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 Econometrica, Vol. 59, No. 2 (March, 1991), 509-519

 THE DIVISION PROBLEM WITH SINGLE-PEAKED PREFERENCES:
 A CHARACTERIZATION OF THE UNIFORM ALLOCATION RULE

 BY YVES SPRUMONT

 1. INTRODUCTION

 IMAGINE THAT A GROUP OF AGENTS participate in some production process. Each is to
 contribute some quantity of a homogenous input, say labor, to the business. The
 technology is given and the total amount of work that is needed is fixed. All agents have
 agreed that everyone would receive a quantity of output proportional to his work effort.
 In such a framework, preferences over the participation levels in the business are rather
 naturally single-peaked: each agent has an optimal share around which his utility
 decreases monotonically (this is a direct consequence of the assumption that preferences
 are strictly convex in the labor-output space). The optimal shares, however, may not be
 compatible: they might add up to more or less than one. How should we determine
 everyone's share in the business? This is what we call the "division problem with
 single-peaked preferences."

 A slightly different version of the same problem is encountered in the literature on
 so-called fixed-price equilibria. Consider a two-good exchange economy. Suppose that at
 the current relative price, which is rigid, the net demands do not add up to zero. How
 should the transactions be determined? This problem is a little different from the
 previous one since (i) an agent's net demand may be any real number (while his "optimal
 share" had to be between zero and one) and (ii) the net trades must add up to zero
 (while the shares had to sum up to one).

 However, if we impose the requirement that no agent "on the short side of the
 market" be rationed, we are back to the problem of dividing some fixed amount (demand
 or supply) among several agents (sellers or buyers) whose claims exceed that amount.
 The single-peakedness assumption is again quite natural: if an agent has strictly convex
 preferences, then his preferences over those bundles which belong to his budget line are
 single-peaked.

 This paper is concerned with allocation rules for the division problem with single-
 peaked preferences. An allocation rule is a mapping that associates with each vector of
 (single-peaked) preferences some division of the amount to be shared.

 Our first concern is that our rule be strategy-proof: no agent should have an incentive
 to misreport his preferences, no matter what the others do. Strategy-proofness is the
 strongest decentralizability property that a rule could possess; indeed every agent need
 only know his own preferences to compute his best choice. As such, it is very desirable.
 In the fixed-price literature for instance, the main proofs of existence of a general
 equilibrium with quantity rationing rely on it. Dreze's model (Dreze (1975)) cannot
 handle manipulable rationing schemes and the concept of "effective demand", central in
 Benassy's approach (Benassy (1982)), is satisfactory only in the case of nonmanipulable
 schemes. Without strategy-proofness, one is forced to an approach in terms of Nash
 equilibria, which involves substantial difficulties: see Grandmont (1977) for a discussion.

 It is well known that strategy-proofness is hard to meet. A fundamental result in social
 choice theory, established by Gibbard (1973) and Satterthwaite (1975), states that every
 strategy-proof voting scheme must be dictatorial-provided that there are more than two
 alternatives at hand. Reasonable strategy-proof rules do exist, however, if appropriate

 1I wish to thank H. Moulin for the many helpful discussions I had with him. I also benefited from
 comments by G. Weinrich and two referees.
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 510 YVES SPRUMONT

 restrictions are imposed on the preferences. One such restriction is precisely single-
 peakedness. When preferences are single-peaked, the Condorcet winner voting rule is
 strategy-proof. Conversely, every strategy-proof, efficient and anonymous voting scheme
 must be a mere variant of Condorcet's rule: see Moulin (1980) for details.

 Several authors have shown that impossibility results similar to the Gibbard-
 Satterthwaite theorem hold true in specific economic environments. See Hurwicz (1972)
 and Dasgupta, Hammond, and Maskin (1979) for the case of an exchange economy with
 private goods and Satterthwaite and Sonnenschein (1981) for the case where public
 goods and production are introduced in the model.

 Yet, the possibility of constructing "nice" strategy-proof allocation mechanisms in
 such environments when preferences are single-peaked, has not been much explored.
 Writers in the fixed-price literature are aware that strategy-proof rationing schemes do
 exist. The two focal examples are the "uniform rationing scheme" and the "queuing
 scheme" (see, e.g., Benassy (1982)). What characterizes these two rules, however, and
 what other rules-if any-are strategy-proof, is a question that has received little
 attention.

