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The Gibbard-Satterthwaite Setting

Voters can have arbitrary strict ordinal preferences over the set of alternatives

Set of alternatives X = {a, b, c, d}

Voter 1 Voter 2 Voter 3 Voter 4

a d c d

b b b b

c a a c

d c d a
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The Gibbard-Satterthwaite Setting

Voters can have arbitrary strict ordinal preferences over the set of alternatives

Set of alternatives X = {a, b, c, d}

Goal: elicit the preferences truthfully from the agents

Voter 1 Voter 2 Voter 3 Voter 4

a d c d

b b b b

c a a c

d c d a

Theorem (Gibbard (1973), Satterthwaite (1975))

If |X| ≥ 3, an onto social choice function is strategyproof if and only if it is
dictatorial.
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Quasi-linear Preferences

An alternative x ∈ X is a tuple (a, p)

Allocation a belongs to the set of allocations A
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Quasi-linear Preferences

An alternative x ∈ X is a tuple (a, p)

Allocation a belongs to the set of allocations A

Payments p belong to Rn

Each agent i has a valuation function vi : A → R belonging to the set Vi

Agents’ utilities are given by

ui(x) = ui(a, p) = vi(a)− pi

6 / 46 Swaprava Nath Mechanism Design with Monetary Transfers



Example: Public Good

Alternatives →

Alice 10 80

Bob 100 30

Carol 40 50

Photo courtesy: wikimedia.org and nimsuniversity.org
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Example: Public Good

Alternatives →

Alice 10 80

Bob 100 30

Carol 40 50

Valuations: vA(F ) = 10, vA(L) = 80

Social planner takes the decision of building F or L

Can tax people differently depending on their preferences

Quasi-linear preferences

7 / 46 Swaprava Nath Mechanism Design with Monetary Transfers



Example: Resource Allocation

Commodities
→

Alice 0.2 0.8 0.5

Bob 0.3 0.1 0.2

Carol 0.5 0.1 0.3

Photo courtesy: individual organizations
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Example: Resource Allocation

Commodities
→

Alice 0.2 0.8 0.5

Bob 0.3 0.1 0.2

Carol 0.5 0.1 0.3

Set of allocations A = {x ∈ [0, 1]n×m :
∑m

j=1 xi,j = 1}

Items are divisible among the agents

Agents’ valuations reflect their preferences over different allocations

They are charged monetary transfers for every allocation

Quasi-linear preferences
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Example: Resource Allocation

Commodities
→

Alice 0.2 0.8 0.5

Bob 0.3 0.1 0.2

Carol 0.5 0.1 0.3

Selfish valuations
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Why Quasi-linearity avoids GS Impossibility

GS theorem is valid for unrestricted preferences

In quasi-linear domain, agents’ preferences are restricted
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Why Quasi-linearity avoids GS Impossibility
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Example:
◮ Set of alternatives X = A× Rn consists of (a, p) pairs

◮ Allocation a ∈ A and payment vector p ∈ Rn
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◮ Allocation a ∈ A and payment vector p ∈ Rn

◮ Consider two alternatives x1 = (a, p1) and x2 = (a, p2), where p1 < p2
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Why Quasi-linearity avoids GS Impossibility

GS theorem is valid for unrestricted preferences

In quasi-linear domain, agents’ preferences are restricted

Example:
◮ Set of alternatives X = A× Rn consists of (a, p) pairs

◮ Allocation a ∈ A and payment vector p ∈ Rn

◮ Consider two alternatives x1 = (a, p1) and x2 = (a, p2), where p1 < p2

◮ For all agents, x1 ≻ x2 for any valuation profile

◮ There is no preference profile where x2 ≻ x1
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An Example of a Truthful Mechanism

Alice 10 80 40

Bob 100 20 50

Carol 0 40 30
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An Example of a Truthful Mechanism

Alice 10 80 40

Bob 100 20 50

Carol 0 40 30

Consider the mechanism:
◮ pick the alternative a∗ that maximizes the sum of the valuations (with

arbitrary tie-breaking rule)
◮ pay every agent i an amount

∑
j 6=i vj(a

∗)
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An Example of a Truthful Mechanism

