)

Efficient allocation would give the object to the allocation whose reported type is highest

— Consider 4 players , types {10, 8, 9, 5} =⇒ item is given to player 1, and payments are: {9, 0, 0, 0}
— This is second price auction
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Examples

2 What is pivotal in the VCG payment?
3 players having the following valuations :

0 70 50

95 10 50

10 50 50

A

B

C

Football Library Museum

— VCG allocation: M (maximizes social welfare)
— Payments

A pays = 105− 100 = 5
B pays = 120− 100 = 20
C pays = 100− 100 = 0← non-pivotal agent

— The agent whose presence changes the outcome is charged money
They are the pivotal players
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Examples

3 Combinatorial Allocation: sale of multiple objects
3 players having the following valuations (value is the type itself vi(a, θi) = θi(a))

0 8 6 12

0 9 4 14

θ1

θ2

∅ {1} {2} {1&2}

— Efficient allocation : {1} → 2 & {2} → 1 : Call this a∗

— pVCG
1 (θ1, θ2) = maxa∈A ∑j ̸=1 θj(a)−∑j ̸=1 θj(a∗) = 14− 9 = 5, payoff = 6− 5 = 1

— pVCG
2 (θ1, θ2) = 12− 6 = 6, payoff = 9− 6 = 3
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VCG Mechanism in Combinatorial Allocations

• M = {1, . . . , m}: set of objects

• Ω = 2{1,...,m}: set of bundles
• θi : Ω→ R: type/value of agent i
• We assume θi(s) ⩾ 0, ∀s ∈ Ω, objects are goods
• An allocation in this case is a partition of the objects, i.e.,

a = {a0, a1, a2, . . . , an}, ai ∈ Ω, ai ∩ aj = ∅, ∀i ̸= j

a0 : set of unallocated objects,∪n
i=0ai = M

Let A be the set of all such allocations
• Also assume selfish valuations, i.e., θi(a) = θi(ai), agent i’s valuation does not depend on the

allocations of others
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VCG Mechanism in Combinatorial Allocations

Claim

In the allocation of goods, the VCG payment for an agent, that gets no object in this efficient allocation, is
zero

Proof sketch:

a∗ ∈ arg max
a∈A

∑
j∈N

θj(a), a∗i = ∅

a∗−i ∈ arg max
a∈A

∑
j∈N\{i}

θj(a)

• Note, pVCG
i (θ) ⩾ 0, also pVCG

i (θ) = ∑j ̸=i θj(a∗−i)−∑j ̸=i θj(a∗)
• Note: θi(a∗−i) = 0, and θi(a∗) = θi(a∗i ) = 0
• Add the first to the first term and subtract the second from the second term above
• pVCG

i (θ) = ∑j∈N θj(a∗−i)−∑j∈N θj(a∗) ⩽ 0 =⇒ pVCG
i (θ) = 0
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VCG Mechanism in Combinatorial Allocations

Definition (Individual Rationality)

A mechanism (f , p) is individually rational if vi(f (θ), θi)− pi(θ) ⩾ 0, ∀θ ∈ Θ, ∀i ∈ N

Claim

In the allocation of goods, the VCG mechanism is individually rational

utility of player i = θi(a∗)− pVCG
i (θ) = θi(a∗)− (∑

j ̸=i
θj(a∗−i)−∑

j ̸=i
θj(a∗))

= ∑
j∈N

θj(a∗)−∑
j ̸=i

θj(a∗−i)−θi(a∗−i) + θi(a∗−i)

= ∑
j∈N

θj(a∗)− ∑
j∈N

θj(a∗−i)︸ ︷︷ ︸
⩾0, by definition of a∗

+ θi(a∗−i)︸ ︷︷ ︸
⩾0

⩾ 0
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In the allocation of goods, the VCG mechanism is individually rational

utility of player i = θi(a∗)− pVCG
i (θ) = θi(a∗)− (∑

j ̸=i
θj(a∗−i)−∑

j ̸=i
θj(a∗))

