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Abstract

We study the problem of fairly assigning a set of discrete tasks (or chores) among a set of
agents with additive valuations. Each chore is associated with a start and finish time, and each
agent can perform at most one chore at any given time. The goal is to find a fair and efficient
schedule of the chores, where fairness pertains to satisfying envy-freeness up to one chore (EF1)
and efficiency pertains to maximality (i.e., no unallocated chore can be feasibly assigned to any
agent). Our main result is a polynomial-time algorithm for computing an EF1 and maximal
schedule for two agents under monotone valuations when the conflict constraints constitute an
arbitrary interval graph. The algorithm uses a coloring technique in interval graphs that may be
of independent interest. For an arbitrary number of agents, we provide an algorithm for finding
a fair schedule under identical dichotomous valuations when the constraints constitute a path
graph. We also show that stronger fairness and efficiency properties, including envy-freeness
up to any chore (EFX) along with maximality and EF1 along with Pareto optimality, cannot be
achieved.

1 Introduction
Fair allocation of indivisible resources has become a significant area of study within economics,
operations research, and computer science [Brams and Taylor, 1996, Brandt et al., 2016, Moulin,
2019]. The main objective is to distribute a set of discrete resources among agents with differing
preferences such that the outcome satisfies rigorous guarantees of fairness and economic efficiency.
This field has generated extensive theoretical and practical interest in recent years. On the
theoretical front, multiple fairness notions have been formulated and a rich set of algorithmic
techniques have emerged [Amanatidis et al., 2023]. As for practical applications, there are various
areas of use, such as course allocation [Budish et al., 2017], public housing [Benabbou et al., 2020],
and inheritance division [Goldman and Procaccia, 2015].

It is worth noting that while the aforementioned settings involve resources that are considered
desirable (also known as goods), there are many real-world situations where fair distribution of
resources that are undesirable, also known as chores, is needed [Gardner, 1978]. Common examples
of such situations include the division of household tasks like cooking or cleaning [Igarashi and
Yokoyama, 2023], as well as the distribution of responsibilities for tackling global issues like
climate change among countries [Traxler, 2002].
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The problem of fair division of indivisible chores involves a set of discrete resources for which
agents have non-positive values. The goal is to assign each chore to exactly one agent such that
the final allocation is fair. A well-studied notion of fairness is envy-freeness [Gamow and Stern,
1958, Foley, 1967] which requires that each agent weakly prefers its bundle over any other agent’s.
However, due to the discrete nature of the tasks, an envy-free allocation may not always exist. This
has led to the study of approximations such as envy-freeness up to one chore (EF1) which bounds
the pairwise envy by the removal of some chore in the envious agent’s bundle [Budish, 2011, Aziz
et al., 2019]. Unlike exact envy-freeness, an EF1 allocation of chores is guaranteed to exist even
under general monotone valuations [Lipton et al., 2004, Bhaskar et al., 2021].

A common assumption in the fair division literature is that any item can be feasibly assigned
to any agent. This assumption may not hold in many settings of interest. For example, in course
allocation, a student can only attend at most one course at any given time. Similarly, in assigning
volunteers to conference sessions, temporal overlaps may need to be taken into account. In
such settings, it is more natural to model conflicts among the items and allow only feasible (or
non-conflicting) allocations.

We formalize the problem of fair and efficient scheduling of indivisible chores under conflict
constraints. Each chore is associated with a start time and a finish time. Indivisibility dictates that
a chore can be assigned to at most one agent. An agent can perform at most one chore at a time;
furthermore, a chore once started must be performed until its completion. By modeling the chores
as vertices of a graph and capturing temporal conflicts with edges, we obtain the problem of
dividing the vertices of an interval graph among agents such that each agent gets an independent
subset. Note that due to conflicts, it may not be possible to allocate all chores. Thus, we ask for
schedules to be maximal, i.e., it should not be possible to assign any agent an unallocated chore
without creating a conflict.

Our Contributions

We initiate the study of fair and efficient interval scheduling of indivisible chores under conflict
constraints and make the following contributions:

Non-existence results. In Section 3, we show that the strongest approximation notion—envy-
freeness up to any chore (EFX)—may not be compatible with maximality. By weakening the
fairness requirement to envy-freeness up to one chore (EF1) but strengthening the efficiency
requirement to Pareto optimality, we again obtain a non-existence result (see Figure 1). Notably,
our negative results hold even for two agents with identical valuations and even when the conflict
graph is a path graph. Thus, we focus on EF1 and maximality in search of positive results. In
Section 4, we highlight the limitations of algorithms from the unconstrained setting—specifically,
round robin and envy-cycle elimination—in computing an EF1 and maximal schedule.

Algorithms for two agents. In Section 5, we prove our main result: A polynomial-time algorithm
for finding an EF1 and maximal schedule for two agents under general monotone valuations and
for any interval graph. Our analysis develops a novel notion of adjacent schedules and uses a
coloring technique that may be of independent interest.

Algorithms for an arbitrary number of agents. In Section 6, we consider the case of an arbitrary
number of agents. While we are unable to settle the existence of an EF1 and maximal schedule in
this setting even for three agents, we show that under restricted valuations (specifically, identical
dichotomous valuations), an EF1 and maximal schedule always exists for a path graph for four or
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Results

Can fail to exist
(Example 1)

Can fail to exist
(Example 2)

Exists in certain settings
(See Table 1)

Efficiency
Notions

PO

Maximal

Fairnesss
Notions

EFX

EF1

Figure 1: Summary of our results. The arrows denote logical implications between fairness and efficiency
notions. The positive and negative results are shown in green and red, respectively.

No. of agents Path graph Interval graph

n = 2
✓ for monotone valuations ✓ for monotone valuations

(Theorem 1) (Theorem 3)

arbitrary n
✓ for identical dichotomous ✓ for identical valuations and

valuations and n ≥ 4 bounded components
(Theorem 4) (Theorem 5)

Table 1: Summary of our results for EF1 and maximality. In each cell, a ✓ denotes that an EF1 and
maximal schedule always exists and is computable in polynomial time under the assumptions on the number
of agents (rows) and the conflict graph (column).

more agents.1 Furthermore, for identical valuations (not necessarily dichotomous), we show that
EF1 and maximality can be simultaneously achieved for a more general class of graphs, namely,
any graph in which each connected component is of size at most n, where n is the number of
agents.

Related Work

Fair allocation of indivisible resources has been predominantly studied in the unconstrained setting
wherein there are no feasibility constraints on the resources. This problem is a special case of
our model when the conflict graph contains no edges. For indivisible goods, it is known that
an allocation that is envy-free to up one good (EF1) always exists. Furthermore, the round
robin algorithm returns such an allocation in polynomial time under additive valuations, while
the envy-cycle elimination algorithm finds an EF1 allocation for the larger class of monotone
valuations [Lipton et al., 2004]. Additionally, under additive valuations, an allocation that is
simultaneously EF1 and Pareto optimal (PO) is known to always exist [Caragiannis et al., 2019]
and such an allocation can be computed in pseudopolynomial time [Barman et al., 2018]. The
existence of an allocation satisfying envy-freeness up to any good (EFX) remains unresolved for
four or more agents [Chaudhury et al., 2020]; though, it is known that EFX can be incompatible

1For two agents, our result in Section 5 applies while the three agent case remains unresolved even for identical
dichotomous valuations and a path graph.
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with Pareto optimality [Plaut and Roughgarden, 2020].
For indivisible chores, an allocation satisfying envy-freeness up to one chore (EF1) is again

known to exist under monotone valuations [Bhaskar et al., 2021]. However, for additive valuations,
it is not known if EF1 and Pareto optimality can be simultaneously achieved for four or more
agents [Garg et al., 2023] or if envy-freeness up to any chore (EFX) can be satisfied for three
or more agents.2 Just like goods, EFX and Pareto optimality are known to be incompatible for
chores [Plaut and Roughgarden, 2020].

A growing line of research in fair division has studied feasibility constraints on the resources [Suk-
sompong, 2021]. For example, several works model the items as vertices of a graph and require
each agent’s bundle to constitute a connected subgraph [Bouveret et al., 2017, 2019, Bilò et al.,
2022]. By contrast, our work requires the bundles to be independent sets.

Hummel and Hetland [2022] study fair allocation of items on a graph when each agent gets an
independent subset of the vertices. Their model differs from ours in two ways: First, they require
complete allocations whereas we focus on maximal allocations.3 Secondly, the items in their model
are goods whereas we consider chores. Chiarelli et al. [2023] study a similar model as Hummel
and Hetland [2022] but allow for partial allocations. However, they focus on maximizing the
egalitarian welfare (i.e., maximizing the minimum utility) as opposed to satisfying approximate
envy-freeness. Biswas et al. [2023] generalize the model of Hummel and Hetland [2022] by
incorporating capacity constraints for agents and items.

Assigning independent subsets to agents naturally corresponds to a partial coloring of the
conflict graph. A seminal result in this line of work is the Hajnal-Szemerédi theorem [Hajnal and
Szemerédi, 1970], which states that any graph with maximum degree ∆ admits an equitable
coloring when there are at least ∆ + 1 colors.4 The distinguishing point with our work is that this
result only focuses on equalizing the number of vertices in each color class, whereas our model
accounts for the (possibly differing) valuations assigned by the agents to the vertices.

Our work is closely related to that of Li et al. [2021], who studied fair scheduling in the context
of indivisible goods (as opposed to chores). Their framework is somewhat more general than ours
as they allow for flexible intervals, that is, the processing time of a job can be strictly less than
its finish time minus its start time. They study approximate maximin fair share (MMS) and EF1
notions. Notably, they show that a schedule maximizing Nash social welfare (i.e., the geometric
mean of agents’ utilities) satisfies 1/4-EF1 and Pareto optimality. For the case of chores, however,
maximizing or minimizing the product of (absolute value of) agents’ utilities can be shown to
violate EF1 or Pareto optimality.