Alice 10 80 40

Bob 100 20 50

Carol 0 40 30

Consider the mechanism:
◮ pick the alternative a∗ that maximizes the sum of the valuations (with

arbitrary tie-breaking rule)
◮ pay every agent i an amount

∑
j 6=i vj(a

∗)

The mechanism is truthful, even though not a dictatorship
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Structure of a Mechanism

Set of agents N = {1, . . . , n}

Set of allocations A, finite (for this tutorial)

Valuation of agent i, vi : A → R, the set of valuations is denoted by Vi
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Structure of a Mechanism

Set of agents N = {1, . . . , n}

Set of allocations A, finite (for this tutorial)

Valuation of agent i, vi : A → R, the set of valuations is denoted by Vi

A mechanism in quasi-linear (QL) domain is a pair of functions:
◮ allocation function, a :

∏
j Vj → A

◮ payment function, pi :
∏

j
Vj → R, for all i ∈ N

Agent i’s payoff is given by:

vi(a(v))− pi(v)
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Structure of a Mechanism

Set of agents N = {1, . . . , n}

Set of allocations A, finite (for this tutorial)

Valuation of agent i, vi : A → R, the set of valuations is denoted by Vi

A mechanism in quasi-linear (QL) domain is a pair of functions:
◮ allocation function, a :

∏
j Vj → A

◮ payment function, pi :
∏

j
Vj → R, for all i ∈ N

Agent i’s payoff is given by:

vi(a(v))− pi(v)

Only direct revelation mechanisms (DRM) (this talk)
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Social Choice Function

Definition (Social Choice Function)

A social choice function (SCF) f is a mapping from the set of valuation profiles to
the set of allocations, i.e., f : V → A, where V =

∏

j Vj .

Note that the outcome is only the allocations
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Social Choice Function

Definition (Social Choice Function)

A social choice function (SCF) f is a mapping from the set of valuation profiles to
the set of allocations, i.e., f : V → A, where V =

∏

j Vj .

Note that the outcome is only the allocations

In QL domain:
A mechanism M = (a, p) implements a SCF f if:

◮ a(v) = f(v), ∀v ∈ V and,
◮ for every agent i ∈ N , reporting vi truthfully is an equilibrium

Even though the SCF is concerned with only allocations, payments can also
be characterized by revenue equivalence (defined later)
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Incentive Compatibility

Definition (Dominant Strategy Incentive Compatibility (DSIC))

A mechanism (f, p1, . . . , pn) is dominant strategy incentive compatible if for all
i ∈ N and for all v−i ∈ V−i :=

∏

j 6=i Vj ,

vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v
′
i, v−i))− pi(v

′
i, v−i), ∀vi, v

′
i ∈ Vi.

In this case, payments pi, i ∈ N implement f in dominant strategies
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Incentive Compatibility (Contd.)

In a Bayesian game, the valuations v are generated through a prior P

Each agent i knows her own realized valuation vi and P

Her belief on the valuations of other agents v−i is given by P (v−i|vi) derived
by Baye’s rule
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Incentive Compatibility (Contd.)

In a Bayesian game, the valuations v are generated through a prior P

Each agent i knows her own realized valuation vi and P

Her belief on the valuations of other agents v−i is given by P (v−i|vi) derived
by Baye’s rule

Definition (Bayesian Incentive Compatibility (BIC))

A mechanism (f, p1, . . . , pn) is Bayesian incentive compatible for a prior P if for
all i ∈ N ,

Ev−i|vi
[vi(f(vi, v−i))− pi(vi, v−i)] ≥ Ev−i|vi

[vi(f(v
′
i, v−i))− pi(v

′
i, v−i)]

∀vi, v
′
i ∈ Vi.