= ∑
j∈N

θj(a∗)−∑
j ̸=i

θj(a∗−i)−θi(a∗−i) + θi(a∗−i)

= ∑
j∈N

θj(a∗)− ∑
j∈N

θj(a∗−i)︸ ︷︷ ︸
⩾0, by definition of a∗

+ θi(a∗−i)︸ ︷︷ ︸
⩾0

⩾ 0
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Application domain: Internet advertising

The reason for success of Internet advertising:

1 User data

— Advertisers can gather a lot of data from the user to design targeted products
2 Measurable Actions

— Can classify buyers into categories and measure the interest and take appropriate actions

3 Low Latency

— Real-time bidding, automated bidding, decisions on the fly possible
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Types of advertisements on the Internet

1 Sponsored Search Ads

— Advertisers bid on the keywords entered by the user during search
2 Contextual Ads

— depending on the context of the page, email or post message

3 Display Ads

— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads

— depending on the context of the page, email or post message

3 Display Ads

— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads

— depending on the context of the page, email or post message
3 Display Ads

— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads
— depending on the context of the page, email or post message

3 Display Ads

— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads
— depending on the context of the page, email or post message

3 Display Ads

— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads
— depending on the context of the page, email or post message

3 Display Ads
— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads
— depending on the context of the page, email or post message

3 Display Ads
— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads
— depending on the context of the page, email or post message

3 Display Ads
— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges

• Small businesses can customize these ads via exchanges



14

Types of advertisements on the Internet

1 Sponsored Search Ads
— Advertisers bid on the keywords entered by the user during search

2 Contextual Ads
— depending on the context of the page, email or post message

3 Display Ads
— Traditional modes of advertising, e.g., banner ads in newspapers

• Ads are complex - modern internet advertising is handled via ad exchanges
• Small businesses can customize these ads via exchanges



15

Position Auctions

• Position Auctions: auctions to sell multiple ad positions on a page

• Let N = {1, 2, . . . , n}: set of advertisers
• Let M = {1, 2, . . . , m}: set of slots, assume m ⩾ n, i.e., every ad is shown; 1: best position, m:

worst position
• Evolution of position auctions:

— Early positions auctions ordered the ads via bid-per-impression

◦ just for showing the ad, e.g., newspaper ads
◦ all risk on the advertiser

— Bids on clicks pay-per-click model

◦ risk is shared by the publisher
◦ ranked by pay-per-click
◦ If shown ads are not clicked, the publisher earns nothing

— Today’s approach: Rank advertisers based on the product of the probability of a click and the bid
value

◦ Probability of click is called click through rate (CTR)
◦ rank by expected revenue
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Advertiser Value

• Assumption 1: Clicks generate value to the advertisers

• Assumption 2: All clicks are valued equally, no matter what position the ad is displayed -
the position only affects the chance of getting the click

• These assumptions help decouple the value effect and position effect
• Agent i’s expected value when her ad is shown at position j ∈ M is given by

vij = CTRij · vi

CTRij ∈ [0, 1]: click through rate, i.e., probability of getting a click on i’s ad at jth position, vi:
value of a click

• Further assumption: CTRij = ρi · pj, where ρi: quality component, and pj: position component
• Hence, agent i’s expected value when her ad is shown at position j ∈ M

vij = pj︸︷︷︸
position effect

· (ρivi)︸ ︷︷ ︸
agent effect
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Advertiser Value

vij = pj︸︷︷︸
position effect

· (ρivi)︸ ︷︷ ︸
agent effect

• Position effect is assumed to be decreasing with position

p1 = 1, pj > pj+1, ∀j = 1, . . . , m− 1

• vi is the only private information of the advertiser
• pj and ρi are measurable
• Search engines estimate the ρi: say ρ̂i

• Bidders bid bi

• Reported agent effect component is ρ̂i · bi
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Allocation of Slots in Position Auctions

• Suppose the allocation of the slots is given by a = (a1, a2, . . . , an) is the allocation, where ai is
the slot allocated to i

• Then the value of agent i:
vi(a, θi) = pai · (ρ̂i · θi)

