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Abstract
We consider the problem of balanced partition-
ing, i.e., dividing n agents into k groups of al-
most equal size (⌊n/k⌋ or ⌈n/k⌉), where the agents
form a friendship network, ensuring various fair-
ness and efficiency criteria. The utility of an agent
is the count of its friends in the same group as itself.
When partitions into two groups are considered, we
show that approximate envy-freeness related to the
maximum degree of the graph can be obtained via a
linear-time algorithm for arbitrary graphs. We also
show that envy-freeness and core properties can be
extended along with Pareto optimality in arbitrary
graphs for such partitions. We then concentrate on
the case of grid graphs having nodes on the 2D in-
teger lattice, and demonstrate the impossibility of
perfect envy-freeness. However, weaker guarantees
like envy-freeness up to two friends are achievable
for balanced k−partitions in a computationally ef-
ficient manner. We show that certain such balanced
partitions belong to an exact and an approximate
core when considering balanced 2−partitions.

1 Introduction
Consider a school conducting a large sports event where mul-
tiple teams formed out of its students contest for an overall
prize. In such competitions, the players are usually divided
into (almost) equal-sized teams at random. However, a cru-
cial component of team sports is coordination between team-
mates which demands a feeling of friendship. This constraint
adds a layer of complexity to the problem.

This paper works with a model that represents situations
like the above. Suppose we have symmetric friendship rela-
tions among n agents, depicted by a network. The problem
looks to divide these n agents into k groups of nearly equal
size, with the utility of an agent defined as the number of
friends of that agent in its own group. We call such a division
a balanced k−partition (BP−k). In the above example, we
see that the higher utility of an agent in a balanced partition
is informally equivalent to the agent being able to coordinate
better with their teammates.

This problem of partitioning agents in an undirected friend-
ship network into groups of almost equal size was introduced

by Li et al. (2023). They posed it as an extension of the stable
roommates problem (Irving, 1985), which requires an even
number of agents and limits group size to exactly two agents.
The problem usually considers preference profiles for each
agent over all other agents. However, under our formulation,
we only look at binary preferences (friend or not), which are
useful in practice where it may not be possible to obtain an
entire preference profile list. Numerous works have also stud-
ied the three-dimensional generalization (Huang, 2007; Arkin
et al., 2009; McKay and Manlove, 2021; Cseh et al., 2022;
McKay, 2022), where groups of three have to be formed.

Envy-freeness (EF) and efficiency guarantees for balanced
k−partitions of graphs are natural questions that can arise in
this context. In this paper, we first look at general graphs
and provide EF guarantees w.r.t. the maximum degree of the
graph. Li et al. (2023) also studied trees extensively, and sug-
gested looking at planar graphs and graphs with bounded de-
grees. However, structures like trees are much less common
for friendship graphs. We study grid graphs instead and prove
stronger guarantees. Such graphs are often studied in graph
bisection problems due to their importance in real-world sce-
narios (Feldmann, 2012). For instance, a potential use-case
arises when we represent a city as a grid. Considering houses
as agents that occupy the grid coordinates, an obvious (and
simplified) friendship relation is that of neighborhood. In
such cases, agents (households) would prefer to be put along-
side their neighbors when dividing households into groups
for societal activities within the locality (e.g., for cleanliness
drives or the conduction of ceremonies).

1.1 Our Contributions
Our work builds upon Li et al. (2023). We refine the concept
of envy, and investigate balanced partitions in graphs that ad-
here to specific fairness criteria, exploring Pareto optimality
and approximations of envy-freeness and core.

For any graph G = (V,E) with |V | = n, we introduce
a linear-time algorithm for constructing a BP−2 that satis-
fies EF−(max(∆(G) − 2, 2)) for any arbitrary graph. This
solves the open problem raised by Li et al. (2023) regarding
the existence of an EF−2 BP−2 for all graphs with maxi-
mum degree at most 4. For graphs with ∆(G) ≪

√
n, this

is also a considerable improvement over the best-known re-
sult on the existence of an EF−(O(

√
n)) BP−2 (Li et al.,

2023). In particular, the two results together guarantee an



Results Guarantee

General Graphs

∀G = (V,E), ∃ an EF−(max(∆(G)− 2, 2)) BP−2 O(|V |+ |E|) algorithm
(Theorem 1) (Algorithm 3)
∀G = (V,E) and ∀ r ⩾ 0, α ⩾ 1, β ⩾ 0,
1. ∃ EF−r BP−2 =⇒ ∃ (EF−r + PO) BP−2
2. ∃ (α, β)− core BP−2 =⇒ ∃ ((α, β)− core + PO) BP−2 Existence
3. ∃ ((α, β)− core + EF−r) BP−2

=⇒ ∃ ((α, β)− core + EF−r + PO) BP−2
(Theorems 2 and 3)

Grid Graphs

∀G = (V,E) ∈ GrG, ∃ an EF−2 BP−k, ∀k ⩾ 2 O(|V | log(|V |)) algorithm
(Theorem 4) (Algorithm 4)
∀G = (V,E) ∈ GrG, ∃ an EF−2 BP−2 in (1, 1)− core O(|V | log(|V |)) algorithm
(Theorem 5) (Algorithm 4)
∀G = (V,E) ∈ GrG, ∃ a BP−2 in (1, 0)− core Existence
(Theorem 6) (Algorithm 5)

Table 1: Summary of the results.

EF−(O(min(∆(G),
√
n))) BP−2. Additionally, we demon-

strate the existence of a Pareto optimal (PO) BP−2 without
compromising its fairness (EF) and stability (core) criteria.

For the special class of grid graphs, we show that an EF−2
BP−k can always be found via an efficient algorithm. For
k = 2, the same algorithm returns a BP−2 that satisfies the
additional guarantee of being in the (1, 1) − core. Further-
more, we prove that for grid graphs, a BP−2 in (1, 0)− core
always exists. Table 1 highlights our major contributions.

1.2 Related Works
In the literature, most works have focused on finding
minimum-cut balanced and unbalanced partitions (Kernighan
and Lin, 1970; Garey and Johnson, 1990; Andreev and Räcke,
2004; Sotirov, 2018). Li et al. (2023) used min-cut partitions
for a number of their results on the existence of balanced par-
titions in the core. Recent studies on balanced 2−partitioning
of graphs (or graph bisections) have also looked at computa-
tional complexity and approximations of partitions in which
every node has at least H neighbors in its own group (Baz-
gan et al., 2010; Behrens et al., 2022; Minzer et al., 2023).
If H is not constant, and taken as half of the degree of each
node, this reduces to Nash stability. Unlike these works, we
demonstrate the connection of this notion with envy-freeness
and come up with an efficient algorithm for an approxima-
tion of the H = 1 case, which solves the open problem of the
existence of an EF−2 BP−2 for all graphs with ∆(G) ⩽ 4.