In this case, payments pi, i ∈ N implement f in a Bayesian Nash equilibrium

17 / 46 Swaprava Nath Mechanism Design with Monetary Transfers



Observations on IC

A DSIC mechanism is always BIC
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Observations on IC

A DSIC mechanism is always BIC

For a DSIC mechanism (f, p1, . . . , pn), let valuations of agents other than i is
fixed at v−i

If vi, v
′
i be such that f(vi, v−i) = f(v′i, v−i), then pi(vi, v−i) = pi(v

′
i, v−i)
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Observations on IC

A DSIC mechanism is always BIC

For a DSIC mechanism (f, p1, . . . , pn), let valuations of agents other than i is
fixed at v−i

If vi, v
′
i be such that f(vi, v−i) = f(v′i, v−i), then pi(vi, v−i) = pi(v

′
i, v−i)

Consider another payment qi(vi, v−i) = pi(vi, v−i) + hi(v−i),

vi(f(vi, v−i))− qi(vi, v−i) ≥ vi(f(v
′
i, v−i))− qi(v

′
i, v−i), ∀vi, v

′
i ∈ Vi.
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Efficiency

Definition (Efficiency)

An SCF f is efficient if for all v ∈ V ,

f(v) ∈ argmax
a∈A

∑

i∈N

vi(a).

An efficient SCF ensures that the ‘social welfare’ is maximized
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Revenue Equivalence

This property characterizes the payment functions

Definition (Revenue Equivalence)

An SCF f satisfies revenue equivalence if for any two payment rules p and p′ that
implement f , there exist functions αi : V−i → R, such that,

pi(vi, v−i) = p′i(vi, v−i) + αi(v−i), ∀vi ∈ Vi, ∀v−i ∈ V−i, ∀i ∈ N.
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Revenue Equivalence

This property characterizes the payment functions

Definition (Revenue Equivalence)

An SCF f satisfies revenue equivalence if for any two payment rules p and p′ that
implement f , there exist functions αi : V−i → R, such that,

pi(vi, v−i) = p′i(vi, v−i) + αi(v−i), ∀vi ∈ Vi, ∀v−i ∈ V−i, ∀i ∈ N.

Saw an example of a payment of agent i being different by a factor not
dependent on i’s valuation

This property says more: pick any two payments that implement f - they
must be different by a similar factor
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Budget Balance

Definition (Budget Balance)

A set of payments pi : V → R, i ∈ N is budget balanced if,

∑

i∈N

pi(v) = 0, ∀v ∈ V.

This property ensures that the mechanism does not produce any monetary
surplus

Hard to satisfy with incentive compatibility
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Single Indivisible Item Auction

Buyer 1 Buyer 2
Metropolitan Museum of Arts Louvre
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Second Price Auction

Metropolitan wins, but pays second highest bid

The mechanism is DSIC (why?)
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Groves Class of Mechanisms

Allocation rule is efficient:

a∗(v) ∈ argmax
a∈A

∑

i∈N

vi(a)

Payment rule is given by:

p∗i (vi, v−i) = hi(v−i)−
∑

j∈N\{i}

vj(a
∗(v)),

where hi : V−i → R is any arbitrary function that does not depend on vi
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Groves Class of Mechanisms

Allocation rule is efficient:

a∗(v) ∈ argmax
a∈A

∑

i∈N

vi(a)

Payment rule is given by:

p∗i (vi, v−i) = hi(v−i)−
∑

j∈N\{i}

vj(a
∗(v)),

where hi : V−i → R is any arbitrary function that does not depend on vi

Claim
Groves class of mechanisms are DSIC
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Incentive Compatibility of Groves

Utility of agent i according to Groves class of mechanisms:

u
(a∗,p∗)
i (vi, v−i)

= vi(a
∗(vi, v−i))− p∗i (vi, v−i)
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Pivot Mechanism

A special case of Groves class when the payment is given by:

hi(v−i) =
∑

j∈N\{i}

vj(a
∗
−i(v−i)),

where the allocation a∗−i(v−i) is given by:

a∗−i(v−i) ∈ argmax
a∈A

∑

j∈N\{i}

vj(a)

The allocation a∗−i maximizes the sum of valuations in the absence of agent i

The function hi is the maximum value of this sum

The payment is therefore:

pi(vi, v−i) = max
a∈A

∑

j∈N\{i}

vj(a)−
∑

j∈N\{i}

vj(a
∗(v))
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Interpretations of the Pivot Mechanism

pi(vi, v−i) = max
a∈A

∑

j∈N\{i}

vj(a)−
∑

j∈N\{i}

vj(a
∗(v))

Two Interpretations:

