
Efficiency and Budget Balance

in General Quasi-linear Domains ∗

Swaprava Nath1 and Tuomas Sandholm2

1Indian Institute of Technology Kanpur, swaprava@iitk.ac.in
2Carnegie Mellon University, sandholm@cs.cmu.edu

Abstract

We study efficiency and budget balance for designing mechanisms in general quasi-linear do-
mains. Green and Laffont (1979) proved that one cannot generically achieve both. We consider
strategyproof budget-balanced mechanisms that are approximately efficient. For deterministic
mechanisms, we show that a strategyproof and budget-balanced mechanism must have a sink
agent whose valuation function is ignored in selecting an alternative, and she is compensated
with the payments made by the other agents. We assume the valuations of the agents come
from a bounded open interval. This result strengthens Green and Laffont’s impossibility result
by showing that even in a restricted domain of valuations, there does not exist a mechanism
that is strategyproof, budget balanced, and takes every agent’s valuation into consideration—a
corollary of which is that it cannot be efficient. Using this result, we find a tight lower bound
on the inefficiencies of strategyproof, budget-balanced mechanisms in this domain. The bound
shows that the inefficiency asymptotically disappears when the number of agents is large—a
result close in spirit to Green and Laffont (1979, Theorem 9.4). However, our results provide
worst-case bounds and the best possible rate of convergence.

Next, we consider minimizing any convex combination of inefficiency and budget imbalance.
We show that if the valuations are unbounded, no deterministic mechanism can do asymptoti-
cally better than minimizing inefficiency alone.

Finally, we investigate randomized mechanisms and provide improved lower bounds on ex-
pected inefficiency. We give a tight lower bound for an interesting class of strategyproof, budget-
balanced, randomized mechanisms. We also use an optimization-based approach—in the spirit of
automated mechanism design—to provide a lower bound on the minimum achievable inefficiency
of any randomized mechanism.

Experiments with real data from two applications show that the inefficiency for a simple
randomized mechanism is 5–100 times smaller than the worst case. This relative difference
increases with the number of agents.
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1 Introduction

Consider a group a friends deciding which movie to watch together. Furthermore, the movie can
be watched in someone’s home by renting it or at any of a number of movie theaters. Each of
these choices incurs a cost. Since individual preferences are different and sometimes conflicting,
the final choice may not make everybody maximally satisfied. This may cause some of the agents
to misreport their preferences or drop out of the plan. To alleviate this problem, one can think
of monetary transfers so friends who get their more-preferred choice pay more than friends that
get their less-preferred choice. Desirable properties of such a choice and payment rule are that (1)
the total side payments (transfers among the friends) should sum to zero, so there is no surplus or
deficit, and (2) the choice is efficient, that is, the movie that is selected maximizes the sum of all the
friends’ valuations. Since the valuations are private information of the friends, an efficient decision
requires the valuations to be revealed truthfully. This simple example problem is representative of
many joint decision-making problems that often involve monetary transfers. Consider, for example,
a group of firms sharing time on a jointly-owned supercomputer, city dwellers deciding on the
location and choice of a public project (e.g., stadium, subway, or library), mobile service providers
dividing spectrum among themselves, or a student body deciding which musician or art performer
to invite to entertain at their annual function. These problems all call for efficient joint decision
making and involve—or could involve depending on the application—monetary transfers.

This is a ubiquitous problem in practice and a classic problem in the academic literature. We
study the standard model of this problem where the agents’ utilities are quasi-linear: each agent’s
utility is her valuation for the selected alternative (e.g., the choice of movie) minus the money she
has to pay. The classic goal is to select an efficient alternative, that is, the one that maximizes the
sum of the agents’ valuations (also known as social welfare).

In the setting where valuations are private information, a mechanism needs to be designed that
incentivizes the agents to reveal their valuations truthfully (by the revelation principle, there is no
loss in objective from restricting attention to such direct-revelation mechanisms). We will study
the problem of designing strategyproof mechanisms, that is, mechanisms where each agent is best
off revealing the truth regardless of what other agents reveal.