A different dimension along which existing literature
has varied is finding partitions with bounded group sizes.
Levinger et al. (2023) demonstrated the NP-completeness of
the utility maximization problem in this setup, proposed a
poly-time approximation algorithm for the task, and further
explored stability through the notion of the core. Boehmer
and Elkind (2020) formulated the group-partitioning task
from the viewpoint of diversity preferences, where agents be-
long to exactly one of two groups and each agent has a weak
preference order on the composition of their group. Our work
differs from these tasks both due to the complexity of form-
ing a fixed-size coalition, and the presence of a direct binary

preference order over all the participants.
The most under-researched concept in balanced partition-

ing is that of Pareto optimality. Aziz et al. (2013) introduced
Pareto optimality in coalition formation games for the first
time, showing various results on their intractability in dif-
ferent game classes, while Li et al. (2023) only showed that
some of their BP−k algorithms are not PO. To the best of our
knowledge, this paper is the first to look at the existence of
PO bisections along with other fairness guarantees.

2 Preliminaries
Define [ℓ] = {1, 2, . . . , ℓ}. Consider a group of agents (de-
noted by the set V with |V | = n) connected over an undi-
rected graph G = (V,E), where each edge (i, j) ∈ E repre-
sents that i and j are neighbors in G. The degree of node i in
G is denoted by dG(i), and ∆(G) = maxi∈V dG(i) denotes
the maximum degree of the graph G. The set of neighbors of
agent i in G is denoted by NG(i). The subgraph of G induced
by a set of vertices S ⊆ V is denoted by G [S].

Definition 1 (k−partition). A k−partition of a graph G =
(V,E) is a set of k mutually exclusive and exhaustive subsets
of V . Formally, it is the collection Z = {Z1, Z2, . . . , Zk} s.t.

Zℓ ⊆ V,∀ℓ ∈ [k], Zℓ1∩Zℓ2 = ∅,∀ℓ1 ̸= ℓ2, and
⋃
ℓ∈[k]

Zℓ = V

Definition 2 (Balanced k−partition). A balanced k−partition
Z = {Z1, Z2, . . . , Zk} of a graph G = (V,E) is a

k−partition with |Zℓ| ∈
{⌊n

k

⌋
,
⌈n
k

⌉}
,∀ℓ ∈ [k].

We will use the shorthand BP−k to mention a balanced
k−partition. The neighbors of agent i in a k−partition Z is
given by NZ

G (i) = {j ∈ NG(i) : i, j ∈ Zℓ, for some ℓ ∈
[k]}. The utility of agent i in a k−partition Z is defined
as uG

i (Z) = |NZ
G (i)|, i.e., the number of neighbors of i

in G that belong to the same subset as i in the partition Z.
Wherever it is clear from context, we will drop G from ev-
ery notation that uses it. The subset in which agent i be-



longs in a balanced k−partition Z is denoted by Z−1(i), i.e.,
Z−1(i) = ℓ, s.t. i ∈ Zℓ.

Define a swapping partition of a given k−partition Z be-
tween two agents i and j as the new k−partition Z ′ such that

Z ′
Z−1(i) = ZZ−1(i) \ {i} ∪ {j}

Z ′
Z−1(j) = ZZ−1(j) \ {j} ∪ {i}

Z ′
Z−1(p) = ZZ−1(p) , ∀p ∈ V \ {i, j}.

(1)

In other words, the swapping partition Z ′ swaps the subsets
in which agents i and j belonged in Z. We will denote
the swapping partition Z ′ with the notation swap(Z, i, j).
It is easy to see that, swap(Z, i, j) is non-trivial only when
Z−1(i) ̸= Z−1(j), i.e., i and j are in different subsets of Z.

Define a transfer partition of a given k−partition Z for
agent i to another subset Zℓ, ℓ ̸= Z−1(i), |Zℓ| < |ZZ−1(i)| as
the new k−partition Z ′ such that

Z ′
Z−1(i) = ZZ−1(i) \ {i}

Z ′
ℓ = Zℓ ∪ {i}

Z ′
p = Zp , ∀p ̸= Z−1(i), ℓ.

(2)

In simpler terms, the transfer moves an agent i from its orig-
inal larger subset to a smaller subset. We will denote such a
transferred partition Z ′ with the notation tran(Z, i, ℓ).

We start off with an observation, used in defining envy.
Observation 1. Given a pair of agents (i, j) and a BP−k Z,
swap(Z, i, j) is also a BP−k. Also, if |ZZ−1(j)| < |ZZ−1(i)|,
then tran(Z, i, Z−1(j)) is also a BP−k, and

ui

(
tran(Z, i, Z−1(j))

)
⩾ ui (swap(Z, i, j)) (3)

Proof. Note that both swap and tran are k−partitions. Here,
swap is a BP−k since the sizes of all subsets in the new par-
tition remain the same. And tran is a BP−k as we transfer
node i from a larger subset of size ⌈n/k⌉ to a smaller subset of
size ⌊n/k⌋, which simply exchanges the sizes of these subsets.
Finally, taking Z−1(j) = ℓ,

ui (tran(Z, i, ℓ)) =
{
ui (swap(Z, i, j)) + 1 ; (i, j) ∈ E

ui (swap(Z, i, j)) ; (i, j) ̸∈ E

since j is in i’s subset after tran, but not after swap.

We can now define envy and envy-freeness as follows.
Definition 3 (Envy). In a BP−k X , an agent i has an envy
r ⩾ 0 towards another agent j if

1. case |Xℓj | < |Xℓi | : ui(tran(X, i, ℓj))− ui(X) = r.
2. case |Xℓj | ⩾ |Xℓi | : ui(swap(X, i, j))− ui(X) = r.

where ℓi = X−1(i) and ℓj = X−1(j).
The definition says that if agent i thinks that a swap or

transfer with another agent outside its own subset in a par-
tition can increase its utility, then it is envious of that agent.
Here, if tran is possible, then it is preferred over swap, as that
yields a weakly better utility for the agent (Observation 1).
Definition 4 (EF−r). For r ⩾ 0, a BP−k X is said to be
envy-free up to r (EF−r), if for every pair of agents i, j ∈ V ,
i envies j by at most r.

We also make a useful observation about envy below.
Observation 2. If agent i has an envy r > 0 towards some
agent j in BP−k X , then X−1(j) ̸= X−1(i) and i has at
least r neighbors in XX−1(j).

Proof. Since agent i has an envy r > 0 towards agent j in
BP−k X , utility of agent i increases from its current utility
ui(X) by r. This increase can either occur by a tran or a
swap operation by i from XX−1(i) to XX−1(j) (and these two
subsets must be different). In both cases, it is necessary that
there exist at least r neighbors of i in XX−1(j).

Definition 5 (Core). For α ⩾ 1, β ⩾ 0, a BP−k X is said to
be in (α, β) − core if there does not exist another BP−k X ′

and an index ℓ ∈ [k] s.t. ∀i ∈ X ′
ℓ , ui(X

′) > α · ui(X) + β.
This definition only requires the utility of agents in X ′

ℓ to
increase. If for some BP−k X such a coalition X ′

ℓ exists, we
call X ′

ℓ an (α, β)−blocking coalition of BP−k X . Wherever
clear from context, we simply call X ′

ℓ a blocking coalition.
A BP−k is said to be in the core for graph G if it satisfies

(1, 0)− core property as defined above. For k = 2, the exis-
tence of core means that there is no other BP−2 (S, V \ S),
such that the utility of all nodes in S strictly increases in this
new partition. Also note that (1, 0) − core is stronger than
(α, β)− core for any other choice of α ⩾ 1, β ⩾ 0.
Definition 6 (Pareto Optimal). A BP−k X is called Pareto
optimal (PO), if there does not exist another BP−k X ′ such
that for all nodes i ∈ V , we have ui(X

′) ⩾ ui(X), and the
strict inequality holds for at least one node j ∈ V .