In the literature on scheduling problems [Leung, 2004], various other fairness criteria have
been studied such as minimizing the maximum deviation from a desired load [Ajtai et al.,
1998], minimizing the ℓp norm of flow times [Im and Moseley, 2020], and analyzing the welfare
degradation due to imposition of fairness constraints [Bilò et al., 2016]. These notions differ from
the “up to one item” style approximations studied in our work.

2Though, positive results are known for dichotomous valuations [Garg et al., 2022, Ebadian et al., 2022, Zhou and
Wu, 2022].

3In our model, a complete allocation may fail to be EF1 even for a star graph.
4An equitable coloring is a proper coloring in which the color classes are almost balanced. That is, each vertex is

assigned a color such that no pair of adjacent vertices have the same color and any two color classes differ in size by at
most one.
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2 Preliminaries
Given any r ∈ N, let [r] := {1, 2, . . . , r}.

Problem instance. An instance of the chore scheduling problem (CSP)5 is given by a tuple
⟨A, C, T ,V⟩, where A := {a1, . . . , an} is the set of n agents (or machines), C := {c1, . . . , cm} is
the set of m indivisible chores (or jobs), T is the set containing the timing information of all chores,
and V is the valuation profile. The sets T and V are formally defined below.

Timing information. We will model the time axis as consisting of disjoint units [0, 1), [1, 2),
[2, 3), and so on. Any fixed t ∈ N ∪ {0} denotes a time instant and the interval [t, t + 1) refers to
the (t + 1)th time slot. Each chore cj ∈ C is associated with a start time sj ∈ N∪ {0} and a finish time
f j ∈ N ( f j > sj). The set T contains the tuple (sj, f j) for every chore cj ∈ C, i.e., T := {(sj, f j)cj∈C}.

Feasibility. An agent can perform at most one chore in any time slot. A chore cj is performed
successfully if it is performed by an agent during the interval [sj, f j). A set of chores C ⊆ C is said
to be feasible for an agent ai if all chores in C can be performed successfully by ai without overlap.
We will write Fi to denote the feasibility set of agent ai, i.e., the set of all feasible subsets of chores
for agent ai. Observe that any subset of pairwise non-overlapping chores is feasible for any agent;
thus, we have that F1 = F2 = · · · = Fn.

Valuation functions. The valuation function vi : Fi → Z≤0 specifies the value (or utility) derived
by agent ai for every feasible set of chores. Notice that the valuations are non-positive integers.
A valuation function vi is monotone if for any two feasible subsets of chores C, C′ ∈ Fi such that
C ⊆ C′, we have vi(C) ≥ vi(C′). We say that the valuations are additive if for any feasible set of
chores C ∈ Fi, vi(C) := ∑cj∈C vi({cj}). For simplicity, we will write vi,j to denote vi({cj}). The
valuation profile V := {v1, v2, . . . , vn} specifies the valuation functions of all agents.

Special classes of valuations. We say that agents have identical valuations if the valuation
functions v1(·), v2(·), . . . , vn(·) are the same, i.e., for any chore cj, we have vi,j = vk,j for any pair
of agents ai and ak. The valuations are said to be dichotomous if each agent has one of two distinct
values for any chore. Formally, there exist two distinct non-positive integers H and L such that for
every agent ai and every chore cj, we have vi,j ∈ {H, L}.

Schedule. A schedule (or allocation) X := (X1, X2, . . . , Xn) is an ordered n-partition of a subset of
chores in C where Xi denotes the set of chores (or bundle) assigned to agent ai; thus, for every
pair of agents ai, ak ∈ A, we have Xi ∩ Xk = ∅ and X1 ∪ · · · ∪ Xn ⊆ C. A schedule X is said to be
feasible if for every agent ai, we have Xi ∈ Fi. We will write F to denote the space of all feasible
schedules; notice that F ⊆ F1 ×F2 × · · · × Fn.

Complete and maximal schedule. A schedule X := (X1, X2, . . . , Xn) is called complete if no chore
is left unassigned, i.e., X1 ∪ · · · ∪ Xn = C. Note that a complete schedule may not be feasible in
general.6 A maximal schedule is one that is feasible and has the additional property that assigning
any unallocated chore to any agent makes it infeasible. Unless explicitly stated otherwise, we will
use the term ‘schedule’ to refer to a feasible (but possibly incomplete and possibly non-maximal)
schedule.

5Not to be confused with Constraint Satisfaction Problem.
6For example, for two agents and three chores that have identical start times and finish times, no complete schedule

is feasible.
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c1

c2 c3 c4

t = 0 t = 3

(a)

c1

c2 c3 c4

(b)

Figure 2: (a) A scheduling instance and (b) its conflict graph.

Conflict graph. Given any CSP instance ⟨A, C, T ,V⟩, we will find it convenient to define its
conflict graph G = (C, E) as follows [Hummel and Hetland, 2022, Chiarelli et al., 2023]: The set
of vertices is the set of chores, and for any pair of vertices ci, cj ∈ C, there is an undirected edge
{ci, cj} if and only if ci and cj overlap; see Figure 2 for an illustration. Note that a maximal
schedule corresponds to a subpartition into independent sets in the conflict graph. Also, observe
that the conflict graphs correspond to the class of interval graphs [West, 2001, Sec 5.1.15].

Envy-freeness. A schedule X := (X1, X2, . . . , Xn) is said to be (a) envy-free (EF) [Gamow and
Stern, 1958, Foley, 1967] if for every pair of agents ai, ak ∈ A, we have vi(Xi) ≥ vi(Xk); (b) envy-free
up to any chore (EFX) [Caragiannis et al., 2019, Aziz et al., 2019] if for every pair of agents ai, ak ∈ A
such that Xi ̸= ∅ and for every chore c ∈ Xi, we have vi(Xi \ {c}) ≥ vi(Xk), and (c) envy-free
up to one chore (EF1) [Budish, 2011, Aziz et al., 2019] if for every pair of agents ai, ak ∈ A such
that Xi ̸= ∅, we have vi(Xi \ {c}) ≥ vi(Xk) for some chore c ∈ Xi. It is easy to verify that
EF ⇒ EFX ⇒ EF1 and that all implications are strict.

Pareto optimality. A schedule X := (X1, X2, . . . , Xn) is said to Pareto dominate another schedule
Y := {Y1, Y2, . . . , Yn} if vi(Xi) ≥ vi(Yi) for every agent ai and vk(Xk) > vk(Yk) for some agent ak. A
Pareto optimal schedule is one that is maximal and is not Pareto dominated by any other maximal
schedule. The maximality requirement is helpful in ruling out trivial solutions; in particular,
an empty schedule that leaves all chores unassigned cannot be Pareto optimal according to this
definition.

3 Non-Existence Results
In this section, we will show that various combinations of fairness and efficiency notions can fail
to exist in the chore scheduling problem. Interestingly, all of our counterexamples involve two
agents with identical valuations and the conflict graph is a path graph.

Let us start with a negative result for EFX and maximality.

Example 1 (EFX and maximal schedule may not exist). Consider an instance with two agents a1 and
a2 and four chores c1, c2, c3, and c4 that are identically valued by the agents at −1, −1, −1, and −4,
respectively. The conflict graph is shown below:

c1 c2 c3 c4

Let X be the desired EFX and maximal schedule. Observe that due to maximality, the chore c4 cannot
remain unallocated under X. This is because if the neighboring chore c3 is assigned to one of the agents,
say a1, then the chore c4 must be assigned to the other agent a2. Similarly, if c3 is unassigned, then c4 can
be assigned to either of the agents without creating any conflict. Thus, we can assume, without loss of
generality, that c4 is assigned to agent a1.
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In order for the schedule X to satisfy EFX, agent a1 cannot be assigned any other chore. Furthermore,
feasibility dictates that the other agent a2 can be given at most two of the three remaining chores c1, c2,
and c3. If agent a2 gets exactly two chores, then it must be given c1 and c3; however, then c2 must be
assigned to agent a1, violating EFX. On the other hand, if agent a2 gets at most one chore, then once again
by maximality of X, agent a1 will be required to get at least one chore out of c1, c2, and c3, again violating
EFX. Thus, an EFX and maximal schedule does not exist in the above instance.

The non-existence of EFX motivates the consideration of a weaker approximation such as EF1.
Our next example shows that EF1 and Pareto optimality can be mutually incompatible even for
two agents with identical valuations on a path graph.

Example 2 (EF1 and Pareto optimal schedule may not exist). Consider an instance with two agents
a1, a2 and five chores c1, . . . , c5 that are identically valued by the agents at −2, −10, −1, −10, and −2,
respectively. The conflict graph is shown below:

c1 c2 c3 c4 c5

Any maximal schedule that allocates a “heavy” chore (c2 or c4) to one of the agents, say a1, can be
shown to be Pareto dominated by a schedule that assigns the extreme chores (c1 and c5) to a1 and the middle
chore c3 to a2. Therefore, any maximal schedule that leaves both heavy chores unassigned must be of the
form ({c1, , c5}, {c3}) or ({c3}, {c1, , c5}), neither of which satisfy EF1.

Note that a Pareto optimal schedule (without EF1) always exists; in particular, a schedule that
maximizes the sum of agents’ utilities (i.e., the utilitarian social welfare maximizing schedule)
over the space of all maximal schedules is Pareto optimal.

Another notion of efficiency is completeness which asks that no chore should be left unassigned.
A complete schedule may not exist (consider two agents and a triangle conflict graph). However,
even when a complete schedule exists, no such schedule may satisfy EF1.

Example 3 (EF1 and complete schedule may not exist). Consider an instance with two agents and
four chores c1, c2, c3, c4 such that the odd index chores are valued at −1 each and the even index chores are
valued at −3 each by both agents. The conflict graph is a path graph, similar to the one in Example 1. Any
complete schedule must assign all odd index chores to one agent and all even index chores to the other. It is
easy to see that EF1 is violated from the perspective of the agent with even index chores.

The failure of EF1 and completeness means that we must focus on EF1 and maximality in
search of positive results. Note that for three or more agents and a path graph, a schedule is
maximal if and only if it is complete.