Even though there are mechanisms that select efficient alternatives in a truthful manner (e.g.,
the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973)), the
transfers by the individuals do not sum to zero (in public goods settings, the VCG mechanisms
leads to too much money being collected from the agents). The execution of such a mechanism
needs an external mediator who consumes the surplus (or may need to pay the deficit), to keep
the mechanism truthful and efficient—a phenomenon known as ‘money burning’ in literature. In
our movie selection example, this implies that we need a third party who will collect the additional
money paid by the individuals, which is highly impractical in many settings. This has attracted
significant criticism of the VCG mechanism (Rothkopf, 2007). Ideally, one would like to design
strategyproof mechanisms that are efficient and budget balanced, that is, they do not have any
surplus or deficit. Green and Laffont (1979) proved a seminal impossibility for this setting: in the
general quasi-linear domain, strategyproof, efficient mechanisms cannot be budget balanced.

In this paper, we primarily focus on the problem of minimizing inefficiency subject to budget
balance in the general setting of quasi-linear utilities. This is because, in the applications of interest
to this paper (e.g., movie selection), budget balance is more critical than efficiency. However, we
show that for a large set of agents, the per-agent inefficiency vanishes. We also show that for
deterministic settings, optimizing the sum (or any convex combination) of efficiency and budget
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balance—which seems to be the most sensible objective—does not provide any asymptotic benefit
over maximizing efficiency subject to budget balance. The main contributions of this paper are
summarized in the following subsection.

1.1 Contributions of this paper

In this paper, we assume that the agents’ valuations are picked from a bounded open interval. In
Section 3, we characterize the structure of truthful, budget balanced, deterministic mechanisms in
this restricted domain, and show that any such mechanism must have a sink agent,1 whose reported
valuation function does not impact the choice of alternative and she gets the payments made by the
other agents (Theorem 1). This result strengthens the Green and Laffont impossibility by showing
that even in a restricted domain of bounded valuations, there does not exist a mechanism that is
strategyproof, budget balanced, and takes every agent’s valuation into consideration—a corollary
of which is that it cannot be efficient. With the help of this characterization, we find the optimal
deterministic mechanism that minimizes the inefficiency. This provides a tight lower bound on
the inefficiency of deterministic, strategyproof, budget-balanced mechanisms. By inefficiency of a
mechanism in this paper, we mean the worst-case inefficiency over all valuation profiles. We provide
a precise rate of decay ( 1

n
) of the inefficiency with the increase in the number of agents (Theorem 2).

This implies that the inefficiency vanishes for large number of agents.
To contrast this mechanism with the class of mechanisms that minimize budget imbalance

subject to efficiency, in Section 4 we consider the joint objective of efficiency-budget spillover, which
is a convex combination of inefficiency and budget imbalance. We prove that if the valuations are
unbounded, no deterministic, strategyproof mechanism can reduce this spillover at a rate faster than
1
n
(Theorem 3). In other words, in the deterministic setting, minimizing the joint objective does

not give any asymptotic advantage over the solution of minimizing inefficiency with the constraint
that the mechanism is budget balanced.

We investigate the advantages of randomized mechanisms in Section 5. We first consider the
class of generalized sink mechanisms. These mechanisms have, for every possible valuation profile, a
probability distribution over the agents that determines each agent’s chance of becoming the sink.
This class of mechanisms is budget balanced by design. We show examples where mechanisms
from this class are not strategyproof (Algorithm 2), and then isolate an interesting subclass whose
mechanisms are strategyproof, the modified irrelevant sink mechanisms (Algorithm 3). We show
that no mechanism from this class can perform better than the deterministic mechanisms if the
number of alternatives is greater than the number of agents (Theorem 4). To understand how
inefficiency (weakly) increases with the number of alternatives, we consider the extreme case of two
alternatives and compare the performances of different mechanisms. We show that a näıve uniform
random sink mechanism and the modified irrelevant sink mechanism (Algorithm 3) perform equally
well (Theorem 5) and reduce the inefficiency by a constant factor of 2 from that of the determin-
istic mechanisms. However, the optimal, strategyproof, budget-balanced, randomized mechanism
performs better than these mechanisms. Since the structure of strategyproof randomized mecha-