• Efficient allocation: a∗ ∈ arg maxa∈A ∑i∈N vi(a, θi)

• Observe: an allocation a is efficient iff it is a “rank-by-expected revenue” (ρ̂i · θi) mechanism
• Why? because it is a moment maximization problem: sum is maximized when the maximum

weight is put on the maximum value
• The slot allocation problem is a sorting problem, hence computationally tractable
• Allocation decision is done, need payments to make it DSIC
• Natural candidate: VCG
• Note: actual implementation in practice might be different, here we discuss only the

principle of its computation
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Allocation of Slots in Position Auctions

• VCG in the context of position auctions

• Given bids (b1, · · · , bn) (Note: θ̂i: reported type and bi are the same)
• WLOG, assume the order to be such that ρ̂1b1 ⩾ ρ̂2b2 ⩾ · · · ⩾ ρ̂nbn

— allocation a∗ is s.t., a∗i = i
— define a∗−i ∈ arg maxa∈A ∑j ̸=i vj(a, θj): in this allocation, the slots allocated to the agents after i, i.e.,

from i + 1 to n get one slot better/above than a∗

• Hence,

pVCG
i = ∑

j ̸=i
vj(a∗−i, θj)−∑

j ̸=i
vj(a∗, θj) =

n−1

∑
j=i

pj(ρ̂j+1bj+1)−
n−1

∑
j=i

pj+1(ρ̂j+1bj+1)

=
n−1

∑
j=i

(pj − pj+1)(ρ̂j+1bj+1), ∀i = 1, · · · , n− 1, and

pVCG
n (b) = 0

• This is the total expected payment, to convert this to the pay-per-click: 1
pi ρ̂i

pVCG
i (b)
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Pros of VCG Mechanism

1 DSIC: hence very low cognitive load on the bidders

2 No subsidy (and therefore, deficits) under certain conditions if items are goods

3 Never charges an agent who gets no items

4 Individually rational to participate: nobody loses money
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Cons of VCG Mechanism

1 Privacy and transparency
— it reveals true valuations/types. Two competing companies would not like to make private

information public
— a malicious auctioneer may introduce fake bidders to extract more payment from the bidders

2 Susceptibility to Collusion: consider a public good decision of A or B

200 0 150

100 0 50

0 250 0

1

2

3

A B Payment

250 0 100

150 0 0

0 250 0

1

2

3

A B Payment

— If 1 and 2 collude and bid higher, both of them reduce their payments =⇒ utility increases
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Cons of VCG Mechanism

3 Not frugal: payment could be very large: VCG is guaranteed to be no deficit but can charge
payments much larger than the cost

A

B D

C E

F

3

3

2

1

3

1

5

Example: Item delivery network (e.g, Amazon), source: A, destination: F
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Cons of VCG Mechanism

• This is a cost setup, hence the values
can be considered to be negative

• Each edge is a player
• Efficient allocation: A→ B→ E→ F
• pAB = (−2− 3− 1)− (−1− 1) = −4
• pAB = (−8− 3− 1)− (−1− 1) = −10
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52 −→ 8
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Cons of VCG Mechanism

4 Revenue monotonicity violation: revenue should weakly increase with the number of players

0 90 0→ 0

100 0 90→ 0

100 0 0

1

2

3

F M Payment

Nobody’s pivotal

5 Not budget balanced: this is a no-deficit mechanism but it almost always keeps surplus,
which can be large

— This money cannot be redistributed among the same players, since that will change their payoffs
and the resulting mechanism would not remain DSIC

— If the players are partitioned into two groups and the surplus of one group is redistributed over
the other group, then it is budget balanced, but the overall efficiency is compromised
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Cons of VCG and Concluding Remark

• This surplus has to be taken away or destroyed: money burning

• How much to burn and what efficiency we compromise?
• Nath and Sandholm (2019): Efficiency and budget balance in general quasi-linear

domains, Games and Econ Behavior
• But

These are certain limitations that are good to know for effective use of VCG, however, it
is the most widely used mechanism in the literature
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