 Besides strategy-proofness, we would like our rule to possess two additional proper-
 ties: it should be efficient and fair.

 In the present context, efficiency simply requires that if the optimal shares sum up to
 more (less) than one, then no agent should get more (less) than his optimal share. In
 models of exchange with quantity rationing, this corresponds to the familiar requirement
 that no agent on the short side of the market be rationed.

 Fairness, on the other hand, certainly demands that our rule be anonymous. In
 addition, one might want that no agent ever prefers someone else's share to his own: this
 is the well-known property of "envy-freeness" first introduced by Foley (1967).

 Our result is that the properties of strategy-proofness, efficiency, and anonymity
 together characterize a unique allocation rule. This rule is nothing but the adaptation of
 the uniform rationing scheme to the division problem: it gives to everyone his preferred
 share in the business, within the limits of an upper bound and a lower bound determined
 by the feasibility condition that the shares add up to one. Alternatively, the anonymity
 axiom may be replaced by envy-freeness.

 This characterization theorem is proved in Section 3 (with a proof of the variant in the
 Appendix), after the formal model has been presented in Section 2. Concluding com-
 ments are gathered in Section 4.

 2. THE MODEL

 Given is N = {1,..., n}, a finite set of agents who must share one unit of some
 perfectly divisible good. The preferences of every agent i E N are represented by a

 complete preordering of [0, 1] denoted R1. For all x, y E [0, 1], xRiy means that consum-
 ing a quantity x of the good is, from i's viewpoint, at least as good as consuming a

 quantity y. Strict preference will be denoted by Pi, indifference by I. We assume
 that i's preferences are continuous, that is, for each x c [0, 1], {y c [0, 1] IyRjx} and
 {y E [0, 1]IxRiy} are closed sets.

 Preferences are further restricted to be single-peaked and "strictly decreasing around
 their peak." That is to say, for each i E N, R1 satisfies the following condition:

 (There exists x* E [0, 1] such that for all y, z E [0, 1]:

 (1) x* < y < z =>X*PiyPiz,
 z <y <X* =>X*P1yPiZ-

 We call x * the peak of Ri. To emphasize the dependence upon the preference
 preordering, we write x*(R1). We let S denote the set of continuous preorderings of
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 THE DIVISION PROBLEM 511

 [0, 1] satisfying (1). For any x* E [0, 1], S(x*) stands for the subset of those preferences in

 S whose peak is x*. The symbol R = (RA E N denotes the vector of announced
 preferences, while R-i stands for (Ri)iE N\j(j E N).

 An allocation rule associates a vector of shares with each vector of preferences. It is

 thus a function 4: SN -* [0, 1]N satisfying:

 FEASIBILITY: For all R E 5N I EiE Ndi(R) = 1.

 Our three basic axioms are the following:

 EFFICIENCY: For all RCE 5N,

 (E x*(Ri) < 1} {41(R) >x*(Ri) for alli N},

 E x*(R,) > 1} = {(i(R) <x*(Ri) foralli E N}.
 i eN

 ANONYMITY: For all permutations rr of N, all R E 5N, i(R') = 04(i)(R), where
 R 7 = (R 7(i))i E- N,

 STRATEGY-PROOFNESS: For all i E N, R E 5N, R' E 5, 4i(Ri, R_i)RoiX(R, R_1).

 3. THE RESULTS

 The axioms listed above characterize a unique rule that we shall call the uniform
 allocation rule (the term is borrowed from the fixed-price literature). This rule gives to
 each agent his preferred share in the business, as long as it falls within certain bounds
 which are the same for everyone and chosen so as to satisfy the feasibility condition.

 DEFINITION: The uniform allocation rule 0*: 5N -* [0, 1]N is defined as follows: for all
 i E N,

 min {x*(Ri), A(R)} if , x*(Ri) > 1,
 ieN

 Xi*(R) = imax{x*(R1),((R)} if E x*(Ri) < 1,
 i eN

 where A(R) solves the equation EiIN min{x*(R1), A(R)} = 1 and tt(R) solves the
 equation Eie N max{x*(Ri), ,u(R)} = 1.

 Our main result can be stated as follows:

 THEOREM: The allocation rule 4: 5N -* [0, 1]N is efficient, anonymous, and strategy-

 proof if and only if 4 = 0*.

 The proof relies on two preliminary results that will be presented as lemmas. Our first
 lemma will show that every efficient and strategy-proof allocation rule possesses a certain
 property of continuity with respect to the announced preferences. In order to define this
 property in a rigorous way, we need a few definitions.