1. Externality:
◮ maxa∈A

∑
j∈N\{i} vj(a) is what the agents N \ {i} can achieve

◮

∑
j∈N\{i} vj(a

∗(v)) is what they achieve under the efficient rule
◮ The mechanism asks agent i to pay the difference
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Interpretations of the Pivot Mechanism

pi(vi, v−i) = max
a∈A

∑

j∈N\{i}

vj(a)−
∑

j∈N\{i}

vj(a
∗(v))

Two Interpretations:

1. Externality:
◮ maxa∈A

∑
j∈N\{i} vj(a) is what the agents N \ {i} can achieve

◮

∑
j∈N\{i} vj(a

∗(v)) is what they achieve under the efficient rule
◮ The mechanism asks agent i to pay the difference

2. Marginal contribution:
◮ Net utility of agent i in pivot mechanism:

ui(vi, v−i) =
∑

j∈N

vj(a
∗(vi, v−i))−max

a∈A

∑

j∈N\{i}

vj(a)

i.e., the difference in sum valuation in presence of agent i and in her absence
◮ Net utility is agent i’s marginal contribution
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What is Pivotal about it?

Alternatives →

Alice 10 70

Bob 100 10

Carol 10 50
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What is Pivotal about it?

Alternatives →

Alice 10 70

Bob 100 10

Carol 10 50

Outcome: L

Alice pays (100 + 10)− (10 + 50) = 50
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Affine Maximizers

An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF f : V → A is an affine maximizer if there exists wi ≥ 0, i ∈ N , not all
zero, and a function κ : A → R such that,

f(v) ∈ argmax
a∈A

(

∑

i∈N

wivi(a) + κ(a)

)

.
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zero, and a function κ : A → R such that,

f(v) ∈ argmax
a∈A

(

∑

i∈N

wivi(a) + κ(a)

)

.

Special cases:

wi = 1, ∀ i and κ ≡ 0: efficient SCF
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An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF f : V → A is an affine maximizer if there exists wi ≥ 0, i ∈ N , not all
zero, and a function κ : A → R such that,

f(v) ∈ argmax
a∈A

(

∑

i∈N

wivi(a) + κ(a)

)

.

Special cases:

wi = 1, ∀ i and κ ≡ 0: efficient SCF

wd = 1, for some d, wi = 0, ∀ i 6= d and κ ≡ 0: dictatorial SCF
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Affine Maximizers (Contd.)

An affine maximizer f satisfies independence of irrelevant agents (IIA) if for
every i with wi = 0 and for every v−i ∈ V−i,

f(vi, v−i) = f(v′i, v−i), ∀vi, v
′
i ∈ Vi

This is a consistency condition for tie-breaking
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Affine Maximizers (Contd.)

An affine maximizer f satisfies independence of irrelevant agents (IIA) if for
every i with wi = 0 and for every v−i ∈ V−i,

f(vi, v−i) = f(v′i, v−i), ∀vi, v
′
i ∈ Vi

This is a consistency condition for tie-breaking

Every affine maximizer satisfying IIA is implementable

In particular, payments are of the following form: for all i ∈ N

pi(vi, v−i) =

{

1
wi

(

∑

j 6=i wjvj(f(v)) + κ(f(v)) + hi(v−i)
)

, wi > 0

0 wi = 0

f is an affine maximizer
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Roberts’ Theorem

Theorem (Roberts 1979)

Let the allocation space A be finite with |A| ≥ 3. If the space of valuations V is
unrestricted, then an onto and dominant strategy implementable SCF f : V → A
is an affine maximizer.
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Roberts’ Theorem

Theorem (Roberts 1979)

Let the allocation space A be finite with |A| ≥ 3. If the space of valuations V is
unrestricted, then an onto and dominant strategy implementable SCF f : V → A
is an affine maximizer.