1Mechanisms using this idea have been presented with different names in the literature. The original paper by
Green and Laffont (1979) refers to this kind of agents as a sample of the population. Later Gary-Bobo and Jaaidane
(2000) formalized the randomized version of this mechanism which is known as polling mechanism. Faltings (2004)
refers to this as an excluded coalition (when there are multiple such agents) and Moulin (2009) mentions this as
residual claimants. However, we use the term ‘sink’ for brevity and convenience, and our paper considers a different
setup and optimization objective.
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nisms for general quasi-linear utilities is unknown,2 we take a computational optimization-based
approach to find the best mechanism for the special case of two agents. This approach is known in
the literature as automated mechanism design (Conitzer and Sandholm, 2002). For an overview, see
Sandholm (2003). We prove that for a discrete valuation space with 3 levels, the optimal inefficiency
is reduced by a factor of 7 (Theorem 7) from that of deterministic mechanisms. However, when
the number of levels increases—thereby making the lower bound tighter to the actual open-interval
problem—the improvement factor reduces to less than 5 (Figure 1). This is a significant improve-
ment over the class of randomized sink mechanisms, which only improve over the best deterministic
mechanism by a factor of 2.

We present experiments using real data from two applications. They show that in practice the
inefficiency is significantly smaller than the worst case bounds (Section 6). We conclude the paper
in Section 7 and present future research directions. For a cleaner presentation, we defer most of
the proofs to the appendix.

1.2 Relationship to the literature

The Green-Laffont impossibility result motivated the research direction of designing efficient mech-
anisms that are minimally budget imbalanced. The approach is to redistribute the surplus money
in a way that satisfies truthfulness of the mechanism (Bailey, 1997; Cavallo, 2006). The worst
case optimal and optimal in expectation guarantees have been given for this class of mechanisms in
restricted settings (Guo and Conitzer, 2008; Moulin, 2009; Guo and Conitzer, 2009). The perfor-
mance of this class of redistribution mechanisms has been evaluated in interesting special domains
such as allocating single or multiple (identical or heterogeneous) objects (Gujar and Narahari,
2011). Also, mechanisms have been developed and analyzed that are budget balanced (or no
deficit) and minimize the inefficiency in special settings (Massó et al., 2015; Guo and Conitzer,
2014; Mishra and Sharma, 2016). Characterization of strategyproof budget-balanced mechanisms
in the setting of cost-sharing is explored by Moulin and Shenker (2001) and its quantitative guar-
antees are presented by Roughgarden and Sundararajan (2009).

If the distribution of the agents’ valuations is known and we assume common knowledge among
the agents over those priors, the strategyproofness requirement can be weakened to Bayesian in-
centive compatibility. In that weaker framework, mechanisms can extract full expected efficiency
and achieve budget balance (d’Aspremont and Gérard-Varet, 1979; Arrow, 1979). But these mech-
anisms need the knowledge of the priors over the valuations.