 Consider a preference preordering Ri E S and some x E [0, 1]. Define the equivalent
 of x under Ri, denoted eR(x), as its "closest substitute on the other side of the peak of
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 512 YVES SPRUMONT

 R1." Formally, letting YR(x) = {y E [0, 1]jy >x*(R,) if x <x*(R,) and y <x*(Ri) if
 x > x*(R1)}, eR(x) is given by the following two conditions: (i) eR(x) E YR(X); (ii) there is
 no y E YR(x) such that eR(x)PiyRix. For each Ri E S and x E [0, 1], it is clear that
 eR (x) exists and is unique. Moreover, any two preferences RJ1, R2 E S are the same if
 and only if eRi(x) = eR2(x) for all x c [0, 1]. It is therefore meaningful to define the
 distance between two preferences R1, R2 E S as follows:

 d(Rl, R2) = max I eR1(X) -eR2(X)
 x e[O, 1]

 The assumption of continuity of the preferences ensures that eR, and eR2 are continuous
 functions, so that d(R1, R2) is well defined.

 A function f: S -* [0, 1] will be called continuous at R E S if and only if for all E > 0
 there is 8 > 0 such that if 0 < d(R, R') < 8 , R' E 5, then If(R) -f(R')I < E. The function
 f is continuous if and only if it is continuous at every R E S.

 Consider an allocation rule 4: SN -* [0, 1]N. For all i N, R ZSN\i, define the

 function OR I: S -5 [0, 1] by O/R-(Ri) = Xi(R) for all Ri E S. The property that we are
 interested in can be stated as follows:

 CONTINUITY:

 (2) For all i E N, RE E 5N\I, the function /R-, is continuous.

 We are now ready to prove the following lemma.

 LEMMA 1: If an allocation rule 4: 5N -* [0, 1]N is efficient and strategy-proof, then it
 satisfies continuity.

 PROOF: (a) We first show that every efficient and strategy-proof allocation rule
 satisfies the following property:

 Forall i N9 R_ ESN\i and Ri,R E S,

 (3) 1x*(Rj) = x*(RI )) {+ z(Rl, R_j) = Oj(Ri, R-J).

 Indeed, suppose that 4 is an efficient allocation rule violating (3): 3i E Ng R E SN\1
 and Rj, R; E S such that x*(Ri) =x*(R) and, say:

 (4) XI( Rl R _j) < Oi( Ri ,R _J)

 Assume Ei e Nx*(R) > 1 (the other case is similar). By efficiency, Oi(Ri, R -i) < x*(Ri)
 and Oj(R , R) Ax*(RI) =x*(Rj). So we get from (4):

 Oi(Rig R-i) < Oj(Ri' R_i) < x*(Rit) = x*(Ri).

 Clearly Oj(R', R_1)P14j(Rj, R-i), violating strategy-proofness. We have established
 property (3).

 (b) Assume now that 4: SN -* [0, 1]N is an efficient and strategy-proof allocation rule
 violating continuity, say:

 3R1 E S, R1 ES N\1 and E > 0 such that for all 3 > 0 there is RI
 such that 0 < d(R1, RI) < 3 and I4 i(R1) - 4R)-'(RI)I > E.

 We want to derive a contradiction.
 Consider first the case )2ieNX*(Ri)= 1. By efficiency, 4R) 1(Ri)=x*(Ri). Suppose

 that R1 is such that x*(RI) > x*(Rl) (the other case is similar). By efficiency again,
 OR- (R1)<x*(R1). Choosing 3 <E, we can rule out the eventuality that x*(Ri)=
 OR_-1(R1) < OR_-1(RI) ?x*(R,) (indeed, d(R1, R') <c3 <e implies Ix*(Ri)-x*(R1)I <E,
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 THE DIVISION PROBLEM 513

 while on the other hand, I41 l(Rl) 'i(RI)I > e). Therefore we must have:

 OR_ '(RI) < OR- -(R1) =x*(Rl) AX*(R1).