If X is not Pareto optimal, then the BP−k X ′ is called a
Pareto improvement to partition X .

2.1 Graphs of interest
Since this paper considers balanced partitions of agents on a
graph, in this section, we provide a brief review of certain
types of graphs and their properties that will be used later in
the paper. We use the standard graph-theoretic terminology.
Let G be the complement of graph G. We denote by Kn, Cn,
and Pn, the complete undirected graph on n vertices, a sim-
ple cycle with n vertices, and a path graph with n vertices
respectively. Also, we define the comb graph1 on 2n vertices
as Pn

⊙
K1, i.e., the graph constructed by connecting n ver-

tices in a path, each of which is connected to a pendant edge.
This graph consists of 2n−1 edges, and is denoted by combn.
Biconnected graphs. A biconnected graph G = (V,E)
with |V | > 1 is a connected graph for which the subgraph
G[V \ {v}] remains connected for all v ∈ V .
Definition 7 (st−Numbering). An st−numbering of G =
(V,E) with |V | = n > 1 and two vertices s, t ∈ V is a
mapping from V to N = [n], such that the source s is labeled
1, the sink t is labeled n, and every vertex i = 2, . . . , n− 1 is
adjacent both to some vertex h < i and to some vertex j > i.

It is well known that for any biconnected graph with any
arbitrarily chosen source s and sink t, an st−numbering ex-
ists and can be found in linear time (Ebert, 1983). We treat

1The name of this graph comes from the fact that it can be drawn
in the form of a comb.



S = st-numbering(G, source, sink) as a procedure that re-
turns the above mapping, i.e. S(v) denotes the label of some
v ∈ V in this st-numbering. When the procedure is called
without a sink argument, it is understood that any arbitrary
vertex (different from the source) in G can be used as the
sink. The utility of st-numbering comes from the following
observation.
Observation 3. Consider a biconnected graph G =
(V,E) with an arbitrary node v ∈ V and S =
st-numbering(G, source = v). For any positive integer k
with Vk = {v ∈ V | S(v) ⩽ k}, subgraphs G[Vk] and
G[V \ Vk] are connected graphs.

Proof. We show that G[Vk] is connected for all k ⩾ 1, and
the result for the other subgraph follows simply by reversing
the source and the sink in the st-numbering of G. By Defi-
nition 7, any node in Vk labeled i > 1 also has a neighbor in
Vk with a smaller label h < i. This ensures that every node
labeled i > 1 has a path joining it to the node labeled 1. Thus,
G[Vk] forms a connected graph.

A connected graph that is not a biconnected graph will have
cut vertices, i.e. a vertex whose removal causes the graph to
become disconnected. A biconnected component is a maxi-
mal biconnected subgraph in a graph.
Definition 8 (Block-Cut Tree). Any connected graph decom-
poses into a tree with cut vertices and biconnected compo-
nents as vertices, called the block-cut tree of the graph, where
the blocks are attached to shared cut vertices.

Hopcroft and Tarjan (1973) gave a linear-time algorithm to
find the block-cut tree for any connected graph.
Definition 9 (Leafy-Cut Vertex). A leafy-cut vertex in a
rooted block-cut tree is a cut vertex that does not have any
other cut vertex as its descendant.

A leafy-cut vertex z has a non-zero number of descendants
which can be partitioned into sets of vertices b1, . . . , bk (k ⩾
1) such that ∀i ∈ [k], |bi| > 0 and G[bi ∪ {z}] is a bicon-
nected graph. We refer to each bi as a biconnected block.
Grid graphs. A grid graph is a collection of nodes on the
integer 2D coordinate lattice with possible edges between
them only if the nodes are adjacently placed on the lattice.
Definition 10 (Grid Graph). G = (V,E) is a grid graph if
we can create mappings X : V → Z and Y : V → Z such
that for each pair of nodes i, j ∈ V , where (X(i), Y (i)) ̸=
(X(j), Y (j)),

[(i, j) ∈ E] =⇒ [|X(i)−X(j)|+ |Y (i)− Y (j)| = 1] ,

where X and Y are the mappings to the x and y-coordinates
of the nodes on the lattice.

We will denote the set of grid graphs with GrG. We are
now ready to present the main results of this paper.

3 Main Results: General Graphs
We first look at envy-freeness and Pareto optimality proper-
ties for arbitrary graphs. For both these properties, we will
need a lemma that formally shows the necessary and suffi-
cient conditions for the existence of an EF−r BP−2.

Lemma 1. A BP−2 X in G = (V,E) is EF−r
1. if

|NX(i)| ⩾ d(i)− r

2
, ∀i ∈ V, and, (4)

2. only if

|NX(i)| ⩾ d(i)− r − 1

2
, ∀i ∈ V. (5)

We state the conditions 1 and 2 separately since both of
them will be used for proving the upcoming results.

Proof. (Condition 1: sufficiency): Let X be a BP−2. Sup-
pose X is not EF−r. Hence, ∃i, j ∈ V such that i has
an envy > r towards j. Case 1: |XX−1(i)| > |XX−1(j)|:
here the violation of EF−r implies ui(tran(X, i,X−1(j)))−
ui(X) > r. This implies, (d(i) − |NX(i)|) − |NX(i)| >
r. This violates the condition in Equation (4). Case 2:
|XX−1(i)| ⩽ |XX−1(j)|: here the violation of EF−r implies
ui(swap(X, i, j))− ui(X) > r. Here, two subcases can oc-
cur, (a) i and j are neighbors in G: then (d(i) − |NX(i)| −
1) − |NX(i)| > r (the additional −1 appears since j also
changes its subset in a swap), and (b) i and j are not neigh-
bors in G: then (d(i)− |NX(i)|)− |NX(i)| > r. Both these
subcases violate the condition in Equation (4).
(Condition 2: necessity): Suppose X is an EF−r BP−2. This
implies that ∀i, j ∈ V , i has an envy ⩽ r towards j. Now
consider the cases 1 and 2 above. Carrying out similar calcu-
lations we get that (d(i)− |NX(i)|)− |NX(i)| ⩽ r for case
1 and the second subcase of case 2. But for the first subcase
of case 2 (where (i, j) ∈ E), we get (d(i)− |NX(i)| − 1)−
|NX(i)| ⩽ r. Hence the condition that satisfies all these con-
ditions (and hence necessary) is given by Equation (5).

We are now ready to present the results.

3.1 Envy-Freeness
Theorem 1. For every graph G, there exists a BP−2 that is
EF−(max(∆(G)−2, 2)), which can be found in linear time.2

We first derive a corollary of Lemma 1 to get a sufficient
condition for Theorem 1.

Lemma 2. A BP−2 X of G = (V,E) is EF−(max(∆ −
2, 2)) if for all nodes i ∈ V , at least one of the following two
conditions holds: (1) d(i) ⩽ 2, or (2) |NX(i)| ⩾ 1.

Proof. For d(i) ⩽ 2, we know that d(i)−2
2 ⩽ 0 ⩽ |NX(i)|.