4 Limitations of Algorithms from the Unconstrained Setting
Part of what makes the chore scheduling problem challenging is that algorithmic techniques from
unconstrained fair division do not automatically extend to the constrained problem. We will
illustrate this challenge through two examples that demonstrate that the well-known round robin
and envy-cycle elimination algorithms, which satisfy EF1 for unconstrained items, fail to do so in
the presence of conflicts.

The round robin algorithm iterates over the agents according to a fixed permutation, and
each agent, on its turn, picks its favorite remaining item. This algorithm is known to find an EF1
allocation under additive valuations in the unconstrained problem. However, when the conflict
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graph is a path graph, round robin can fail to achieve EF1 even for two agents with identical
valuations.

Example 4 (Round robin fails EF1). Consider an instance with eight chores c1, . . . , c8 and two agents
a1, a2 with identical valuations. The valuations profile and the scheduling constraints are shown in Figure 3.

c1

c2

c3

c4

c5

c6

c7

c8

t = 0 t = 9

c1 c2 c3 c4 c5 c6 c7 c8

a1 : 0 -7 -2 -1 -3 -8 -9 -10
a2 : 0 -7 -2 -1 -3 -8 -9 -10

Figure 3: The instance used in Example 4 (left) and its conflict graph and valuations (right).

Suppose agent a1 goes first in the round robin algorithm. Then the induced schedule is X1 =

{c1, c3, c5, c7} and X2 = {c4, c2, c6, c8}. Note that v2(X2 \ c) < v2(X1) for every c ∈ X2, implying that
the schedule fails EF1.

The reason why round robin fails EF1 in the scheduling model is that after picking c4 in the first round,
agent a2 can no longer pick c5 in its next turn due to feasibility constraint. Thus, it has to pick its favorite
among the feasible chores, which is c2. This results in a “build up” of envy in each round, which cannot be
compensated even after removing the worst chore c8 in its bundle.

The envy-cycle elimination algorithm is known to find an EF1 allocation for indivisible goods
in the unconstrained setting. For chores, a modification of this algorithm called the top-trading
envy-cycle elimination algorithm [Bhaskar et al., 2021] provides similar guarantees. The latter
algorithm works as follows: At each step, the algorithm assigns a chore to a “sink” vertex in the
envy graph.7 If a sink does not exist, there must exist a cycle of “most envied edges”, which,
when resolved (i.e., by a cyclic swap of bundles), creates a sink vertex.

Example 5 (Envy-cycle elimination fails EF1). Consider an instance with two agents a1, a2 and five
chores c1, . . . , c5 whose conflict graph is a path graph (similar to Example 1). The chores are valued at −10,
−1, −10, −3, and −2, respectively, by both agents. Note that since the valuations are identical, an envy
cycle can never occur. Thus, a sink agent always exists.

At each step of the algorithm, we allow a sink agent to pick its favorite among the feasible chores. Thus,
agent a1 starts by picking the chore c2, which makes a2 the sink. Next, agent a2 picks the chore c5, which
again makes a1 the sink, and so on. It can be checked that the induced schedule is ({c2, c4}, {c1, c3, c5}).
However, EF1 is violated from a2’s perspective as it gets both heavy chores.

Another challenge with the chore scheduling problem is that the set of maximal schedules
seems to lack any “easy to exploit” structure. In particular, one might wonder whether maximal
schedules constitute a matroid [Oxley, 2022]. If so, it would be natural to use known algorithms
for finding an EF1 allocation under matroid constraints [Biswas and Barman, 2019, Dror et al.,
2023]. However, any maximal schedule lacks the downward closedness property; in particular,
unassigning an item from a maximal schedule does not maintain maximality. Similarly, the
exchange axiom may also fail for a maximal schedule. To see this, consider a star conflict graph

7The envy graph associated with a given schedule is a directed graph whose vertices are the agents and there is an
edge (i, j) if agent i envies agent j in the given schedule. A sink vertex refers to an agent who does not envy any other
agent.
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as shown in Figure 2. Suppose the center chore is assigned to agent a1 and all leaf chores are
assigned to agent a2. Agent a1’s bundle has fewer chores, but transferring any of agent a2’s chores
to agent a1 creates infeasibility. Thus, it is not clear if ideas from matroid theory can be applied to
the chore scheduling problem.

5 Results for Two Agents
In this section, we will discuss our algorithmic results for two agents. We will start with the case
when the conflict graph is a path graph (Theorem 1). As we have seen in Sections 3 and 4, the
setting of two agents and a path graph is already quite nontrivial as all of our counterexamples
hold even in this special case. Our algorithm will use a novel coloring technique and a construct
called adjacent schedules that will help us circumvent the limitations discussed previously. We will
then show that, building on our coloring technique, a more sophisticated algorithm can find an
EF1 and maximal schedule for two agents for any interval graph (Theorem 3).

Notably, both of our algorithms apply to general monotone valuations, which is a significantly
broader class that contains additive valuations. In light of the non-existence results in Section 3,
the result in Theorem 3 is the most general positive result for two agents that one can expect in
our problem.

Let us start with our algorithm for path graphs.

Theorem 1 (Two agents and path graph). There is a polynomial-time algorithm that, given any CSP
instance with two agents with monotone valuations and an arbitrary path graph, returns an EF1 and
maximal schedule.

Our algorithm will use the idea of adjacent schedules which is defined below.

Definition 1 (Adjacent schedules). Two schedules X = (X1, X2) and Y = (Y1, Y2) are said to be adjacent
if for any i ∈ {1, 2}, Yi is obtained from Xi by adding at most one element and removing at most one
element, that is,

|Yi \ Xi| ≤ 1 and |Xi \ Yi| ≤ 1 for i ∈ {1, 2}.

For example, an adjacent schedule can be obtained by the two agents exchanging a pair of
chores, or by assigning an unallocated chore to agent 1 and transferring another chore from agent
1 to agent 2, etc. The following lemma shows that if we have two adjacent schedules and an agent
is envious in one but not in the other, then one of the two schedules or the schedules obtained
after swapping the bundles satisfies EF1.

Lemma 1. Let X = (X1, X2) and Y = (Y1, Y2) be two adjacent schedules such that

• in schedule X, agent a1 envies agent a2, and

• in schedule Y, agent a1 does not envy agent a2.

Then, at least one of the following four schedules must be EF1: X, Y, or the schedules obtained by swapping
the agents’ bundles, i.e., X′ := (X2, X1), or Y′ := (Y2, Y1).

Note that while the conditions of the lemma only require the envy to be considered from agent
a1’s perspective, the EF1 implication holds for both agents. Also, as will become clear, the proof of
Lemma 1 works for monotone valuations. Furthermore, the lemma can also be shown to hold for
goods (i.e., when all valuations are non-negative) under monotone valuations.
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Proof. (of Lemma 1) For the sake of contradiction, assume that none of the four schedules is
EF1. We can assume that a2 does not envy a1 in schedule X, because otherwise X′ would be EF.
Similarly, we can assume that a2 does not envy a1 in schedule Y′, because otherwise a2 would not
envy a1 in Y and Y would be EF. Now, since we assumed X and Y′ are not EF1, in both schedules
agent a1 must envy agent a2 even after giving up any single chore. By adjacent property of X and
Y, we know that |X1 \ Y1| ≤ 1 and |Y2 \ X2| ≤ 1. Hence, we can write

For X : v1(X1 \ (X1 \ Y1)) < v1(X2), and

For Y′ : v1(Y2 \ (Y2 \ X2)) < v1(Y1).

Note that X1 \ {X1 \ Y1} ⊆ Y1 and Y2 \ {Y2 \ X2} ⊆ X2. Putting this together with the above two
equations, we get

v1(Y1) ≤ v1(X1 \ {X1 \ Y1}) < v1(X2) and

v1(X2) ≤ v1(Y2 \ {Y2 \ X2}) < v1(Y1).

The two inequalities give us a contradiction.

Lemma 1 implies that in order to find an EF1 and maximal schedule, it suffices to find a pair
of adjacent and maximal schedules such that agent a1 is envious under one but not the other.
Towards this goal, we will construct a sequence of maximal schedules, starting with a schedule
X = (X1, X2) and ending with the swapped bundles X′ = (X2, X1), such that any two consecutive
schedules in the sequence are adjacent. Note that agent a1 cannot envy agent a2 in both X and X′.
Hence, there will be two consecutive schedules (i.e., a switchover point) in this sequence that will
satisfy the condition required in Lemma 1 and will give us the desired EF1 schedule.

For our next result (Lemma 2), we will find it convenient to identify agent a1 with red and
agent a2 with blue color.

Lemma 2. For any CSP instance with two agents and a path graph, there exists a sequence of feasible
schedules (X1 = (R1, B1), X2 = (R2, B2), . . . , Xm = (Rm, Bm)), where m ∈ N is the number of chores,
such that

1. The last schedule is obtained by swapping the two bundles in the first schedule. That is, R1 = Bm

and B1 = Rm.

2. For any 2 ≤ i ≤ m, the two schedules Xi and Xi−1 are adjacent.

3. For any 1 ≤ i ≤ m, the schedule Xi is maximal.

4. The sequence X1, . . . , Xm can be constructed in polynomial time.

Note that Theorem 1 follows readily from Lemmas 1 and 2. Indeed, the sequence of schedules
returned by the algorithm in Lemma 2 consists only of maximal schedules. The extreme schedules
are swapped versions of each other, therefore there must exist a pair of consecutive schedules, say
Xi and Xi+1, in the sequence where the envy of agent a1 switches. From Lemma 1, at least one of
Xi, Xi+1, or the swapped versions of these must satisfy EF1.

Proof. (of Lemma 2) We will prove the lemma by means of a coloring technique. Let the chores, in
the increasing order of their finish times, be denoted by c1, c2, . . . , cm. We define the m schedules
Xi = (Ri, Bi) for 1 ≤ i ≤ m, as follows (see Figure 4):

10



c1 c2 c3 c4 c5 c6

X1 : R B R B R B
X2 : B − R B R B
X3 : B R − B R B
X4 : B R B − R B
X5 : B R B R − B
X6 : B R B R B R

Figure 4: Illustrating the coloring technique on a path graph.