 Obviously OR_ 1-(R1)P,OR- '(RI), contradicting strategy-proofness.
 Consider next the case )2ie NX*(Ri) > 1 (the case Ei e NX*(Ri) < 1 is treated in the

 same way). By taking 3 small enough, we can make sure that R1 satisfies x*(RI) +

 EieN\lx*(Ri) > 1. Efficiency thus requires 1 x(R*)(Ix*(R.) and -
 There are 6 cases:

 (i), 01(RI) < OR- -(R1) <x*(R1) <x*(R1),

 (ii) OR- -(R1) < OR- -(RI) <x*(R1) <x*(R1),

 (iii) OR_-'(RI) <x*(R1) < OR -l(Rl) <x*(Rl) with 4)R-,(RI) < 4R-,(R1),
 and three other similar cases obtained by permuting the symbols R1 and RI.

 In case (i), k1 -(R1)P,OR- '(RI) while in case (ii), kR_-'(RI)Pi4R_-'(RI): 4 is manipu-
 lable in both cases.

 In case (iii) we can make the first inequality strict by choosing a sufficiently small. If

 OR_-i(R1)Pp/4R-'(RI), then 4 is not strategy-proof. On the other hand, if
 OlR_ (RI)R lR- 1(R1), we can construct RI' E S such that

 OR-, (R1)P;')R-1 (RI) and x*(RI') =x*(RI).

 Now 4 must satisfy property (3), i.e. (R_ '(RI') = R1 '(RI). Therefore O1 -(R1)PI"
 4)-i(Rj'), contradicting strategy-proofness again and thereby completing the proof of
 Lemma 1. Q.E.D.

 We shall prove next a fundamental one-agent result about strategy-proofness. Call a
 function f: S -* [0, 1] strategy-proof if and only if f(R)R f(R') for all R, R' E S. For any
 three numbers a, b, c E [0, 1], denote by med {a, b, c} the median of these numbers. We
 have the following lemma.

 LEMMA 2: The function f: S -5 [0, 1] is strategy-proof and continuous if and only if there
 exist two real numbers a and b, 0 < a < b < 1, such that f(R) = med {a, b, x*(R)} for all
 R E S.

 PROOF: The "if' part is just a matter of checking. We prove here the converse
 statement.

 Step 1-We show that if f is strategy-proof, then f(S) is closed. Assume not. Then

 there exists some sequence {xn} Cf(S) with xn -* x0 0 f(S). Consider then a preference
 R E S with x*(R) =x?. Since x 0 f(S), f(R) #x0. But we can always find some
 x' ef(S) that will be closer to xo than f(R) is. Hence by reporting some preference
 R' E S(x'), our agent ends up better off: f(R')Pf(R). This contradicts strategy-proofness.

 Step 2-Since f(S) is closed, one and only one of the following statements must be
 true:

 (i) f(S) = [a, b] for some a, b E [0, 1].
 (ii) 3(a, b) c [0, 1]\f(S) with a, b E f(S).
 Consider case (i) first. If x*(R) e [a, b], it is clear that f(R) = x*(R), for otherwise the

 agent could report some preference R' E S such that f(R') = x*(R) and end up better
 off. If x*(R) E [0, a), we must have f(R) = a, since otherwise the agent could report
 R' E S with f(R') = a. Similarly f(R) = b if x*(R) E (b, 1]. Therefore f(R) =
 med {a, b, x*(R)}.

 Step 3- Consider now case (ii). Let thus (a, b) c [0, 1]\f(S) with a, b E f(S). We will
 show that this contradicts our assumption that f is continuous.
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 514 YVES SPRUMONT

 Choose R E S such that x*(R) E (a, b) and aIb. Since f is strategy-proof, either
 f(R) = a or f(R) = b. Assume f(R) = a (the case f(R) = b is similar). We now construct

 a preference R0, in S that is arbitrarily close to R but is such that bP0a. Define R. to be
 the unique preference preordering in S satisfying:

 (i) For all x E [0, x*(R)], eR(x) = min{(1 + OIeR(x) -x*(R)I)eR(x), 11.
 (ii) For all x E [x*(R), 1], eR(x) = y y is the highest number in [0, x*(R)] such that

 eR (y) =x.
 Observe that x*(R0,) =x*(R). Since bP0 a, Strategy-proofness requires f(R,) = b.

 Next pick E such that 0 < E < b - a. For any 8 > 0, we can make d(R, R0,) < 8 by making
 0 arbitrarily small. However, If(R) -f(Rd) I = b - a > E. Hence f is not continuous at
 R, which is the desired contradiction. Q.E.D.

 Notice that the continuity assumption is necessary. Indeed, consider for instance the

 function f: S -* [0, 1] defined as follows:

 f (R) = ? If OPi, J !\1 ifi1RO.