Otherwise |NX(i)| ⩾ 1 ⩾ d(i)−(∆−2)
2 . Thus, ∀i ∈

V, |NX(i)| ⩾ d(i)−max(∆−2,2)
2 . Following condition 1 of

Lemma 1, we conclude that X is EF−(max(∆− 2, 2)).

By Lemma 2, to obtain an EF−(max(∆ − 2, 2)) BP−2,
it suffices to ensure that every vertex with degree > 2 has at
least 1 neighbor in the same group. For simplicity, we refer to
the two subsets of the partition by the colors red and blue. We
construct the BP−2 sequentially, first for biconnected graphs,
then for connected graphs, and finally for arbitrary graphs.

2From now on, we will drop G from our notations.



Algorithm 1 BICONNPART: Biconnected Partition

Input: Biconnected graph G = (V,E), integers r, b
Require: r, b > 1; r + b = |V |
Output: X = {R,B}, |R| = r

1: y, z ← arbitrary nodes in V, y ̸= z;
2: S ← st-numbering(G, source = y, sink = z)
3: R ← {v ∈ V | S(v) ⩽ r}, B ← V \ R
4: return X = {R, B}

Lemma 3. For any biconnected graph G = (V,E) and
r, b > 1 with r + b = |V |, Algorithm 1 returns a 2−partition
X = (R,B) with |R| = r, |B| = b s.t. |NX(i)| ⩾ 1, ∀i ∈ V .

Proof. Algorithm 1 adds the first r vertices in an st-
numbering of G to set R. Using Observation 3, G[R] and
G[V \ R] are connected graphs, which ensures that every
vertex in V has at least 1 neighbor in the same group (since
|R|, |V \ R| > 1).

For connected graphs G = (V,E), we use their rooted
block-cut tree T to color the graph appropriately in Algo-
rithm 3. We first color all vertices in V blue, and then
change the color of r > 1 vertices to red to get a desired
2−partition X . Here, in each iteration (starting at Line 6 of
Algorithm 3), we color all the biconnected children blocks of
some leafy-cut vertex red (Line 12), till r nodes have been
colored red. Lemma 4 deals with the case when the remain-
ing nodes, which are to be colored red, fit within the subtree
of a leafy-cut vertex z (Line 17). In this case, we call the
SELECTPAIRSFIRST procedure given in Algorithm 2, which
colors some of the nodes in this subtree of z red, while satis-
fying Equation (6) below for all nodes. The coloring is done
by using an st−numbering of the biconnected blocks with the
source as node z.
Lemma 4. For a connected graph G = (V,E) and its
rooted block-cut tree T , let z be a leafy-cut vertex in T with
biconnected blocks {bi}ki=1 as its children. Then for any
1 < r ⩽ Σk

i=1|bi|, b > 1, r + b = |V |, ∃ 2−partition
X = (R,B) with |R| = r, |B| = b such that ∀ i ∈ V ,

either d(i) = 1, or |NX(i)| ⩾ 1 (6)

Also, for any j ∈ [k],

|bj | = 1 and bj ⊆ B =⇒ z ∈ B (7)

This 2−partition can be found in O(|V | + |E|) time us-
ing the SELECTPAIRSFIRST

(
G, T , z, {bi}ki=1, r, b

)
proce-

dure, given in Algorithm 2.

Proof. We use Algorithm 2 to show the existence of the de-
sired 2−partition. In particular, we show that if R is the out-
put of Algorithm 2, and B = V \ R, X = (R,B), then
Equation (6) holds for all i ∈ V , and Equation (7) holds for
all j ∈ [k]. We first color the complete graph blue, and then
change the color of r vertices to red.

Consider an arbitrary j ∈ [k]. Let Sj denote the
st−numbering of G[bj ∪ {z}] with z as the source vertex.
Also, let LAST BLUE[j] denote the last blue node in the col-
oring of block bj in order of its st-numbering Sj . In other

Algorithm 2 SELECTPAIRSFIRST

Input:
Connected graph G = (V,E)
Block-cut tree T , leafy-cut vertex z of T
List of children biconnected blocks {bi}ki=1, integers r, b

Require: 1 < r ⩽ Σk
i=1|bi|, b > 1, r + b = |V |

Output: R ⊆ V such that |R| = r

1: Sj ← st-numbering(G[bj∪{z}], source = z), ∀j ∈ [k]
2: LAST BLUE[j]← |bj |, ∀j ∈ [k]

3: // Make r even by allotting an odd number of nodes toR
4: if r is odd then
5: if ∃ j ∈ [k] s.t. |bj | = 1 then
6: LAST BLUE[j]← 0; r ← r − 1
7: else if ∃ j ∈ [k] s.t. |bj | ⩾ 3 then
8: LAST BLUE[j]← |bj | − 3; r ← r − 3
9: else if |bj | = 2 for all j ∈ [k] then

10: R ←
⋃⌊r/2⌋

i=1 bi ∪ {z}; returnR
11: end if
12: end if
13: PHASE I: Color Pairs
14: idx ← 1 // First loop to color pairs red
15: while r > 0 & idx ⩽ k do
16: remaining← LAST BLUE[idx]
17: // Note that ‘reqd’ is even, hence pairs
18: reqd← min (r, 2 ⌊remaining/2⌋)
19: LAST BLUE[idx]← remaining− reqd
20: r ← r − reqd; idx← idx + 1
21: end while
22: PHASE II: Color Remainders
23: idx ← 1 // Second loop to color remaining odd blocks
24: while r > 0 & idx ⩽ k do
25: remaining← LAST BLUE[idx]
26: // Note that ‘reqd’ will be either 0 or 1
27: reqd← min (r, remaining)
28: LAST BLUE[idx]← remaining− reqd
29: r ← r − reqd; idx← idx + 1
30: end while
31: R ← ∅; idx ← 1 // Adding assigned red nodes toR
32: while idx ⩽ k do
33: R ← R∪ {v ∈ bidx | Sidx(v) > LAST BLUE[idx]}
34: end while
35: returnR

words, at any instant, all nodes in {v ∈ bj | Sj(v) ⩽
LAST BLUE[j]} are colored blue. Thus, decreasing the value
of LAST BLUE[j] is equivalent to coloring some nodes in bj
red. Let C = ∪ki=1bi. We first show that every v ∈ C satisfies
Equation (6). Consider the following two cases for r.

1. r is even: We start with Phase 1 (Line 13). In each
iteration, we color an even number of nodes (denoted
by reqd in Line 18) from bj red for some j ∈ [k],
i.e. the last reqd nodes in Sj are colored red. Let
bR = {v ∈ bj | Sj(v) > LAST BLUE[j]}, which is the
set of red-colored nodes in bj . By Observation 3, G[bR]
and G[(bj ∪ {z}) \ bR] are connected graphs. Note that



|bR| is even (i.e. |bR| ̸= 1), so any node in bR has a
same-colored neighbor. And any node in bj \ bR has ei-
ther z as its neighbor or another node from bj \ bR as
neighbor. Since z is blue-colored, every node in bj \ bR
also has a same-colored neighbor. Thus, after Phase 1
ends, every descendant of z has a same-colored neigh-
bor. Also, we color at most r nodes red by the end of
Phase 1 (ensured by Line 18).
If r nodes were not colored red by the end of Phase 1,
then we move to Phase 2 (Line 22). Note that if more
nodes need to be colored red after Phase 1, then every
bi, i ∈ [k] has at most 1 blue node. In each iteration,
we choose some j ∈ [k] with |bj | odd, and color the
remaining blue node v in bj red (the number of nodes to
be colored red is denoted by reqd in Line 27, such that
reqd ⩽ 1). This is done till r nodes get colored red. If
|bj | = 1, then the node v ∈ bj satisfies Equation (6) (as
d(v) = 1). Else the whole set bj is colored red, and since
G[bj ] forms a connected graph (Observation 3), so all
nodes in bj will have a same-colored neighbor. Finally,
note that the two phases will end after coloring exactly r
nodes red, since r ⩽ |C|.