The general quasi-linear setting is important since there are settings, e.g., public goods, where
the agents can have arbitrary valuations over the alternatives and the impossibility of Green and
Laffont still holds. Therefore, in the general quasi-linear setting, for mechanisms without priors, it is
an important open question to characterize the class of strategyproof budget-balanced mechanisms,
to find such mechanisms that minimize inefficiency, and to find strategyproof mechanisms that
minimize the sum (or other convex combination) of inefficiency and budget imbalance. This paper
addresses this important question in the general quasi-linear setting, for both deterministic and
randomized settings. Our approach is also prior-free—the strategyproofness guarantees consider
the worst-case scenarios. We show that the answers are asymptotically positive: even in such a

2For randomized mechanisms, results involving special domains are known, e.g., facility location (Thang,
2010; Procaccia and Tennenholtz, 2009; Feldman and Wilf, 2011), auctions (Dobzinski et al., 2006), kidney ex-
change (Ashlagi et al., 2013), and most of these mechanisms aim for specific objectives.

4



general setup, the Green-Laffont impossibility is not too restrictive when the number of agents is
large, and our mechanisms seem to work well on real-world datasets.

2 Model and definitions

We denote the set of agents by N = {1, 2, . . . , n} and the set of alternatives by A = {a1, a2, . . . , am}.
We assume that each agent’s valuation is drawn from an open interval (−M

2 ,
M
2 ) ⊂ R, that is, the

valuation of agent i is a mapping vi : A → (−M
2 ,

M
2 ),∀i ∈ N and is a private information. Denote

the set of all such valuations of agent i as Vi and the set of valuation profiles by V = ×i∈NVi.
A mechanism is a tuple of two functions 〈f,p〉, where f is called the social choice function

(SCF) that selects the allocation and p = (p1, p2, . . . , pn) is the vector of payments, pi : V →
R,∀i ∈ N . The utility of agent i for an alternative a and valuation profile v ≡ (vi, v−i) is given
by the quasi-linear function: vi(a) − pi(vi, v−i). For deterministic mechanisms, f : V → A is a
deterministic mapping, while for randomized mechanisms, the allocation function f is a lottery over
the alternatives, that is, f : V → ∆A. With a slight abuse of notation, we denote vi(f(vi, v−i)) ≡
Ea∼f(vi,v−i)vi(a) = f(vi, v−i)·vi to be the expected valuation of agent i for a randomized mechanism.
The following definitions are standard in the mechanism design literature.

Definition 1 (Strategyproofness) A mechanism 〈f,p〉 is strategyproof if for all v ≡ (vi, v−i) ∈
V ,

vi(f(vi, v−i))− pi(vi, v−i) > vi(f(v
′
i, v−i))− pi(v

′
i, v−i), ∀ v′i ∈ Vi, i ∈ N.

Definition 2 (Efficiency) An allocation f is efficient if it maximizes social welfare, that is,
f(v) ∈ argmaxa∈A

∑

i∈N vi(a), ∀v ∈ V .

Definition 3 (Budget Balance) A payment function pi : V → R, i ∈ N is budget balanced if
∑

i∈N pi(v) = 0, ∀v ∈ V .

In addition, in parts of this paper we will consider mechanisms that are oblivious to the
alternatives—a property known as neutrality. To define this, we consider a permutation π : A → A
of the alternatives. Therefore, π over a randomized mechanism implies that the probability masses
over the alternatives are permuted according to π. We will overload the notation of π to also denote
a permutation of a valuation profile where alternatives are permuted according to π3. We illustrate
this with the following example.

Example 1 Suppose A = {a, b, c}, N = {1, 2, 3}, and π(a) = b, π(b) = c, π(c) = a.

v = v1 v2 v3
a 1 2 3
b 4 5 6
c 7 8 9

π(v) = v′1 v′2 v′3
a 7 8 9
b 1 2 3
c 4 5 6

Definition 4 (Neutrality) A mechanism 〈f,p〉 is neutral if for every permutation of the alter-
natives π (where π(v) 6= v) we have

π(f(v)) = f(π(v)) and pi(π(v)) = pi(v), ∀v ∈ V,∀i ∈ N.
3This follows the convention in social choice literature (see, e.g., Myerson (2013)).
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Note that the condition π(v) 6= v is necessary for the definition. To see this, consider a valuation
profile v such that the values of every agent are identical for alternatives a and b (i.e., rows corre-
sponding to a and b are identical in Example 1), and π be such that π(a) = b, π(b) = a, π(c) = c,
which yields π(v) = v. A social choice function f that gives f(v) = a should continue to give
f(π(v)) = a and therefore this permutation must be excluded as mentioned in the definition of
neutrality.