 This discontinuous function is clearly strategy-proof but cannot be written as a median
 function as in Lemma 2. There are many other examples.

 We now turn to the proof of our characterization theorem.

 PROOF OF THE THEOREM: We first show that there is at most one allocation rule 4
 compatible with the axioms stated in the theorem.

 Combining Lemmas 1 and 2, we can write for all i e N, R E SN: 41(R) =

 med {ai(R-i), bi(R-i), x*(Ri)}, with 0 < a,(R-i) < bi(R-i) < 1 for all R1.
 We claim that anonymity forces a, = a and bi = b for all i E N.
 To prove this, we first show that for all i E N, the functions a, and bi are symmetric in

 their arguments. Fix i E Ng R_i E 5N\i, and let r be a permutation of N\i. Define w- to
 be the permutation of N such that r(i) = i and rr(j) = rj) for all j E N\i. By
 anonymity, Oi(R') = Xi(R), which implies that

 med (ala( R(), ... , RT(i i+ R7I(I?1) .RT(n)) ,

 bi(R T7(1) ,. . .* * T(i - ) 9 RT(i + 1) ,9. . .,9RT(n)) x * (RI )}

 =med {ai(Rl, . . ., 9Rl_-Ri+lg .. * * Rn)9

 bi(Rl, .. ., Ri_j, Ri+j9 .. * * Rn)9 x*(R,)} -

 Choosing Ri such that x*(Ri) = 0 yields the symmetry of ai and choosing R, such that
 x*(Ri)= 1 yields the symmetry of bi.

 To see that the functions a1 and bi in fact do not depend on i, pick i1, i2 E N and a
 permutation w- of N such that w(i1) = i2, w(i2) = il and n-(j) =j for all j * il, i2. Then
 4i(R') -0i2(R) for all R E 5N implies that

 med {all( Ri, . . ., Rll1, Ril+1, ..., R12 9, R1, R2?+ . . .9 Rn) 9

 bil(Rl, . . ., Ril_l, Ril+j9 ... ., R12 1 9Rilq R2 +l 9. . .,9Rn) 9 x*(Rl 2)

 = med {a 2( R1, . .., Ril1, Ril, Rll+1 . , R 12 9 Ri2+ 19 . . Rn) 9

 bf2l(Rl9N. . .R Ri 5 C s1s RilCoRilu+ch ( ...,( RR)0 d v eR12 +. .m.mRn) o x(Rl2t

 for all R EE SN. Choose R such that x*(R12 ) = O and invoke the symmetry of all, a '2 to
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 THE DIVISION PROBLEM 515

 conclude ai =a . Choose R such that x*(R 2) = 1 and use the symmetry of bi1, b,2 to get
 bil = b'2. Since i1 and i2 were chosen arbitrarily, we are done.

 So we get:

 (5) Oi(R) = med {a(R-1), b(R-1), x*(R1)} for all i E N, RE SN

 with O < a < b S 1.
 By feasibility we have:

 E med {a(R-1), b(R-1), x*(R1)} = 1 for all R E SN.
 i=N

 We first show that the function b is unique. This will be established via a recursive
 argument. By anonymity, the value of b can be computed when all n - 1 components of
 R-i are identical. We may then keep n - 2 of these components unchanged and use the
 feasibility condition to compute the value of b as the last component varies. Repeating
 the procedure determines the function b.

 Formally, fix R1 = = Rm = R1 e S(1), where 1 < m < n - 1. Then,

 b(R1, ., R. RmliR+l ... *Rn) + * +b(R, . ., R1 ,Rm+ 9 ?1 .. * Rn)
 m- m -1

 m times

 +med {a(R1, . . . Rm?R+ ... ,Rni)1
 m

 b R19..*, R19SRM+21 .. * Rn)1 X*(Rn+)}
 m

 From this we get, for 1 < m < n - 1:

 (6) b(Rl1 ... . R1 , Rm+i ... . Rn)

 mn-1

 b(R, . , 1,Rm?i, .. ., R1_1, RJ?l,.**.*.,Rn) ,x*(Rj)}j-

 rn

 m~~~

 Now we claim that for all j=m + 1,...,n and all Rm+1,..., Ri, Rj+1?,...,
 Rn, a(R1,. .. R1, Rm+?i ... , Rj-l, Rj+19 ... , Rn) = 0. Indeed, let R = (R1, . . ., R19
 Rm+i *... , Rj-l, Ro, Rj+1 **... Rn), where R? E S(O). By efficiency, 4j(R) =
 med {a(R _), b(Rj), 0} = a(R -) < x *(R1) = 0. Since 4i cannot take on negative values,
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 516 YVES SPRUMONT

 the claim follows. Therefore (6) can be rewritten:

 (7) b R1,... R1l Rm+j9 ..Rn)
 m - I

 rn-

 =-[1- E min(b(Rl,...,Rl,Rm+l?i,R.RJJ,Rj?+l,...Rn)X*(Ri)}l.
 m

 Furthermore, setting R1 = ... =Rn=R1 yields b(R1,...,R1)= 1/n. So b(R-j) is
 uniquely determined by the recursive formula (7) for any R_ E SN\i.

 Next we show that a is unique. Fix R1 = ... = Rm = R? E 5(O), 1 S m < n-1, and
 derive from the feasibility condition the following recursive formula:

 (8) a(Ro *...R? Rm?R+i*... Rn)
 m - 1

 n~~~~~~r m 1jE med {a R, ..R R +l . ... Rj- 1, Rj+ 1 1 .. gR
 m

 b(R? ...,Ro9SRM+j9 ....v Rj- 1 Rj+l ,-- Rn) 9X(Ri)]
 m

 with initial value a(R?,.. ., R?) = l/n obtained by setting R1 = = Rn .
 Since b is unique, formula (8) establishes that a is unique as well. It then follows from

 (5) that 4 must be unique. This completes the first part of the proof.
 The second part is to show that 0* is an allocation rule and that it satisfies our axioms.

 Feasibility, efficiency, and anonymity are obvious. We check strategy-proofness. Consider
 an arbitrary i eN with true preference R>*. The case x*(R*) + EjeN\,X*(R-)=1
 poses no problem. Assume next x *(R*) + EjeN\iX*(R)> 1. Agent i might have an
 incentive to lie only if x*(R*) > A(R'* R_-) = 0/(R*, R i). If he reports some Ri with
 x*(Rd)>x*(RM*), he gets A(Rj,R_a)=A(R*, R_): there is no improvement. If he
 reports Ri with x*(Rd) <x*(R?*), there are two cases:

 (i) If EjENX*(Rj)> 1, then i gets min{x*(R,), A(R)}. But in order to have A(R)>
 A(R> R-i), he should report R1 such that x*(R ) < A(R?*, R_). He would thus be worse
 off.

 (ii) In the second case, Eje NX*(RI) < 1. Agent i receives max{x*(Rj),,u(R)}.
 This is not more than min{x*(R *),A(R> 9R_4 -= j (R *R_) for otherwise the two
 equations

 { min { x *(R ), A(R?*, R -)} + min {x*( Rj), A(R*, R )} = 1,
 j eN\i

 max {x*(Ri),,ul(R)} + , max (x*(Rj), A(R)} = 1,
 j eN\i

 would imply that for some jeN\i, max{x*(R1),,L(R)}<min{x*(R1),A(R *,R_-)})
 hence x*(Rj) <x*(Rj). So once again i cannot benefit from misreporting.

 A similar argument holds when x*(RI) + EjE N\ix*(Rj) < 1, thus completing the
 proof of the theorem. Q.E.D.

 Observe that if we drop any of the three properties required by the theorem, new
 allocation rules emerge.
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 The egalitarian rule 4<(R) = 1/n for all i E N is strategy-proof and anonymous but
 clearly inefficient.

 The proportional rule 0 P(R) = x*(R)/E1jeNx*(Rj) is anonymous and efficient but
 not strategy-proof.

 Finally, the queuing rule 4q defined by 4q(R) = x*(R 1) and Oq(R) = min{x*(Ri), 1 -
 Ej1<,iq(R)} for 1 <i < n in the case EieNx*(Ri)> 1, and by 09(R) =x*(Ri) for
 i n n-1 and Oq(R) = 1 - Ej < n_lx*(R in the case Ylie NX*(Ri) < 1, is strategy-proof

 and efficient but not anonymous.
 The proof of the theorem may convey the impression that the bounds A(R) and ,u(R)

 in the definition of the uniform allocation rule are common to all agents because of the
 anonymity axiom. It turns out, however, that anonymity is not necessary to force ) = 4*:
 it can be replaced by envy-freeness:

 ENVY-FREENESS: For all R E SN and i, j E N, 0j(R)Rj0j(R).