2. r is odd: We start at Line 4. If ∃j ∈ [k] with |bj | = 1
(Line 5), then we color the only vertex v ∈ bj red. Since
d(v) = 1, v satisfies Equation (6). And we can color the
remaining graph according to r even case. Otherwise,
if ∃j ∈ [k] with |bj | ⩾ 3 (Line 7), then we color the
last 3 nodes in the order of Sj red, i.e. bR = {v ∈ bj |
Sj(v) > |bj | − 3} is colored red (we can do so since
r ̸= 1). By Observation 3, bR forms a connected graph,
so that every node in bR has a same-colored neighbor.
The remaining graph can again be colored using the r
even method. Finally, if the above two conditions do not
hold, then we must have |bi| = 2, ∀i ∈ [k] (Line 9). In
this case, we color the first (r−1)/2 biconnected blocks
red, along with node z. Then every bi, ∀i ∈ [k] has 2
neighboring nodes of the same color, ensuring that both
of these nodes satisfy Equation (6).

Thus, the output of Algorithm 2 returns a 2−partition X =
(R,B) such that |R| = r and every descendant of node z
satisfies Equation (6). We now show that Equation (6) holds
for all nodes in V \ C as well, and Equation (7) holds for all
j ∈ [k]. Consider the color of node z in partition X .

1. z ∈ B : Note that G[V \ C] is also a connected graph
(since z is a cut vertex). And every node v ∈ V \C with
v ̸= z is also colored blue. If |V \ C| > 1, then every
node in V \ C has a same-colored blue neighbor. Oth-
erwise, we must have V = C ∪ {z}. Since b > 1, there
must be at least 1 blue node in C. As we color nodes
red from the end in the st-numbering of the biconnected
blocks in C, some blue node v ∈ C must be a neighbor
of z, as desired.

2. z ∈ R : This can only happen when |bi| = 2, ∀i ∈
[k] (Line 9). Thus, if ∃j ∈ [k] with |bj | = 1, then we
must have z ∈ B, proving Equation (7). Since r > 1, z
will have a same-colored red neighbor in b1. Let VB =
V \ (C ∪ {z}). Then the graph G[VB ] is a blue-colored

Algorithm 3 CONNPART: Block – Cut Partition

Input: Connected graph G = (V,E), integers r, b
Require: r, b > 1; r + b = |V |
Output: X = {R,B}, |R| = r, |B| = b

1: if G is biconnected then
2: return BICONNPART(G, r, b)
3: end if
4: T ← BlockCutTree(G) rooted at a cut vertex c
5: R ← ∅; Vrem ← V

6: STARTLOOP:
7: z ← Arbitrary leafy-cut vertex of T [Vrem]
8: z has k biconnected blocks b1, b2, . . . , bk as children
9: C ←

⋃k
i=1 bi // bi does not contain z, ∀i ∈ [k]

10: if r > |C|+ 1 then
11: // Color all children of z red, and trim the graph
12: R ← R∪ C; r ← r − |C|; Vrem ← V \ R
13: goto STARTLOOP
14: else if r = |C|+ 1 then
15: // Color z and all its children red
16: R ← R∪ C ∪ {z}
17: else if r < |C|+ 1 then
18: G← G[Vrem]; T ← T [Vrem]
19: R ← R∪ SELECTPAIRSFIRST(G, T , z, {bi}, r, b)
20: // If r is odd, we first color odd nodes to make r
21: // even. Pairs are then selected from the bi’s.
22: // Finally, an odd element of some bi’s may be
23: // chosen till the requirement of r nodes is met.
24: end if
25: return X = (R, V \ R)

connected graph. If |VB | > 1, then each node in VB will
also have a same-colored neighbor in VB . Otherwise, if
|VB | = 1, then this node v ∈ VB satisfies d(v) = 1.

Thus, the output of Algorithm 2 satisfies all the conditions
given in this Lemma.
(Complexity): To see why Algorithm 2 finishes in O(|V | +
|E|) time, note that it requires finding the st-numbering of
each biconnected block (which is a linear-time operation),
and simply iterating over the blocks in phases 1 and 2.

Lemma 5 provides a complete characterization of the out-
put of Algorithm 3 for any connected graph G.

Lemma 5. For any connected graph G = (V,E) and r, b >
1 with r + b = |V |, Algorithm 3 returns a 2−partition X =
(R,B) s.t. |R| = r, |B| = b and ∀i ∈ V , Equation (6) holds.

Proof. If G is biconnected, then Algorithm 3 returns the out-
put of Algorithm 1 (in Line 2). In this case, we get the de-
sired property of the 2−partition from Lemma 3. Suppose G
is not biconnected. Let T be the block-cut tree of G rooted at
some cut vertex c. Suppose z is the chosen leafy-cut vertex
on Line 7, with k ⩾ 1 biconnected blocks {bi}ki=1 as chil-
dren. An example of this setup is shown in Figure 1. Also let
C = ∪ki=1bi, and note that |C| ⩾ 1 (since every biconnected
block has at least 1 vertex). Here, the graph being partitioned



Figure 1: Block-cut tree T rooted at a cut vertex c; z is a leafy-cut
vertex in T , and has biconnected blocks {bi}ki=1 as children

is G[Vrem] (initially, Vrem = V ). In each iteration (Line 6),
there are 3 possible situations:
Case 1: r ⩽ |C| : We apply the SELECTPAIRSFIRST pro-
cedure (Line 19). By Lemma 4, every i ∈ Vrem must have
either dG[Vrem](i) = 1 or |NX(i)| ⩾ 1. If Equation (6) is not
satisfied by i in the final partition X of G, then the second
condition cannot hold, giving dG[Vrem](i) = 1 (i.e. |bj | = 1)
and dG(i) > 1. Thus, i is a cut vertex in G, and so it will have
a pre-colored red child (from some previous iteration). If i is
red, then this child is a same-colored neighbor of i. Else if
i is blue, then Lemma 4 gives that its parent z must also be
blue. Hence, we reach a contradiction in both situations, and
every node i ∈ Vrem satisfies Equation (6).
Case 2: r = 1 + |C| : z and all its children are colored red
(Line 16). Note that G[C∪{z}] and G[Vrem\(C∪{z})] are red
and blue colored connected graphs respectively, each having
size > 1. Thus, every node in Vrem has at least 1 neighbor in
the same group, satisfying Equation (6).
Case 3: r > 1 + |C| : In this case, we color all nodes in C
red (Line 12), and reduce r to r′ = r − |C|. For any j ∈ [k],
there are 2 cases:

1. |bj | > 1, so that every node i ∈ bj has a same-colored
red neighbor in bj (since G[bj ] is connected).