Understanding Roberts’ Theorem:

Groves’ or pivotal mechanisms are implementable, but this result is giving a
necessary condition for implementability

Moreover, it provides a functional form characterization of the DSIC
mechanisms (as opposed to Myerson’s monotonicity characterization)

If payments are enforced to be zero for every valuation profile v, then the
only implementable mechanism is dictatorial - GS theorem is a corollary of
this result
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Some Observations and Implications

If an SCF f is implementable in a valuation space V , it is implementable in
every valuation space V ′ ⊆ V - same payments implement them and the
number of incentive compatibility constraints reduce
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Some Observations and Implications

If an SCF f is implementable in a valuation space V , it is implementable in
every valuation space V ′ ⊆ V - same payments implement them and the
number of incentive compatibility constraints reduce

Efficient SCF is implementable in any valuation space

Unrestricted valuation space is crucial for Roberts’ theorem - some recent
results show that the affine maximizer characterization is true even for certain
restricted valuation spaces

Characterization of implementability in restricted domains is an active
research area

[A proof by pictures]
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Revenue Equivalence

If p and p′ implement f in dominant strategies, then

pi(v) = p′i(v) + αi(v−i), ∀v ∈ V
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Revenue Equivalence

If p and p′ implement f in dominant strategies, then

pi(v) = p′i(v) + αi(v−i), ∀v ∈ V

Theorem (Rockafeller 1997; Krishna and Maenner (2001))

If the type space is convex and the valuations are linear in type, then an SCF,
implementable in dominant strategies, satisfies revenue equivalence.
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Revenue Equivalence

If p and p′ implement f in dominant strategies, then

pi(v) = p′i(v) + αi(v−i), ∀v ∈ V

Theorem (Rockafeller 1997; Krishna and Maenner (2001))

If the type space is convex and the valuations are linear in type, then an SCF,
implementable in dominant strategies, satisfies revenue equivalence.

Theorem (Chung and Olszewski (2007))

Suppose the type space T ⊆ Rn is a connected set, A is finite and the valuations
are continuous in type. If an SCF is implementable in dominant strategies, then it
satisfies revenue equivalence.
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Green-Laffont-Holmström Characterization

An efficient SCF f chooses an alternative in argmaxa∈A

∑

j∈N vj(a)
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Green-Laffont-Holmström Characterization

An efficient SCF f chooses an alternative in argmaxa∈A

∑

j∈N vj(a)

Theorem (Green and Laffont (1979), Holmström (1979))

If the valuation space is convex and smoothly connected, every efficient and DSIC
mechanism is a Groves mechanism.

Shows uniqueness of Groves class in the space of efficient, DSIC mechanisms

[A proof outline]
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Green-Laffont Impossibility

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced (BB), i.e.,
∄pGrovesi s.t.

∑

i∈N pGrovesi (v) = 0, ∀v ∈ V .

This leads to the following corollary

Corollary

If the valuation space is convex and smoothly connected, no efficient mechanism
can be both DSIC and BB.
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AGV Mechanism

If the equilibrium condition is relaxed to BIC, we have a positive result

Payment is defined via a function δi, i ∈ N :

δi(vi) = Ev−i|vi





∑

j∈N\{i}

vj(a
∗(v))



 ,

where a∗ is an efficient allocation

Payment is:

pAGVi (v) =
∑

j∈N\{i}

δj(vj)− δi(vi)

Theorem (d’Aspremont and Gerard-Varet (1979), Arrow (1979))

The AGV mechanism is BIC, efficient, and budget-balanced
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Thank you!

� swaprava@gmail.com

http://www.isid.ac.in/∼swaprava
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Value Difference Set

Q: What does affine maximizer mean?
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Q: What does affine maximizer mean?
A: If f(v) = y then

w⊤v(y) + κ(y) ≥ w⊤v(z) + κ(z), ∀z ∈ A \ {y}

⇒ w⊤(v(y)− v(z)) ≥ κ(z)− κ(y), ∀z ∈ A \ {y}
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Value Difference Set

Q: What does affine maximizer mean?
A: If f(v) = y then

w⊤v(y) + κ(y) ≥ w⊤v(z) + κ(z), ∀z ∈ A \ {y}

⇒ w⊤(v(y)− v(z)) ≥ κ(z)− κ(y), ∀z ∈ A \ {y}

w⊤α ≥ β half-space

Define the value difference set for any pair of distinct alternatives y, z ∈ A.

P (y, z) = {α ∈ Rn : ∃ v ∈ V s.t. v(y)− v(z) = α and f(v) = y}.
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Value Difference Set

Q: What does affine maximizer mean?
A: If f(v) = y then

w⊤v(y) + κ(y) ≥ w⊤v(z) + κ(z), ∀z ∈ A \ {y}

⇒ w⊤(v(y)− v(z)) ≥ κ(z)− κ(y), ∀z ∈ A \ {y}

w⊤α ≥ β half-space

Define the value difference set for any pair of distinct alternatives y, z ∈ A.