• R1 = {ch : h is odd} and B1 = {ch : h is even}.

• For any i ∈ {2, 3, . . . , m − 1},

– Ri contains {ch : 1 ≤ h < i, h is even} ∪ {ch : i < h ≤ k, h is odd},

– Bi contains {ch : 1 ≤ h < i, h is odd} ∪ {ch : i < h ≤ k, h is even},

– and the chore ci is unassigned ci+1.

• Rk = {ch : h is even} and Bk = {ch : h is odd}.

Feasibility: It is easy to see that each schedule Xi in the above construction is feasible. Indeed,
any colored chore ch intersects with at most one colored chore with earlier finish time, which can
only be ch−1. But the two chores ch and ch−1 are not assigned to the same agent in any of the
schedules.

Proof of part (1): From the construction, R1 = Bm and B1 = Rm immediately follows.

Proof of part (2): For any even 2 ≤ i ≥ m, observe that Bi \ Bi−1 = ci−1, and Bi−1 \ Bi = ci.
Moreover, Ri−1 \ Ri = ∅ and Ri \ Ri−1 is empty for i < m and is equal to {cm} for i = m. Hence,
Xi−1 and Xi are adjacent. For odd i, a similar argument works.

Proof of part (3): For any schedule Xi, there is at most one unassigned chore. Any such chore is
sandwiched between two chores that are assigned to different agents, implying maximality.

Proof of part (4): The number of schedules is equal to the number of chores m. Furthermore, at
each step, assigning or unassigning the chores takes constant time. Hence, the coloring algorithm
runs in polynomial time, as desired.

Having shown that an EF1 and maximal schedule exists for two agents on a path graph,
let us now turn to the more general class of interval graphs. Here, we will first show that a
generalization of the coloring technique for path graphs gives a weaker fairness guarantee of EF2
(instead of EF1) along with maximality for interval graphs.8 Subsequently, we will provide a more
sophisticated algorithm that gives a stronger guarantee of EF1.

Theorem 2 (EF2 for two agents and interval graph). There is a polynomial-time algorithm that, given
any CSP instance with two agents with monotone valuations and an arbitrary interval graph, returns an
EF2 and maximal schedule.

8A schedule X = (X1, X2) satisfies envy-freeness up to two chores (EF2) if for every pair of agents ai, ak, there exist
two chores c, c′ ∈ Xi such that vi(Xi \ {c, c′}) ≥ vi(Xk).
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Towards proving Theorem 2, we will once again construct a sequence of schedules, only this
time with a slight relaxation of maximality, as described in the next lemma.

Lemma 3. For any CSP instance with two agents and an interval graph, there exists a sequence of feasible
schedules (X1 = (R1, B1), X2 = (R2, B2), . . . , Xk = (Rk, Bk)) for some k ∈ N such that

1. The last schedule is obtained by swapping the two bundles in the first schedule. That is, R1 = Bk and
B1 = Rk.

2. For any 2 ≤ i ≤ k, the two schedules Xi and Xi−1 are adjacent.

3. For any 1 ≤ i ≤ k, the schedule Xi is either maximal or can be made maximal by including one
unassigned chore in either of its two bundles Ri or Bi.

4. The sequence X1, . . . , Xk can be constructed in polynomial time.

Proof. (of Lemma 3) We will classify each chore as colored or uncolored as follows: Consider the
chores in the increasing order of their finish times (In the event of a tie, we may resolve it by
subtracting a small value, such as i/n2, from the finish time of the ith chore. This adjustment
ensures an increasing order of finish times for the chores). A chore c is classified as uncolored if
and only if its time interval overlaps with two or more chores which have earlier finish time than
c and which are classified as colored.

Now, we will construct the desired sequence of schedules. The uncolored chores will not be
assigned to any agent in any of the schedules. Let the colored chores be cj1 , cj2 , . . . , cjk in increasing
order of their finish times. We define the k schedules Xi = (Ri, Bi) for 1 ≤ i ≤ k, as follows.

• R1 = {cjh : h is odd} and B1 = {cjh : h is even}.

• For any i ∈ {2, 3, . . . , k − 1},

– Ri contains {cjh : 1 ≤ h < i, h is even} ∪ {cjh : i < h ≤ k, h is odd},

– Bi contains {cjh : 1 ≤ h < i, h is odd} ∪ {cjh : i < h ≤ k, h is even},

– and the chore cji is assigned or unassigned in the schedule Xi depending on whether
the interval of cji intersects with the intervals of cji−1 and cji+1 . Note that one of chores
cji−1 and cji+1 is in Ri and the other one is in Bi. If the interval of cji intersects with both,
then cji is unassigned. If it intersects with only cji+1 , then it is assigned to the same
agent as cji−1 . And otherwise, it is assigned to the same agent as cji+1 .

• Rk = {cjh : h is even} and Bk = {cjh : h is odd}.

Feasibility: By the definition of colored chores, any colored chore cjh can intersect with at most
one colored chore with an earlier finish time, which can be only cjh−1 . But, the two chores cjh
and cjh−1 are not assigned to the same agent in any of the schedules, if their intervals intersect.
Moreover, the uncolored chores are unassigned in all the schedules. Hence, each schedule Xi is
feasible.

Proof of part (1): From the construction, R1 = Bk and B1 = Rk immediately follows.

12



Proof of part (2): For any i ≥ 2, observe that the only chores that can possibly be in Ri \ Ri−1

are cji−1 and cji . Moreover, if cji−1 is in Ri \ Ri−1, then i − 1 must be even. In that case, cji must be
in Ri−1, and hence cannot be in Ri \ Ri−1. Thus, we can conclude that |Ri \ Ri−1| ≤ 1.

Similarly, the only chores that can possibly be in Ri−1 \ Ri are cji−1 and cji . Moreover, if cji is in
Ri−1, then i must be odd. In that case, cji−1 must be in Ri, and hence cannot be in Ri−1 \ Ri. Thus,
we can conclude that |Ri−1 \ Ri| ≤ 1.

Similarly, one can argue that |Bi \ Bi−1| ≤ 1 and |Bi−1 \ Bi| ≤ 1. Thus, the two schedules Xi−1

and Xi are adjacent for any i ≥ 2.

Proof of part (3): Consider the schedule Xi for some i. We will argue that there is at most one
unassigned chore that can be assigned to some agent without violating feasibility. First, consider
the chore cji . It is unassigned only if it intersects with two chores, one in Ri and the other in Bi.
Hence, it cannot be assigned to any agent.

The other unassigned chores are the uncolored chores. Let us partition the uncolored chores
into k buckets as follows: For 1 ≤ h ≤ k, let Uh be the set of uncolored chores whose finish time
are between those of cjh and cjh+1 . Note that U1 is empty. By the design of the coloring scheme,
any chore in set Uh intersects with cjh−1 and cjh , and possibly some other colored chores with
earlier finish time. For any h different from i and i + 1, observe that chores cjh−1 and cjh have been
assigned to different agents in the schedule Xi. Hence, any chore in Uh cannot be assigned to any
agent for h ̸= i and h ̸= i + 1.

It remains to consider the uncolored chores in the sets Ui and Ui+1. We first claim that any
chore in Ui cannot be assigned to any agent in the schedule Xi. There are two cases:

(i) when cji and cji+1 do not intersect, then they both are assigned to the same agent, while cji−1

is assigned to the other agent. Thus, we get that any chore in Ui intersects with two chores which
are with different agents, and hence cannot be assigned to any agent.

(ii) when cji and cji+1 intersect, then cji+1 must also intersect with every chore in Ui, because
chores in Ui have later finish time than cji . In this case, any chore in Ui intersects with cji−1 and
cji+1 which are with different agents. Hence, it cannot be assigned to any agent.

Now, we consider the chores in Ui+1. Any chore in Ui+1 intersecting with cji−1 cannot be
assigned to any agent, because cji−1 and cji+1 are with different agents. In case cji and cji+1 are
assigned to different agents, we can say that no chore in Ui+1 can be assigned to any agent.

Consider the case when cji and cji+1 are with the same agent or if cji is unassigned. Let c∗ be
the chore in Ui+1 with the earliest finish time that does not intersect with cji−1 . If c∗ intersects with
cji+2 , then so do the all the following chores in Ui+1. In that case, the schedule is already maximal.
Otherwise, we can assign c∗ to the same agent as cji+2 . After this, the remaining chores in Ui+1

cannot be assigned to any agent because they all intersect with cji+1 and c∗. Hence, we will have a
maximal schedule after assigning c∗.

From Lemma 3, we obtain a feasible schedule which is EF1 and can be made maximal by
assigning one of its unassigned chores to some agent. The resulting schedule, therefore, satisfies
EF2, completing the proof of Theorem 2.

Finally, we note that by a more sophisticated coloring argument, it can be shown that an EF1
and maximal schedule always exists for interval graphs.

Theorem 3 (EF1 for two agents and interval graph). There is a polynomial-time algorithm that, given
any CSP instance with two agents with monotone valuations and an arbitrary interval graph, returns an
EF1 and maximal schedule.
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To prove Theorem 3, it will suffice to show the following result.

Lemma 4. For any CSP instance with two agents and an interval graph, there exists a sequence of feasible
schedules (X0 = (R0, B0), X1 = (R1, B1), . . . , Xk = (Rk, Bk)) for some k ∈ N such that

1. The last schedule is obtained by swapping the two bundles in the first schedule. That is, R0 = Bk and
B0 = Rk.

2. For any 1 ≤ i ≤ k, the two schedules Xi and Xi−1 are adjacent.

3. For any 0 ≤ i ≤ k, the schedule Xi is maximal.

4. The sequence X0, . . . , Xk can be constructed in polynomial time.

Theorem 3 follows readily from Lemmas 1 and 4. Thus, in the rest of this section, we will
focus on the proof of Lemma 4.

Proof. (of Lemma 4) To create the intended sequence of schedules, we employ a three-phase
procedure. In the first phase, we construct a maximal schedule, just as in the proof of Lemma 3.
The idea is then to gradually move chores from one bundle to another and reach a schedule with
swapped bundles. However, as seen in the proof of Lemma 3, the straightforward way of moving
chores violates maximality. Instead, we first do a preparatory phase 2, at the end of which, we
guarantee enough number of assigned chores overlapping with each unassigned chore. This
ensures that we can then move chores between bundles in a natural way and maintain maximality,
which is our phase 3.