2. |bj | = 1, so that there is only one node v ∈ bj . If
dG(v) = 1 (i.e. v is only joined to z in G), then v
already satisfies Equation (6). Otherwise, if v is a cut
vertex in G, then v (which is colored red) must have
a pre-colored red child (from some previous iteration),
giving |NX(v)| ⩾ 1.

Thus, Equation (6) holds for all i ∈ C. The graph is now
trimmed to G′ = G[Vrem\C], which is still a connected graph.
And the problem reduces to finding a 2−partition X ′ =
(R′,B′) in this connected graph G′ with |R′| = r′, |B′| = b
(where r′, b are still > 1 and r′ < r). We now repeat the same
procedure for this subgraph.

Lemmas 2 and 5 together give the desired BP−2 for con-
nected graphs, as given in Lemma 6 below.
Lemma 6. For any connected graph G = (V,E), there exists
an EF−(max(∆− 2, 2)) BP−2.

Proof. By Lemmas 2 and 5, for any connected graph with
|V | ⩾ 4, taking r = ⌈|V |/2⌉ in Algorithm 3 returns an
EF−(max(∆ − 2, 2)) BP−2. And, if |V | ⩽ 3, then Obser-
vation 2 ensures the existence of an EF−2 BP−2 (since any
node has ⩽ 2 neighbors, so it cannot have envy > 2).

Proof. (of Theorem 1) Divide an arbitrary graph G into its
connected components c1, c2, . . . , cm. For j ∈ [m], let
Gj =

⋃j
i=1 ci, with Gm = G. We will use induction on

j ∈ [m] to get an EF−(max(∆ − 2, 2)) BP−2 for all Gj .
By Lemma 6, G1 has such a partition. For the inductive step,
suppose the desired BP−2 X exists for Gj−1 (j > 1). If
there are more blue nodes in X than red nodes, then color
cj as per Lemma 6, with at least as many red nodes as blue
nodes. Else color cj with the opposite colors. This ensures
that the absolute difference between the number of red and
blue nodes in this new 2−partition of Gj is at most 1, giving
us a BP−2 of Gj . Also, since the partition in each component
is EF−(max(∆−2, 2)) and there are no edges between com-
ponents, this final BP−2 will also be EF−(max(∆ − 2, 2)),
completing the induction and our proof for Theorem 1.
(Complexity): As per the above proof, to find the final BP−2,
we have to run Algorithm 3 for each cj , j ∈ [m] once. Al-
gorithm 3 requires finding the block-cut tree of a connected
graph and the st−numbering within different biconnected
components, both of which are linear-time algorithms. Algo-
rithm 2 is also called only once (in Line 19 of Algorithm 3),
and it is also linear time according to Lemma 4. This en-
sures that for each connected component of G, Algorithm 3
runs in linear time, making the overall algorithm finish in
O(|V |+ |E|) time.

3.2 Pareto Optimality
Theorem 2. For every graph G with a BP−2X that is EF−r
for some r ⩾ 0, there exists a BP−2X ′ that is EF−r and PO.

Proof. Suppose some graph G has a BP−2 X that is EF−r.
If X is PO, then we are done. Otherwise, we perform a
sequence of Pareto improvements to X till we get a PO
BP−2 X ′. We claim that X ′ is EF−r. Suppose X ′ is not
EF−r. Then by condition 1 of Lemma 1, ∃i ∈ V such that
d(i)−r > 2|NX′

(i)|. Since all variables in this inequality are
natural numbers, this implies that d(i) − r − 1 ⩾ 2|NX′

(i)|
or |NX′

(i)| ⩽ d(i)−r−1
2 . However, since X is EF−r, by con-

dition 2 of Lemma 1, we have |NX(i)| ⩾ d(i)−r−1
2 . The

partition X ′ is obtained by sequential Pareto improvements
from X , and hence |NX(i)| ⩽ |NX′

(i)|. Combining these
three inequalities, we get

|NX(i)| = d(i)− r − 1

2
= |NX′

(i)|. (8)

Suppose the BP−2’s are given by X = (R,B) and X ′ =
(R′,B′), and WLOG i ∈ R,R′. From Equation (8), we have



(d(i)−|NX(i)|)−|NX(i)| = r+1, i.e., ‘the number of blue
(B) neighbors of i’ minus ‘the number of red (R) neighbors
of i’ is r + 1. Consider the following two possible cases.

1. |B| = ⌊n/2⌋ < ⌈n/2⌉: According to Definition 3, i can
apply a tran operation fromR to B and increase its util-
ity by r + 1, which contradicts X being EF−r.

2. |B| = ⌈n/2⌉: Consider an arbitrary node j ∈ B and
a possible swap of i with j. If j is not a neigh-
bor of i, then on swapping groups with j, the utility
of i increases by r + 1, which contradicts X being
EF−r. So every j ∈ B can only be a neighbor of
i, or equivalently, B = N(i) \ NX(i). But, we also
have |NX(i)| = |NX′

(i)|, which gives ⌈n/2⌉ = |B| =
d(i)−|NX(i)| = d(i)−|NX′

(i)| ⩽ |B′|, where the last
inequality comes from the fact that the blue neighbors of
i must be at most the whole of B′. Since X ′ is a BP−2,
|B′| is also bounded from above by ⌈n/2⌉, and hence
|B′| = d(i)−|NX′

(i)| = ⌈n/2⌉ ⇒ B′ = N(i)\NX′
(i).

Thus, we have |R′| = ⌊n/2⌋, which means that only the
swap operation is possible for i in X ′. Pick an arbitrary
j′ ∈ B′ for i to swap with. This swap leads to a change
in utility of i from |NX′

(i)| to d(i)−|NX′
(i)|−1, which

is d(i) − 2|NX′
(i)| − 1 = r. This contradicts the fact

that i has an envy > r with some j′ ∈ B′.
Since both conclusions above lead to a contradiction, our
original assumption on X ′ not being EF−r must be false, and
X ′ is the desired PO EF−r partition.

Theorem 3. Consider an arbitrary graph G that has a BP−2
X which belongs to the (α, β)− core for some α ⩾ 1, β ⩾ 0.

1. Then there exists a PO BP−2 X ′ in the (α, β)− core.

2. If X is also EF−r for some r ⩾ 0, there exists a BP−2
X ′ in the (α, β)− core, which is both EF−r and PO.

Proof. Part 1: Assume, for contradiction, that X is not PO.
Let X ′ be PO partition obtained by sequentially improving X
(as we did for Theorem 2). Suppose X ′ is not in (α, β)−core.
Then there exists a blocking coalition S of size either ⌊n/k⌋
or ⌈n/k⌉ such that for the BP−2 Y = (S, V \ S), ui(Y ) >
α · ui(X

′) + β for all i ∈ S. But, by construction, ui(X
′) ⩾

ui(X) since X ′ was obtained by sequentially improving X .
Hence, S is also a blocking coalition for BP−2 X , which
contradicts the fact that X is in (α, β)− core.
Part 2: Now, suppose X is also EF−r. Construct X ′ in a
similar way as part 1. Part 1 shows that X ′ will be in the
(α, β)− core. By Theorem 2, X ′ will also be EF−r.