 This leads to the following variant of our theorem, whose proof is found in the
 Appendix:

 THEOREM BIS: The allocation rule 4: SN -* [0, 1]N is efficient, envy-free, and strategy-
 proof if and only if 4 = 0*.

 This new characterization is again tight. The egalitarian rule is an example of an
 envy-free and strategy-proof rule which violates efficiency, while the queuing method is
 efficient and strategy-proof but generates envy.

 One can also construct methods which are efficient and envy-free, though manipula-
 ble. Here is an example. Given the reported preferences R, select those allocations that
 are feasible, efficient, and don't generate envy. Among those, choose one that maximizes
 player one's share. Let +1(R) be that maximal value (if it does not exist, then let
 1 = 4) (R)). Next, among those allocations which are feasible, efficient, envy-free, and
 give + 1(R) to player one, choose one that maximizes player two's share. And so on. It is
 easy to check that this rule is indeed manipulable.

 4. CONCLUSIONS

 This paper has explored the problem of dividing some fixed amount of a good for
 which individuals have single-peaked preferences. We showed that the requirements of
 strategy-proofness, efficiency, and anonymity point to a unique rule, namely the uniform
 allocation rule: everyone gets what he wants within the limits of a lower bound and an
 upper bound that are common to all agents. This remains true if the anonymity axiom is
 replaced by envy-freeness.

 As strategy-proofness is the key axiom, the reader may wonder what can be done
 without the efficiency and fairness conditions. Preliminary results indicate that the class
 of all strategy-proof allocation rules is extremely rich. Although partial results may easily
 be derived for the two-player case, we have not been able to reach any general
 characterization.

 Dipartement de Sciences Economiques and C.R.D.E., Universite' de Montre'al H3C 3J7,
 Canada.

 Manuscript received April, 1989; final revision received December, 1989.
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 APPENDIX

 Proof of Theorem BIS: The basic structure of the proof is the same as the one of our main
 theorem. There are, however, a few complications.

 We show first that there is at most one allocation rule compatible with the axioms of efficiency,
 envy-freeness, and strategy-proofness. Let N' c N and R C SN' . For any T c N', let RT denote the
 restriction of R to T, i.e. the subvector obtained from R by deleting the components corresponding
 to those i not in T. Let R' C S, a C [0, 1], be some preference with peak at a and let M, T form a
 partition of N'. The notation (RM, RT) will be used to denote any vector R C SN such that R =
 for i c M.

 By Lemmas 1 and 2, if d is strategy-proof and efficient, then for all i c N, R C SN,

 (15) 0,(R) = med {aj(R_,), b,(R-i), X*(R,)} with 0 < a, < b, < 1.

 By feasibility,

 (16) E med {a(R-,),b,(R,), x*(R)} = 1.
 c= N

 Let now McN be a subset of m agents, with 1 <m An -1. Pick some R1 cS(1) and fix

 RI = R1 for all i c M. From (16),

 E b(RM\,RN\M)
 zEM

 + E med(aj(R, RN\MuJ) bJ(Rl RN\MUJ) X*(Rj)} = 1.
 jeN\M

 By efficiency, a (Rl, RN\MUj) = O for all j cN\M, thus leading to:

 E b(Rl\1,RN\M) =1- E min (bj(R, RN\MUJ)x*(RJ)). tEeM J NEN\M

 Next, since all i c N have the same preferences, envy-freeness imposes equal treatment:

 0(R RN\M) must be identical for all i c N. Therefore,

 b M(R>, RN\M) = m 1 [ mN(b(R MUJ)

 for all i c M, all M such that 1 <m n -1.
 Moreover, setting R = (R1,..., R1) and using envy-freeness again, we get the initial value

 b,(R',..., R1) = 1/n for all i c N. We conclude that for all i c N, bi is unique.
 A similar reasoning shows that a, is also unique for each i. Taking (15) into account, this

 completes the first part of the proof.

 It remains to show that O* is envy-free. Suppose El E NX*(R,) > 1 (the other case is handled in
 the same way). Any arbitrary i c N gets either x*(R,)-in which case he does not envy anybody-or
 A(R) <x*(R1). Any other agent j gets either x*(Rj) <A(R), or A(R), which cannot generate i's
 envy. Q.E.D.
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