Phase 1: Begin by arranging the chores in the increasing order of their finish times (In the
event of a tie, we may resolve it by subtracting a small value, such as i/n2, from the finish time
of the ith chore. This adjustment ensures an increasing order of finish times for the chores). A
chore c is classified as unmarked if and only if its time interval overlaps with two or more chores
that have earlier finish time than c and which are classified as marked. Let the marked chores
be denoted as c1, c2, . . . , cm, in the order of finish time. Let A represent a set of all cis. There
can be multiple unmarked chores situated between two marked chores. Let Ui denote the set of
unmarked chores between ci and ci+1 for any 1 ≤ i ≤ m − 1, and U =

⋃
Ui.

We define the first schedule, X0 = (R0, B0), as follows.

• R0 = {ch : h is odd} and B0 = {ch : h is even}.

Consequently, the last schedule, Xk must be swapping of the bundles, resulting in:

• Rk = {ch : h is even} and Bk = {ch : h is odd}.

We refer to the first schedule X0 as the source schedule and the last Schedule Xk as the
target schedule. The bundles to which any chore ch belongs in the schedule X0 and in the Xk
schedule are called the source bundle and the target bundle of ch, respectively.

In Figure 5, it is clear that in the schedule X0, all the marked chores are assigned to the
alternating bundles represented as R and B. Additionally, unassigned chores are indicated as
N. In the target schedule, denoted as Xk, all the marked chores will be assigned to the opposite
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Figure 5: Pictorial representation of first and the last schedule of the sequence

bundle, while unmarked chores will retain their unassigned status.

Feasibility and maximality of X0 : According to the definition of a marked chore, any chore ch
can overlap with at most two other marked chores, namely, ch−1 and ch+1. If h is even, then h − 1
and h + 1 must be odd, and vice versa. Therefore, in the X0 schedule, it follows that ch−1 and
ch+1 are not in the same bundle as ch, affirming the feasibility of schedule X0. Additionally, every
unmarked chore must necessarily overlap with chores ch and ch−1 for some h, which belong to
different bundles. Consequently, X0 is also maximal. Similarly, Xk will also be both feasible and
maximal because it is just a complement of X0.

Phase 2: In this phase, we will construct the first part of the desired sequence of maximal sched-
ules, starting from X0. This will be done by modifying the status of certain chores, transitioning
them from assigned to unassigned, and vice versa.

Definition 1 (Supported chores). For any given schedule (R, B), we say that an unassigned chore c is
supported, if it satisfies at least one of the following three conditions.

1. c overlaps with at least three assigned chores with finish times earlier than c.

2. if c ∈ Ui and ci is assigned, say, in bundle R (or B), then c also overlaps with an assigned chore from
bundle B (or R) with a finish time later than c.

3. c overlaps with two assigned chores whose finish times are later than c.

Now, we will start identifying the unsupported chores and make them supported one by one
from right to left. In the process, we will construct a sequence of maximal schedules Xi = (Ri, Bi)

for 1 ≤ i ≤ m − 1. For any m ≥ i ≥ 2, we construct Xm−i+1 from Xm−i as follows. If in schedule
Xm−i, there is no unsupported chore from Ui, then define Xm−i+1 = Xm−i. Otherwise, let u∗

i ∈ Ui

be a chore that is unsupported in schedule Xm−i and has the latest finish time.

• Case (i): If ci−1 and ci themselves overlap, then perform color reassignment as follows:
u∗

i → color(ci−1) and ci−1 → unassigned (see Figure 6-i). That is, if ci is in Bm−i (the other
case is analogous) then define

Bm−i+1 = Bm−i and Rm−i+1 = Rm−i + u∗
i − ci−1.
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• Case (ii): If ci−1 and ci do not overlap, and ci−1 and ci−2 also do not overlap, then reassign
colors as follows: u∗

i → color(ci−1) and ci−1 → color(ci) (see Figure 6-ii). That is, if ci is in
Bm−i (the other case is analogous) then define

Bm−i+1 = Bm−i + ci−1 and Rm−i+1 = Rm−i + u∗
i − ci−1.

• If ci−1 and ci do not overlap, but ci−1 and ci−2 overlap with each other, consider the following
scenarios:

– Case (iii(a)): If there exist a chore in Ui which is unsupported in Xm−i and which does
not overlap with any assigned chore with a later finish time, let u′

i ∈ Ui be such a
chore with the latest finish time. Then reassign colors as follows: u′

i → color(ci) and
ci → color(ci−1) (see Figure 6-iii(a)). That is, if ci is in Rm−i (the other case is analogous)
then define

Bm−i+1 = Bm−i + ci and Rm−i+1 = Rm−i + u′
i − ci.

– Case (iii(b)): If there is no such unsupported chore in Ui that meets the aforementioned
criteria, then carry out color reassignment as follows: ci → color(ci−1) (see Figure 6-
iii(b)). That is, if ci is in Rm−i (the other case is analogous) then define

Bm−i+1 = Bm−i + ci and Rm−i+1 = Rm−i − ci.

Case (iii(c)): It is possible that there are some supported chores in Ui that overlap with
chores ci−2, ci−1, ci, but do not overlap with any assigned chore with a later finish time.
Let u′

i ∈ Ui be such a chore with the latest finish time. Then further reassign colors as
follows: u′

i → color(ci−2) and ci−2 → unassigned (see Figure 6-iii(c)). That is, if ci is
now in Bm−i+1 (the other case is analogous) then define

Bm−i+2 = Bm−i+1 and Rm−i+2 = Rm−i+1 + u′
i − ci−2.

This finishes the construction of the first part of the desired sequence. From the construction, it is
evident that any two consecutive schedules are adjacent. Before moving on to phase 3, we prove
certain desired properties of the sequence (X0, X1, . . . , Xm−1).

Claim 1. For any i, h, if a chore ch is unassigned in the schedule Xm−i+1, then ch overlaps with two
assigned chores in Xm−i+1 whose finish times are later than ch. Hence, ch is supported in Xm−i+1.

Claim 2. For any i, h, if the chore ch is not in its source bundle in schedule Xm−i+1, then for any j ≥ h, all
the chores in Uj are supported in Xm−i+1.

Claim 3. For any i, the schedule Xm−i+1 is feasible and maximal.

Proof. We will prove the three claims through an induction on i.
Base case: i = m + 1. In schedule X0, each ch is assigned and is in its source bundle by

definition. Hence, Claims 1 and 2 are vacuously true. And we have already argued feasibility and
maximality of X0.

Induction hypothesis: the three statements are true for the schedule Xm−i.
Induction step: Recall that if the schedule Xm−i has no unsupported chores from Ui, then

Xm−i+1 = Xm−i. And thus, the three statements will be true for Xm−i+1 as well.
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Figure 6: Visual illustration of all five scenarios along with the reassignment guidelines for unsupported
chores. Letters with stock represent the color previously assigned to the chore, while the color mentioned
above it reflects the assignment after reassignment.

Now, consider the case when Xm−i has unsupported chores from Ui. Then from, induction
hypothesis for Claim 2, we know that ci, ci−1, and ci−2 are in their source bundles in Xm−i. Also
all chores in Ui must be unassigned in Xm−i because it is feasible (from Claim 3). Now, we go over
various cases considered in the construction of Xm−i+1. Recall that u∗

i ∈ Ui is the chore that is
unsupported in schedule Xm−i and has the latest finish time.

• Case (i): ci and ci−1 also overlap each other. In this case, we had the following reassignment:
u∗

i → color(ci−1) and ci−1 → unassigned.

For claim 1, observe that ci−1 overlaps with ci and u∗
i , which are both assigned in Xm−i+1.

The status of any other ch in Xm−i+1 remains same as in Xm−i. Hence, the claim follows.

For claim 2, observe that any chore u ∈ Ui−1 overlaps with ci and u∗
i , and hence satisfies

support condition (3). Any chore u ∈ Ui overlaps with ci and u∗
i (which are in opposite

bundles), and hence satisfies support condition (2). Any u ∈ Uj for j > i that was supported
in Xm−i by overlapping with ci−1, ci, ci+1, is now supported in Xm−i+1 by overlapping with
three assigned chores ci, u∗

i , ci+1. Any other u ∈ Uj has the same status in Xm−i+1 and Xm−i.
Hence, the claim follows.

For claim 3, observe that since u∗
i is unsupported in Xm−i, we know it does not overlap with

any assigned chore with a later finish time, which is in the same bundle as ci−1. Hence, the
assignment of color(ci−1) to u∗

i is feasible. Leaving ci−1 unassigned is also maximal, as it
overlaps with both bundles: ci, which is in the opposite bundle of ci−1, and u∗

i , which is
in the bundle of ci−1. Any chore u ∈ Ui−1 or u ∈ Ui other than u∗

i , overlap with u∗
i and ci.

Hence, their being unassigned is fine. For any other chores, their status w.r.t. maximality
are same in Xm−i and Xm−i+1.

• Case (ii): ci and ci−1 do not overlap with each other, and further, there is no overlap between
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ci−1 and ci−2. We proceeded with the following color reassignment: u∗
i → color(ci−1) and

ci−1 → color(ci). Thus, in schedule Xm−i+1, u∗
i is in the opposite bundle of ci and ci−1.

Claim 1 is true because no new ch is unassigned.

For Claim 2, observe that any u ∈ Ui−1 is supported because it overlaps with ci and u∗
i ,

which are in opposite bundles. Any u ∈ Ui (other than u∗
i ) overlaps with ci and the chore

u∗
i from the opposite bundle and with later finish time, and hence is supported. And any

u ∈ Uj for j > i has the same status in Xm−i+1 as in Xm−i.