4 Main Results: Grid Graphs
In Section 3, we saw the fairness and efficiency guarantees
for general graphs. These results have their limitations ow-
ing to the arbitrary structure of the graphs. We focus on grid
graphs in this section to investigate whether a relatively sim-
pler graph structure can yield stronger fairness and stability
properties. In the following two subsections, we will consider
envy-freeness and core properties, respectively, for GrGs.

Algorithm 4 L2R: Left-to-Right

Input: G = (V,E) ∈ GrG, partition size k ⩾ 2
Output: BP−k X of G

1: Suppose |V | = n such that n = q · k + r, 0 ⩽ r < k
2: // Arrange nodes from left-top to right-bottom
3: Sort nodes in V using (x,−y) as key
4: // First r groups have ⌈n/k⌉ nodes
5: // Next (k − r) groups have ⌊n/k⌋ nodes
6: for cnt = 1 to k do
7: Xcnt ← ∅; num← 1
8: size← ⌈n/k⌉ if cnt ⩽ r else ⌊n/k⌋
9: while num ⩽ size do

10: v ← left uppermost node in V ; V ← V \ {v}
11: Xcnt ← Xcnt ∪ {v}; num← num + 1
12: end while
13: end for

4.1 Envy-Freeness
We start this section by showing the incompatibility of BP−k
and EF−0 for all k ⩾ 2 even in GrGs.

Example 1. For any k ⩾ 2, the graph

Gk = combk+1 ∪Kk−2

consisting of a comb graph with 2(k + 1) vertices and k − 2
isolated vertices, has no EF−0 BP−k.

To see why, note that each subset in a BP−k X of Gk

should have 3 nodes. Let S1 denote the set of nodes with
degree 1. Since |S1| = k + 1 and there are only k groups,
∃ i, j ∈ S1 which are in the same group Xℓ (say). But if X is
EF−0, then every node in S1 must have their only neighbor
in the same subset. This would imply that |Xℓ| ⩾ 4 (i, j and
their 1 neighbor each), which is a contradiction.

However, if the EF guarantee is relaxed to EF−2, we show
that there is an efficient algorithm (Algorithm 4) to find a
BP−k in GrGs, for any k ⩾ 2. The algorithm traverses
the grid graph column-wise along the integer lattice Z2 from
the left-top corner to the right-bottom corner, placing a con-
tiguous sequence of traversed vertices in one subset of the
partition.3 The traversal is continued until there is no vertex
left. This method first creates n (mod k) such subsets of size
⌈|V |/k⌉, and then remaining subsets of size ⌊|V |/k⌋. An exam-
ple of a BP−2 created by Algorithm 4 is shown in Figure 2.

Theorem 4. For all k ⩾ 2 and G = (V,E) ∈ GrG, Algo-
rithm 4 returns an EF−2 BP−k X in O(|V | log(|V |)) time.

Proof. Assume, for contradiction, that BP−k X (returned
by Algorithm 4) is not EF−2. Then ∃i, j ∈ V such that i
envies j by at least 3. By Observation 2, i has at least 3
neighbors in XX−1(j). Define NTL(i) as the set of neigh-
bors (can be empty) to the top and left of i in the inte-
ger lattice Z2. Formally, if i = (x, y) on the lattice, then
NTL(i) = {(x, y + 1), (x − 1, y)} ∩ N(i). Similarly de-
fine NBR(i) = {(x, y − 1), (x+ 1, y)} ∩N(i) as the neigh-
bors of i that lie to the bottom and right of i. Note that

3Here traversal is done over all vertices that exist in the graph on
the lattice irrespective of whether they are joined by an edge or not.



Figure 2: Partitioning done by Algorithm 4 (L2R) for k = 2

|NBR(i)|, |NTL(i)| ⩽ 2. Since at least 3 neighbors of i
are in the same subset, by the pigeonhole principle, ∃ u ∈
NTL(i), v ∈ NBR(i) such that both nodes u and v belong
to the same subset XX−1(j) of the partition returned by Al-
gorithm 4. But then all nodes visited between u and v in Al-
gorithm 4 should also be in XX−1(j), which includes i. This
leads to a contradiction.
(Complexity): For the time complexity, note that Algorithm 4
sorts V in O(|V | log(|V |)) time, and then iterates through all
the vertices in this sorted order, making the whole algorithm
complete in O(|V | log(|V |)) time.

4.2 Core
Theorem 5. For every G = (V,E) ∈ GrG, there is a polyno-
mially computable EF−2 BP−2 that lies in the (1, 1)− core.

Consider the partition X churned out by Algorithm 4
(L2R) on a GrG G = (V,E) for k = 2. From Theorem 4, no
node has more than 2 neighbors in the other subset in X , i.e.,
for all i ∈ V , ui(X) ⩾ d(i) − 2. We classify the nodes into
three categories, based on their neighbors in the other group.

Definition 11. Let X = L2R (G = (V,E), k = 2). Then
we call a node i ∈ V , (1) an internal node if ui(X) = d(i),
(2) an edge node if ui(X) = d(i)− 1, and (3) a corner node
if ui(X) = d(i)− 2.

For instance in Figure 2, D is an internal node, B is an
edge node and L is a corner node.

Observation 4. There can be at most 2 corner nodes. If both
exist, there must be an edge between them, and they cannot
share a common neighbor.

Proof. Let X = (R,B). Let cR ∈ R be the bottom-most
node in the rightmost column of R, and cB ∈ B be the up-
permost node in the leftmost column of B. Then cB will be
visited immediately after cR in the traversal done in Algo-
rithm 4. For any i ∈ R, i ̸= cR, i will have at most 1
neighbor in B (a neighbor in B can only lie to its right). So
the only possible corner node in R is cR. Similarly, for any
j ∈ B, j ̸= cB , j will have at most 1 neighbor in R (that
can lie to its left), making cB the only possible corner node
in B. Thus, there are at most 2 corner nodes. Finally, if both
cR and cB are corner nodes, then they must be joined to each
other to ensure that each of them has 2 neighbors in the other
subset. And, since there can be no C3 in a grid graph, the 2
adjacent corner nodes cannot share a common neighbor.

Algorithm 5 COREL2R: Core Left-to-Right

Input: G = (V,E) ∈ GrG
Output: BP−2 X of G

1: X ← L2R(G, k = 2); // Algorithm 4
2: if NOBLOCKING(X) then return X
3: else
4: S = BLOCKINGSET(X) ; X ′ = (S, V \ S)
5: if NOBLOCKING(X ′) then return X ′

6: else
7: S′ = BLOCKINGSET(X ′); return (S′, V \ S′)
8: end if
9: end if

We first prove a lemma that will aid us in proving the
(1, 1)− core property.
Lemma 7. No internal or edge node can be a part of a
(1, 1)−blocking coalition in BP−2 X .

Proof. For a node i to be a part of a (1, 1)−blocking coalition
S (Definition 5), we must have ui((S, V \ S)) > ui(X) +
1, which gives ui(X) ⩽ d(i) − 2 (since the utility of i is
bounded above by the degree). From Definition 11, this is
only possible for corner nodes, as desired.

Proof. (of Theorem 5) According to Theorem 4, BP−2 X
returned by Algorithm 4 is already EF−2. For the sake of
contradiction, suppose a (1, 1)−blocking coalition S exists
in partition X . Using Lemma 7, we see that only the corner
nodes can be a part of S, which gives |S| ⩽ 2 (using Observa-
tion 4). So any vertex in S can have at most 1 neighbor in S.
Thus, for any i ∈ S, we have ui((S, V \S)) ⩽ 1 ⩽ ui(X)+1,
which is a contradiction. This proves that such a blocking
coalition S cannot exist, and so the BP−2 returned by Algo-
rithm 4 is both EF−2 and in the (1, 1)− core.