P (y, z) = {α ∈ Rn : ∃ v ∈ V s.t. v(y)− v(z) = α and f(v) = y}.

Claim

If α ∈ P (y, z), and δ > 0 ∈ Rn, then α+ δ ∈ P (y, z), for all distinct y, z ∈ A.
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Graphical Illustration for Two Players
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Complementary Structures of P (y, z) and P (z, y)

Claim

For every α, ǫ ∈ Rn, ǫ > 0, and for all y, z ∈ A,
(a) α− ǫ ∈ P (y, z) ⇒ −α /∈ P (z, y).
(b) α /∈ P (y, z) ⇒ −α ∈ P (z, y).
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Independence of C̊ from the Alternatives in A

Define the translated set C(y, z) = P (y, z)− γ(y, z)1

Denote the ‘interior’ of C(y, z) by C̊(y, z)
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Claim
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Independence of C̊ from the Alternatives in A

Define the translated set C(y, z) = P (y, z)− γ(y, z)1

Denote the ‘interior’ of C(y, z) by C̊(y, z)

Claim

C̊(y, z) = C̊(w, l), for any y, z, w, l ∈ A, y 6= z and w 6= l.

Remark: Note that this result, in particular, includes the cases,
C̊(y, z) = C̊(l, z) = C̊(l, y) = C̊(z, y). Therefore, the claim holds even without
y, z, w, l being all distinct.
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Convexity of C

Claim

The set C is convex.
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Holmström Characterization

Set of allocations A = {a, b}

Social welfares at these two allocations are
∑

j∈N vj(a) and
∑

j∈N vj(b)
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Holmström Characterization

Set of allocations A = {a, b}

Social welfares at these two allocations are
∑

j∈N vj(a) and
∑

j∈N vj(b)

Efficiency requires that if a is chosen, then
∑

j∈N vj(a) ≥
∑

j∈N vj(b)

Fix valuations of agents other than i at v−i

Fix valuations of agent i except allocation a, i.e., at b at vi(b)

There exists some threshold v∗i (a) such that
◮ for all vi(a) ≥ v∗i (a), a is the outcome
◮ for all vi(a) < v∗i (a), b is the outcome

Consider vi(a) = v∗i (a) + ǫ, ǫ > 0, and write the DSIC constraint:

v∗i (a) + ǫ− pi,a ≥ vi(b)− pi,b (1)

outcome does not change ⇒ payment does not change

55 / 46 Swaprava Nath Mechanism Design with Monetary Transfers



Holmström Characterization
Consider vi(a) = v∗i (a)− δ, δ > 0, and similarly:

vi(b)− pi,b ≥ v∗i (a)− δ − pi,a (2)

Combining Equations (1) and (2) and taking limits ǫ, δ → 0, we get,

vi(b)− pi,b = v∗i (a)− pi,a

56 / 46 Swaprava Nath Mechanism Design with Monetary Transfers



Holmström Characterization
Consider vi(a) = v∗i (a)− δ, δ > 0, and similarly:

vi(b)− pi,b ≥ v∗i (a)− δ − pi,a (2)

Combining Equations (1) and (2) and taking limits ǫ, δ → 0, we get,

vi(b)− pi,b = v∗i (a)− pi,a

Since v∗i (a) is a threshold of change of efficient outcome,

v∗i (a) +
∑

j∈N\{i}

vj(a) = vi(b) +
∑

j∈N\{i}

vj(b)
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Holmström Characterization
Consider vi(a) = v∗i (a)− δ, δ > 0, and similarly:

vi(b)− pi,b ≥ v∗i (a)− δ − pi,a (2)

Combining Equations (1) and (2) and taking limits ǫ, δ → 0, we get,

vi(b)− pi,b = v∗i (a)− pi,a

Since v∗i (a) is a threshold of change of efficient outcome,

v∗i (a) +
∑

j∈N\{i}

vj(a) = vi(b) +
∑

j∈N\{i}

vj(b)

Substituting:

pi,a − pi,b = −





∑

j∈N\{i}

vj(b)−
∑

j∈N\{i}

vj(a)




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