For Claim 3, observe that the assignment of ci−1 in bundle of ci is feasible because ci−1 does
not overlap with ci and ci−2, and thus, does not overlap with any assigned chores. Since u∗

i
is unsupported in Xm−i, it does not overlap with any chore with a later finish time which is
in the same bundle as ci−1. Hence, putting u∗

i in the earlier bundle of ci−1 is fine. As argued
in the previous paragraph, any u ∈ Ui−1 or u ∈ Ui (other than u∗

i ) overlap with two chores
from opposite bundles. And hence, their being unassigned is fine.

• Case (iii(a)): ci−1 and ci do not overlap each other, but ci−1 and ci−2 overlap with each
other. Further there exists an unsupported chore u′

i that does not overlap with any assigned
chore with a later finish time. We proceeded with the reassignment u′

i → color(ci) and
ci → color(ci−1).

Claim 1 is true because no new ch is unassigned.

For Claim 2, consider any chore u ∈ Ui. If u has a finish time earlier than u′
i, then it is

supported because it overlaps with ci and u′
i with a later finish time and from the opposite

bundle. If u has a finish time later than u′
i, then it is supported because it overlaps with three

assigned chores with earlier finish times, ci−1, ci, u′
i. Consider any chore u ∈ Uj for j > i. If u

was supported in Xm−i due to its overlap with ci, now in Xm−i+1, u′
i can take place of ci.

For Claim 3, observe that u′
i is unsupported in Xm−i, hence only overlaps with two assigned

chores ci−1 and ci from opposite bundles. And ci does not overlap with ci−1. Thus, the
reassignment keeps the schedule feasible. Any chore u ∈ Ui−1 or u ∈ Ui (other than u′

i)
overlaps with ci−1 and u′

i from opposite bundles, and hence can remain unassigned.

• Case (iii(b)): ci, ci−1, and ci−2 are positioned like case iii (a). Additionally, there is no
unsupported u ∈ Ui that does not overlap with any assigned chore with a later finish time.
We proceeded with the color reassignment: ci → color(ci−1).

Claim 1 is true because no new ch is unassigned.

For Claim 2, consider any chore u ∈ Ui. If u was supported in Xm−i by overlapping with three
assigned chores with earlier finish time, then that will also hold true in Xm−i+1. Consider
u ∈ Ui which is unsupported in Xm−i and overlaps with an assigned chore with a later finish
time, say c′. Because u is unsupported, c′ and ci must be in the same bundle in Xm−i and
u must not overlap any other chore from later finish time and in the opposite bundle. We
can conclude that any unsupported chore u ∈ Ui must overlap with c′. In schedule Xm−i+1,
c′ and ci are in opposite bundles, and hence, u is supported. Similarly, any chore u ∈ Ui+1

overlaps with c′ and ci, and hence, is supported.

For Claim 3, observe that in schedule Xm−i, the chore ci neither overlaps with ci−1, nor with
any other chore in the same bundle. Hence, it is feasible to put it in the bundle of ci−1. As
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argued in the previous paragraph, any u ∈ Ui overlaps with two chores in opposite bundles,
hence, can be left unassigned.

• Case iii(c): ci, ci−1, and ci−2 are positioned like case iii (a). Additionally, there is no
unsupported u ∈ Ui that does not overlap with any assigned chore with a later finish time.
Further there is a chore u′

i ∈ Ui that overlap with chores ci−2, ci−1, ci, but does not overlap
with any assigned chore with a later finish time. Then we reassigned colors as follows:
u′

i → color(ci−2) and ci−2 → unassigned.

For Claim 1, observe that ci−2 is the newly unassigned chore and it overlaps with ci−1 and
u′

i from opposite bundles. Hence, ci−2 is supported.

For Claim 2, observe that any chore u ∈ Ui−2 overlaps with ci−1 and u′
i, which have later

finish times, and hence is supported. Any chore u ∈ Ui−1 overlaps with ci−1 and u′
i from

opposite bundles, and hence, is supported. Any chore u ∈ Ui whose finish time is between
ci and u′

i is similarly supported by overlapping with ci and u′
i. Any chore u ∈ Ui whose

finish time is later than u′
i is supported because it overlaps with assigned chores ci−1, ci, u′

i
with earlier finish times. For any chore u ∈ Uj for j < i, if it was supported in Xm−i by
overlap with ci, then u′

i can take the place of ci.

For Claim 3, observe that since ci has been given color(ci−1) and ci−2 is unassigned, it is
feasible to give color(ci−2) to u′

i. Similarly, we can leave ci−2 unassigned because it overlaps
with u′

i and ci−1, which are in opposite bundles. For any unassigned u ∈ Ui−2, Ui−1, Ui,
we have argued in the previous paragraph that they overlap with two chores in opposite
bundles.

From the three claims, it is clear that at the end of phase 2, there will be no unsupported
unassigned chores.

Following the reassignment, several changes occur: some assigned chores become unassigned,
some unassigned chores get assigned, and certain assigned chores achieve their target bundles.
We label the chores which are in the same bundle in Xm as their target bundles and the chores that
are unassigned in both Xm and Xk as “targeted chores". All other chores are labeled as “untargeted
chores". Before proceeding to phase 3, it is essential to establish one more claim, which will assist
us in verifying the feasibility of constructed schedules in phase 3.

Claim 4. Let ci be an untargeted chore and let c be another chore with a later finish time, which is in
the target bundle of ci in schedule Xm. If c overlaps with ci, then c must be untargeted and must be the
immediately next untargeted chore after ci (in order of finish times).

Proof. Assuming there are no unsupported chores in X0, this implies that no reassignment of
chores happens and we have Xm = X0. It follows that all unassigned chores are targeted, while all
assigned chores are untargeted. In the X0 schedule, the only assigned chore with a later finish
time that overlaps with ci is ci+1.

However, in cases involving unsupported chores, color reassignments are performed. We will
verify the claim for each individual case one by one.
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1. The case where ci and ci−1 overlap with each other, we perform the following color reas-
signments: ci−1 is left unassigned, and u∗

i is assigned the color of ci−1. In this scenario, the
untargeted assigned chore is ci−1, which overlaps with ci (of the target color), making it
an immediately next untargeted chore. Notably, any unassigned chore between ci−1 and
ci retains its status and remains unassigned, effectively becoming targeted. Therefore, the
immediately next untargeted chore after ci−1 is ci. Furthermore, u∗

i becomes assigned but
with a color that is not the target color of ci−1. Importantly, u∗

i does not overlap with any
assigned chore other than ci and ci−1. Additionally, ci gains an untargeted chore immediately
adjacent to it. Since u∗

i does not overlap with ci+1, it follows that ci also does not overlap
with ci+1. Therefore, the untargeted chore coming immediately after ci is only u∗

i . Thus, the
claim holds for this case.

2. In the case where ci and ci−1 are not overlapping with each other and furthermore, ci−1 does
not overlap with ci−2, the situation is similar to the first case. None of the unassigned chores
between ci and ci−1 change their status; they all remain targeted. Since ci−1 is assigned the
target color, it is also considered targeted. The only untargeted assigned chore is ci, which
overlaps with u∗

i (of the target color). However, ci must be an immediately next untargeted
chore since every chore between these two becomes supported after this assignment, and, as
per the definition of unsupported u∗

i , ci must not overlap with ci+1. This confirms the claim
being true for this case.

3. In the last case where ci and ci−1 are not overlapping each other and ci−1 overlaps with
ci−2, the first and second situation does not yield any untargeted assigned chores. In the
last situation, it is analogous to the first case when ci and ci−1 overlap each other. We can
observe the claim in the same way as the first case. This completes the proof that, after phase
2, every untargeted assigned chore overlaps only with the immediately next untargeted
chore of the target color from the later finish time.

Phase 3: In this phase, we will construct the second part of the desired sequence of maximal
schedules, starting from Xm. This will be done by assigning the target bundle to the untargeted
chores. We will start identifying the untargeted chores and assign them to their target bundle
one by one from left to right. In the process, we will construct a sequence of maximal schedules
Xi = (Ri, Bi) for m ≤ i ≤ k. For any 0 ≥ i ≥ k − m − 1, we construct Xm+i+1 from Xm+i as follows.
If in schedule Xm+i, there is no untargeted chore then we are done. Otherwise, let c be a chore
that is untargeted in schedule Xm+i and has the earliest finish time. Then assign the target bundle
to c and assign a feasible bundle to the untargeted chore immediately next to c. Here feasible
bundle means if the chore can get any assignment without violating any feasible condition then
assign that bundle otherwise leave it unassigned.

Since in each step, we are assigning at least one chore to its target bundle, it follows that the
process will conclude within a linear number of steps.

Feasibility and maximality in Phase 3: Now, we shall establish the feasibility and maximality
of Phase 3. After completing phase 2, we have achieved a schedule Xm that is both feasible and
maximal. In Phase 3, we identify the untargeted chore c from the earliest finish time and reassign
their color. Further, we assign a feasible color to their immediately next untargeted chore.
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ALGORITHM 1: Algorithm for EF1 and maximality for interval graphs

Input: A CSP instance ⟨A, C, T ,V⟩ with an interval graph
Output: A sequence of schedules X1, . . . , Xk

▷ Phase 1: Initial Coloring

1 Order the chores in increasing order of their finish time ( In the case of a tie, we may resolve it by
subtracting a small value, such as i/n2, from the finish time of the ith chore )

2 Classify the chores assigned and unassigned
3 while Scan from left to right do
4 if A chore overlaps two assigned chores from an earlier finish time then
5 Put it in unassigned set U

6 else
7 Put it in assigned set A

8 Let c1, c2, . . . , cm, be the chores in set in increasing order of finish times. Now, assign ch to bundle R if h
is odd otherwise assign to bundle B

▷ Phase 2: Removal of unsupported chores

9 while Scan from right to left do
10 if An unassigned chore is Unsupported then
11 Reassign the colors according to one of the five conditions

▷ Phase 3: Swap the colors of untargeted chores

12 while Scan from left to right do
13 Pick the first two untargeted chores
14 Assign the target color to the first chore
15 Assign a feasible color to the second chore

16 return Final sequence of schedules

If c ∈ Ui, assigning its target color is maximal. Because, in the target schedule(Xk), every
unassigned chore in Ui overlaps with at least two assigned chores from different bundles from
earlier finish times chores. As all earlier finish time chores have been appropriately set to their
targeted colors, assigning the target bundle to c becomes automatically maximal.