Discussion: For arbitrary graphs, Li et al. (2023) showed that
when k ⩾ 3, a BP−k in the (1, 0)− core may not exist, with
the graph Ck+1 as the desired counter-example. Since odd
cycles can not exist in GrGs, the same example does not work
when k is even. So for even k, we can instead consider Pk+1

as an instance of a GrG that has no BP−k in (1, 0)−core (the
same proof works). Thus, for k ⩾ 3, there may be no BP−k
in (1, 0) − core even for GrGs. Li et al. (2023) also raised
an open problem about the existence of a BP−2 belonging to
(1, 0)− core in arbitrary graphs. We show that for GrGs, we
can always find such a partition.
Theorem 6. For every G ∈ GrG, Algorithm 5 returns a
BP−2 that belongs to (1, 0)− core.

Consider Algorithm 4 (L2R) for k = 2, which returns a
BP−2 X . Suppose it is not in the core (otherwise we have
the required partition). Then there exists a blocking coalition
S in our partition X . Let X ′ = (S, V \ S) be another BP−2.
As per Definition 5, for a node i to be a part of S, we must
have ui(X

′) > ui(X). Thus, its utility in X ′ must strictly
increase over that in X . We have the following lemma.
Lemma 8. No internal node can lie in the blocking coalition
S as defined above. Also, if an edge node j ∈ S, then all of
its neighbors are also in S (i.e., N(j) ⊆ S).



Proof. An internal node has all neighbors of the same color
as itself, so its utility cannot increase any further. Thus, it
cannot be part of S. Suppose an edge node j ∈ S. Since
uj(X

′) ⩾ uj(X) + 1 = d(j), and the utility of j is also
bounded above by d(j), we get equality here, i.e. uj(X

′) =
d(j) (all neighbors of j are in S).

Proof. (of Theorem 6) If X ′ is in core then we have the de-
sired partition. Otherwise, there is some blocking coalition S′

in this new partition X ′ as well. Consider any i ∈ S′. There
are 2 possible scenarios:
Case 1: i ∈ S′ ∩ S: then ui((S

′, V \ S′)) > ui(X
′) >

ui(X) =⇒ ui((S
′, V \ S′)) ⩾ ui(X) + 2. This is only

possible for corner nodes, as only they can have 2 neighbors
from the other group in X . And, if a corner node i is in S′,
then all its neighbors must also be in S′ to ensure the above
condition (since ui(X) = d(i)− 2).
Case 2: i ∈ S′ ∩ T : then ui((S

′, V \ S′)) ⩾ ui(X
′) + 1,

which means that i must have at least 1 neighbor ∈ S so that
its utility can increase from that in X ′. Call any such neighbor
j. As per Lemma 8, j cannot be an internal node. If it is an
edge node, all its neighbors will also be in S (Lemma 8),
which would imply that it cannot have a neighbor i ∈ T . So
the only option left is j being a corner node, i.e. i’s neighbors
in S can only be corner nodes. Since a node cannot be a
common neighbor of two corner nodes (Observation 4), i will
have exactly one neighbor in S. Thus, to increase the utility
of i in (S′, V \ S′), all neighbors of i must also be in S′.

In both the cases above, we see that any i ∈ S′ must have
all its neighbors also in S′, implying that there is no edge
between S′ and V \ S′. Then the BP−2 (S′, V \ S′) is in the
core, as desired.

5 Conclusions and Future Work
In this paper, we have designed various efficient algorithms to
find approximately envy-free balanced partitions, along with
existential results on stable and Pareto optimal partitions. Our
work raises several important questions:

• Is it possible to show the existence of an EF−2 BP−2 in
all biconnected graphs, and then to show it for all con-
nected graphs by making use of the block-cut tree?

• For an arbitrary graph, can (1, 0)−blocking coalitions
be taken consecutively (similar to Algorithm 5) a total
of O(∆(G)) times to reach a BP−2 in (1, 0)− core?

• Does every GrG admit an EF−1 BP−k? We provide
partial results on this in Appendix A.

• Given a BP−2 from Theorems 2 and 3, can the PO
BP−2 be found via an efficient algorithm? Also, can
this result be extended to any BP−k (k ⩾ 3)?

References
Konstantin Andreev and Harald Räcke. Balanced graph parti-
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Appendix
A EF−1 BP−2 in Grid Graphs
In this section, we show that an EF−1 BP−2 exists for GrGs
with an odd number of nodes. For odd graphs, the two groups
to be formed by the partition will have different numbers of

nodes
(
|V | − 1

2
and
|V |+ 1

2

)
. This relaxes the partitioning

problem by introducing the freedom of switching the group
of a single node belonging to the larger group.

Theorem 7. For every G = (V,E) ∈ GrG with |V | = n and
n mod 2 = 1, there exists an EF−1 BP−2 that can be found
in O(n log(n)) time complexity.

Proof. We start with Algorithm 4 (L2R) and make some
modifications based on different cases that arise. According
to Observation 2, the only nodes that can violate the EF−1
property are the corner nodes, since the remaining nodes can
have at most 1 neighbor in the other subset (Definition 11).
Before proceeding to the intricate casework, it is important to
note that Algorithm 4 will provide a BP−2 X in which the
group on the left side (say colored red) will have more nodes
than the other group (say colored blue). Thus, we have the
option to switch the color of a single red node in X to blue.

We call a node conflicting if it does not satisfy EF−1 prop-
erty (i.e. its envy towards some other node is greater than 1).
A corner node i is conflicting only when it has exactly two
neighbors and both belong to the other group. Since if i has a
neighbor in the same subset (i.e. ui(X) ⩾ 1), then its utility
on joining the other subset will have to change to at least 3,
which is not possible.

• Case 1 : Red corner node A is conflicting.
Simply switching the color of this conflicting node re-
solves the issue, as shown in Figure 3. In the resulting
partition, A is no longer conflicting, and the other pos-
sible corner node (i.e. E) can also not be conflicting.

• Case 2 : Only the blue corner node E is conflicting, and
switching the color of the red node directly above (i.e.
A) resolves the issue.
As shown in Figure 4, after switching the color of node
A, the new possible corner nodes so formed will be A
and the node (say B) above it. A will have at least 1

Figure 3: Case 1

neighbor in the same subset (i.e. E). The case where
node B becomes conflicting is handled in Case 3 below.

Figure 4: Case 2

• Case 3 : Only the blue corner node E is conflicting,
and switching the color of the red node directly above
(i.e. A) does not resolve the issue.
Figure 5 shows the scenario in which simply switching
the color of vertex A can result in the node above it
becoming conflicting. Here, node B will have two
neighbors A and C belonging to the other group (after
switching the color of A), and none in its own group.
For this case, constructing the boundary as shown in the
last diagram of Figure 5 (i.e. switching the groups of
E and B from the original BP−2 X) resolves the issue
since no node is now conflicting.

Figure 5: Case 3

Thus, in all scenarios, we can find a BP−2 in which no
node violates the EF−1 condition, as desired.
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