On the other hand, if c ∈ A, assigning it a target color is feasible, as per the claim 4. This
claim established that every untargeted assigned chore only overlaps with its immediately next
untargeted chore, which can share the same color as its target color. Since phase 3 involves
reassigning colors to the earliest finish time untargeted chores, and the immediate next chore that
can have the same color as the target. ensuring the feasibility of assigning the target color to c.
Assigning a color to the immediately next untargeted chore poses no issues, as we can assign any
feasible color that meets the criteria.

Now, we must demonstrate that all unassigned chores will satisfy the maximality criteria after
the color reassignments. As we show after Phase 2, every unassigned chore will be supported.
That means all unassigned chores must follow one of the criteria of being supported. Further, we
will demonstrate for each case how it will satisfy maximality criteria.

1. In the first scenario, where an unassigned chore c is supported due to the first condition
only, i.e. overlaps with three or more assigned chores whose finish time is earlier than the c.
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If c also meets any of the other conditions of supported chores then we will demonstrate
how c satisfies maximality criteria due to other conditions in the subsequent section. We
can consider the simplest case where all three assigned chores are from A, and they are
assigned to their source bundles which means they have alternating assigned bundles. In
this scenario, it is straightforward to confirm that during each step of phase 3, c will overlap
with two assigned chores from different bundles. Now, let’s consider another scenario in
which all three assigned chores are from A, but their colors are modified, signifying that
they do not belong to alternating bundles. This scenario arises due to the color reassignment
in case 3(b) only, where we reassign the color to ci ∈ A but do not assign a color to u∗ ∈ Ui.
In this case, we may encounter different color sequences of the three assigned chores, but a
careful examination reveals that we will not obtain any supported unassigned chore due
to the overlap of three chores with sequences of B, B, B, or R, R, R. This is because, in such
a situation, u∗ will lose its feasibility. However, we have already demonstrated that we
consistently maintain feasibility in phase 2. Therefore, the only situation where an issue
arises is when the color sequence of the assigned chores is B, R, R and R, B, B. To avert this
scenario, we reassign the color to such supported unassigned chores, which is addressed in
reassignment case 3(c).

Moving on, another scenario arises when at least one of the three assigned chores belongs
to set U. Let’s assume this specific assigned chore is u′ ∈ Ui. This reassignment can be
attributed to any case except 3(b). Furthermore, we will elucidate how maximality is upheld
in each case. If the reassignment is due to case 1, the unassigned chore c will also overlap
with assigned ci and unassigned ci−1 with respect to assigned u′. A careful analysis reveals
that, during phase 3, two of these three chores must be assigned to the opposite bundles,
ensuring the maximality condition for the unassigned chore c. If the reassignment is due to
case 2, even in this scenario, c will overlap with assigned ci and assigned ci−1 with respect
to assigned u′. Similarly, a close examination indicates that two of these three chores must
consistently be assigned to opposite bundles in phase 3, which ensures the maximality
condition of c.
If the reassignment is due to case 3(a), then c must overlap with four assigned chores, where
three are from the set A and one is from U This occurs because, in case 3(a), we reassigned
the colors of u∗ ∈ Ui to the color of ci Thus, if we replace ci with u∗, the color sequence
of the three originally assigned chores will maintain alternate color sequence. That will
help to preserve the maximality condition for c. Finally, in the case of 3(c), this case is very
similar to 3(a) the only difference is when assigned Ui is the last chore of the sequence of
three assigned chores overlap c. Nevertheless, even for this case, the unassigned chore will
maintain maximality condition because it overlaps three chores from A having earlier finish
times than c. Therefore, before c is set to unassigned all the three As will get their target
color. That will ensure the maximality of unassigned chores in phase 3. This covers all the
sub-cases of unassigned chores that overlap with three or more chores.

2. In the second scenario, an unassigned chore c ∈ Ui overlaps with two assigned chores from
the earlier finish time. Additionally, c overlaps ci from bundle R(or B) and also overlaps
with one assigned chore from a later finish time from bundle B(or R) respectively. In
phase 3, where we perform color reassignments from earlier finish times chores, there are
no concerns regarding the chores from the late finish time. However, the color of ci may
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undergo modification. If ci already has its target color, then we refrain from altering its color
during phase 3. Conversely, if ci does not have its target color, it implies that the color of ci

matches the target color of ci−1. So before changing the color of ci, we have already set ci−1

to its target color. This ensures that c satisfies the maximality condition. Likewise, before
reassigning colors to the chore that overlapped c from later finish time chores, we have
already set the target color for all earlier finish time chores. This guarantees the maximality
condition for all such supported chores.

3. In the final scenario, where an unassigned chore c overlaps with two assigned chores whose
finish times are later than c, it is apparent that both assigned chores must belong to different
bundles. This distinction is necessary since they must overlap with each other. In phase 3,
our color reassignment efforts are focused on the earlier finish time chores, and thus, we do
not alter the status of these particular assigned chores until all the earlier finish time chores
are set to their target colors. In this situation, if c ∈ Ui, it must overlap with at least two
assigned chores from the earlier finish time chores, in accordance with the target schedule
requirements. Conversely, if c ∈ A, it will get assigned its target color and will not require
maximality.

This concludes the verification of the schedule’s feasibility and maximality across all steps.

Adjacent: After completing phase 1, we obtain a feasible and maximal schedule. In each step
of phase 2, we reassign colors based on five different cases. It’s worth noting that each of these
five cases is adjacent to the previously assigned schedule. Moving on to phase 3, in each step, we
reassign colors to only two chores. If these two chores have different colors, then the reassigned
schedules will also be adjacent to the previous schedule.

Two adjacent chores cannot have the same color because if they overlap, assigning the same
color to both is not the feasible color for the second chore. If they do not overlap, there is no need
to reassign a color to the second chore, as the initially given color would be feasible for it. This
ensures that each phase of the steps is adjacent to the preceding one, leading to the conclusion
that each Xi is adjacent to Xi+1. Therefore, the sequence of schedules is adjacent.

6 Results for Arbitrary Number of Agents
We will now turn to the case of an arbitrary number of agents. Here, we are unable to settle
the existence question for EF1 and maximal schedules even on a path graph. Nevertheless,
we show positive results for two restricted settings: For identical dichotomous valuations and
a path graph (Theorem 4) and for identical valuations and a graph with bounded connected
components (Theorem 5).

We will start with our result for path graphs. Recall that under identical and dichotomous
valuations, each chore is either “heavy” (highly disliked) or “light” (less disliked) for all agents.
We will assume that heavy chores are valued at H while the light chores are valued at L by
each agent; thus, H < L ≤ 0. We show that for four or more agents with identical dichotomous
valuations and a path graph, an EF1 and maximal schedule can be efficiently computed.

Theorem 4 (Path graph and identical dichotomous vals). For any n ≥ 4, there is a polynomial-time
algorithm that, given any CSP instance with n agents with identical, dichotomous, and additive valuations
and an arbitrary path graph, returns an EF1 and maximal schedule.
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ALGORITHM 2: Algorithm for Identical Dichotomous Valuations

Input: A CSP instance ⟨A, C, T ,V⟩ with a path graph
Output: A schedule X

▷ Phase 1: Grouping agents into meta agents

1 If n is even: For i ∈ [n/2], let the meta agent Si represent the pair of agents a2i−1 and a2i.
2 If n is odd: Let the meta agent S1 represent the triple of agents a1, a2, a3 and for

i ∈ {2, 3, . . . , (n − 1)/2}, let the meta agent Si represent the agents a2i and a2i+1.

▷ Phase 2: Weighted round robin for meta agents

3 If n is even: First allocate heavy chores from left to right via round robin among the meta agents;
specifically, we use the picking sequence ⟨S1, S2, . . . , Sn/2, S1, S2, . . . , Sn/2⟩. Then allocate the light
chores from left to right according to the same sequence, starting after the meta agent who last picked
a heavy chore.

4 If n is odd: First allocate heavy chores from left to right via weighted round robin among meta agents
according to the picking sequence ⟨S1, S2, . . . , S(n−1)/2, S1, S2, . . . , S(n−1)/2, S1⟩. Then allocate light
chores from left to right according to the same sequence, starting after the meta agent who last picked
a heavy chore.

5 Assign dummy chores (by adding isolated vertices in the conflict graph) to equalize the number of
heavy (similarly, light) chores for all meta agents representing pairs of agents. If n is odd, the meta
agent S1 receives 1.5 times as many chores of each type.

▷ Phase 3: Assigning chores to individual agents

6 Solve the 2-agent and 3-agent sub-problems by giving each meta agent’s chores to its constituent agents.
7 Remove the dummy chores.
8 return Current schedule

Our algorithm for establishing Theorem 4 consists of three phases (see Algorithm 2):

Phase 1: Grouping agents into meta agents The algorithm starts by partitioning the n agents
into pairs (if n is even) or pairs and one triple (if n is odd). We refer to each such group as a meta
agent.

Phase 2: Weighted round robin for meta agents In the second phase, the algorithm runs
a weighted round-robin procedure for the meta agents. If the number of agents n is even, the
procedure is the same as the standard round robin algorithm.9 However, if n is odd, we need to
adjust the turn-taking so that the meta agent corresponding to the triple picks 1.5 times as many
chores as any other meta agent (see Line 4 of Algorithm 2).10

The weighted round-robin step runs in two phases: A heavy phase, where, at its turn, each meta
agent picks the leftmost available heavy chore. This is followed by a light phase, where, starting
after the meta agent who was the last to pick in the previous phase, each meta agent picks the
leftmost available light chore. Note that it is possible for a meta agent to pick two neighboring
chores in the path graph.

9For ease of analysis, we execute each “round” as a combination of two copies of the same permutation of the
agents, i.e., using the picking sequence ⟨S1, S2, . . . , Sn/2, S1, S2, . . . , Sn/2⟩, where S1, S2, . . . , Sn/2 are the meta agents.
Doing so ensures that each meta agent picks an even number of chores in each round.

10We use the picking sequence ⟨S1, S2, . . . , S(n−1)/2, S1, S2, . . . , S(n−1)/2, S1⟩ among the meta agents, which ensures
that the number of chores picked by each meta agent representing a pair of agents is a multiple of 2 while the number
of chores picked by meta agent S1 is a multiple of 3.
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Figure 7: Illustrating the weighted round-robin algorithm when the number of agents is even. The large
and small squares denote the heavy and light chores, respectively. The strongly (respectively, lightly) shaded
squares denote the chores that are originally present (respectively, the dummy chores). Thick borders around
the squares denote that in that round, all agents receive an original chore, while the squares with regular
borders denote the round where some agents picked original chores while others did not because the original
chores were consumed.

By adding an appropriate number of dummy chores (heavy and light), the algorithm ensures
that each meta agent representing a pair of agents gets the same number of heavy (similarly, light)
chores, and the meta agent representing a triple gets 1.5 times as many chores of each type.

Figures 7 and 8 provide a visual illustration of the weighted round-robin step in our algorithm
(Algorithm 2).

Phase 3: Assigning chores to individual agents In the third phase, the algorithm distributes the
chores of each meta agent among its constituent agents; in other words, the algorithm solves the
2-agent and 3-agent subproblems. At the end of this phase, each individual agent has the same
number of heavy (similarly, light) chores. Finally, the algorithm discards the dummy chores and
the resulting schedule is returned.

It is easy to see that the algorithm runs in polynomial time. To argue correctness, we will
show that before the dummy chores are removed in Phase 3, each agent gets an equal number of
heavy (similarly, light) chores; in other words, before the removal of dummy chores, the schedule
is envy-free.

Note that since there are at least four agents (n ≥ 4), there must be at least two meta agents.
If n is even, a meta agent never picks two heavy (respectively, light) chores that are adjacent in the
path graph (recall that each meta agent picks the leftmost available chore). Thus, the set of chores
picked by a meta agent must constitute a disjoint union of edges (between one heavy and one
light chore) and isolated vertices. Lemma 5 formalizes this observation.

Lemma 5. For any meta agent Si that represents a pair of agents, the set of chores picked by Si is a disjoint
union of edges (between one heavy and one light chore) and isolated vertices. Furthermore, these chores can
be divided among the two constituent agents such that both agents get the same number of heavy (similarly,
light) chores and their bundles are conflict-free.

Proof. Since there are at least four agents (n ≥ 4), there must be at least two meta agents. Thus,
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Figure 8: Illustrating the weighted round-robin algorithm when the number of agents is odd. The drawing
convention is the same as described in the caption of Figure 7.

no meta agent can pick two adjacent heavy (respectively, light) chores in the path graph. Thus,
the set of chores picked by any meta agent, say Si, that represents a pair of agents is a disjoint
collection of paths such that each path is of length at most 2. In other words, the chores picked up
by the meta agent Si consist of isolated vertices and disjoint edges, where each edge connects a
heavy and a light chore.

By the choice of picking sequences in our algorithm (Lines 3 and 4 in Algorithm 2), any meta
agent that represents a pair of agents picks two chores in each round. Thus, the number of heavy
(similarly, light) chores in each meta agent’s bundle is even. This includes the dummy chores.

Let x denote the number of edges and y denote the number of isolated vertices in the bundle
of meta agent Si. We know that 2x + y is even, implying that y is even. Let aj and aj+1 denote the
constituent agents of Si.

If x is even, then there are x heavy chores each connected to a unique light chore. For x/2
of the edges, the heavy chore can be given to aj and the light chore to aj+1. For the other x/2
edges, the heavy chore can be given to aj+1 and the light chore to aj. Among the y isolated chores,
there should again be an even number of heavy (respectively, light) chores, which can be equitably
distributed between the two agents.

If x is odd, then for ⌊x/2⌋ of the edges, the heavy chore can be given to aj and the light chore
to aj+1. For the other ⌈x/2⌉ edges, the heavy chore can be given to aj+1 and the light chore to
aj. Thus, so far, agent aj+1 has an extra heavy chore, and agent aj has an extra light chore. Now,
among the y isolated chores, there should be an odd number of heavy and an odd number of light
chores. By giving an extra heavy chore to aj and an extra light chore to aj+1 among the isolated
chores, and allocating the remaining chores evenly, once again an equitable distribution of heavy
and light chores can be achieved.

When the number of agents is odd, the conclusion of Lemma 5 still holds true for the meta
agents representing pairs of agents. However, for the meta agent S1 which represents a triple of
agents, the set of chores constitutes a disjoint union of paths each of length at most 4. Here, a
more careful argument is needed to show an equitable distribution of chores among the three
constituent agents of the meta agent S1.
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Lemma 6. For the meta agent S1 that represents a triple of agents, the set of chores picked by S1 is a disjoint
union of paths of length at most 4. Furthermore, these chores can be divided among the three constituent
agents such that all three agents get the same number of heavy (similarly, light) chores and their bundles
are conflict-free.

Proof. We will use an argument similar to that in the proof of Lemma 5. By the choice of the
picking sequence in our algorithm (Line 4 in Algorithm 2), the meta agent S1 can never pick three
consecutive heavy (respectively, light) chores in each round. Thus, the set of chores picked by S1

is a disjoint union of paths each of length at most 4. Furthermore, the number of heavy (similarly,
light) chores in S1’s bundle is a multiple of 3. This includes the dummy chores.

Let a1, a2, a3 denote the constituent agents of S1. We will show that each of these agents can be
assigned an equal number of heavy (similarly, light) chores such that no two chores in an agent’s
bundle are adjacent. Recall that the total number of heavy (similarly, light) chores is a multiple
of 3. Thus, it will suffice to argue that, after feasibly allocating the chores in i − 1 components,
the chores in the ith component can also be feasibly assigned such that for any pair of agents, the
number of heavy (similarly, light) chores in their bundles differs by at most 1.

To show that the number of heavy (similarly, light) chores is almost balanced in the manner
stated above, let us consider the different components that arise in the meta agent’s bundle:

• Path of length 3: Note that any path of length 3 contains at most two heavy and at most two
light chores. We always assign the three chores in such a path to three different agents.

• Path of length 4: A path of length 4 must contain two heavy and two light chores. For any
arrangement of these chores, it is always possible to assign to some agent one heavy and
one light chore, and assign to the other two agents the remaining heavy and light chore.

• Path of length 2: In this case, we assign the two chores to two different agents.

• Isolated vertices: The isolated vertices do not pose any constraints on feasibility.

To compute the desired assignment of the chores, we follow a component-wise strategy. At
each step, we maintain the following invariant: For any pair of agents, the number of heavy
(similarly, light) chores in their bundles differs by at most 1. By case analysis for each component,
it can be checked that the chores in that component can be assigned while maintaining this
invariant. The lemma follows from the invariant and the multiples-of-3 property.

Lemmas 5 and 6 show that the two-agent and three-agent subproblems can be solved so that
all chores (including the dummy chores) are allocated, i.e., the schedule is complete and hence
maximal. Furthermore, each individual agent gets the same number of heavy (similarly, light)
chores. Thus, before removing the dummy chores, the schedule is envy-free.

After the removal of dummy chores, the schedule remains EF1. This is because the number of
dummy chores assigned to any pair of agents differ by at most 1, and, moreover, the number of
heavy (respectively, light) dummy chores assigned to any pair of agents also differ by at most
1. Therefore, removing the dummy chores preserves the EF1 property. Also, note that removing
the dummy chores maintains the completeness of the schedule and therefore its maximality. This
proves Theorem 4.

Our next result shows that for n agents with identical (but not necessarily dichotomous) and
additive valuations, and for any graph each of whose connected components has at most n vertices,
an EF1 and maximal schedule can be efficiently computed.

27



Theorem 5 (Bounded connected components and identical vals). There is a polynomial-time algorithm
that, given any CSP instance with n agents with identical additive valuations and an arbitrary interval
graph with each connected component of size at most n, returns an EF1 and maximal schedule.

Our algorithm for Theorem 5 proceeds in a component-wise manner. All chores in a connected
component are allocated using the round-robin algorithm. The picking order for component i is
decided based on the topological ordering of the envy graph of the schedule resulting from the
previous i − 1 components. The envy graph is always acyclic because of identical valuations and
thus the topological ordering is well-defined.

We note that our algorithm resembles that of Hummel and Hetland [2022, Proposition 2],
who showed a result similar to Theorem 5 for indivisible goods. Notably, their result does not
require the valuations to be identical. Their proof relies on the fact that for indivisible goods,
resolving an arbitrary envy cycle preserves the EF1 guarantee [Lipton et al., 2004]. For chores,
however, resolving arbitrary envy cycles can interfere with EF1 [Bhaskar et al., 2021], which makes
it challenging to extend a similar analysis to our setting.

7 Concluding Remarks
We formulated the problem of fair and efficient scheduling of indivisible chores under conflict
constraints. Despite the limited applicability of techniques from the unconstrained setting, we
showed, by means of a novel coloring technique, that an EF1 and maximal schedule can be
computed for two agents. Resolving the existence of EF1 and maximal schedules for three or more
agents for path graphs (and, more generally, for interval graphs) is an exciting open problem. It
would also be interesting to consider schedules that “minimize wastage” (i.e., leave the fewest
chores unassigned) or satisfy other notions of fairness such as proportionality, equitability, or
maximin fair share.

When all chores are equally and identically valued, the EF1 requirement boils down do
assigning an almost balanced number of chores to the agents. From the Hajnal-Szemerédi
theorem [Hajnal and Szemerédi, 1970], it follows that given any conflict graph with maximum
degree ∆, a complete and cardinality-wise balanced schedule always exists if there are ∆ + 1
agents. But what happens when the number of agents is fixed, and only a maximal schedule is
desired? Such a schedule can be shown to exist for interval graphs (by considering the chores in
the increasing order of finish times), however, the problem seems nontrivial for general graphs.
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