Moreover, note that an efficient social choice function is neutral and the Green-Laffont result
implicitly assumes this property.

The most important class of allocation functions in the context of deterministic mechanisms are
affine maximizers, defined as follows.

Definition 5 (Affine Maximizers) An allocation function f is an affine maximizer if there
exist real numbers wi > 0, i ∈ N , not all zeros, and a function κ : A → R such that
f(v) ∈ argmaxa∈A

(
∑

i∈N wivi(a) + κ(a)
)

.

As we will explain in the body of this paper, we will focus on neutral affine maximiz-
ers (Mishra and Sen, 2012), where the function κ is zero.

f(v) ∈ argmax
a∈A

∑

i∈N

wivi(a) neutral affine maximizer (1)

The following property of the mechanism ensures that two different payment functions of an
agent, say i, that implement the same social choice function differ from each other by a function
that does not depend on the valuation of agent i.4

Definition 6 (Revenue Equivalence) An allocation f satisfies revenue equivalence if for any
two payment rules p and p′ that make f strategyproof, there exist functions hi : V−i → R, such that

pi(vi, v−i) = p′i(vi, v−i) + hi(v−i), ∀vi ∈ Vi,∀v−i ∈ V−i,∀i ∈ N.

The metrics of inefficiency we consider in this paper are defined as follows.

Definition 7 (Sample Inefficiency) The sample inefficiency for a deterministic mechanism
〈f,p〉 is:

rMn (f) :=
1

nM
sup
v∈V

[

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v))

]

. (2)

The metric is adapted to expected sample inefficiency for randomized mechanisms:

rMn (f) :=
1

nM
sup
v∈V

{

Ef(v)

[

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v))

]}

. (3)

The majority of this paper is devoted to finding strategyproof and budget balanced mechanisms
〈f,p〉 that minimize the sample inefficiency.

4This definition is a generalization of auction revenue equivalence and is commonly used in the social choice
literature (see, e.g., Heydenreich et al. (2009)).
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Note that this metric is different in principle from another commonly used metric of inefficiency
in the literature, which is the worst-case ratio of the social welfare of the mechanism and the

maximum social welfare: infv∈V

∑
i∈N vi(f(v))

maxa∈A

∑
i∈N vi(a)

. The first difference is that we need the valuations

of the agents to be non-negative in order to define this metric. This requirement may be a little
unrealistic in public project selection settings as a project can be a ‘good’ (positive valued) or
a ‘bad’ (negative valued). To see the second difference, consider the following example.5 Let
A = {a1, a2}, v1(a1) = M/2− ǫ, v1(a2) = 0, and vi(a1) = 0, vi(a2) = ǫ/i2,∀i > 2. The welfare of the
mechanism is arbitrarily small when agent 1 is a sink (whose valuation is ignored while maximizing
the welfare – defined in the next section) and ǫ is small, leading this metric to be arbitrarily close
to zero. However, our metric on this instance will return an inefficiency of 1/2n. Hence, the sample
inefficiency metric is able to measure the inefficiency with a better resolution when it is caused by
a mechanism that ignores the valuations of a constant number of agents.

We are now ready to start presenting our results. We begin with deterministic mechanisms that
are strategyproof and budget balanced.

3 Deterministic, strategyproof, budget-balanced mechanisms

Before presenting the main result of this section, we formally define a class of mechanisms we call
sink mechanisms. A sink mechanism has one or more sink agents, given by the set S ⊂ N , picked a
priori, whose valuations are not used when computing the allocation (i.e., f(v) = f(v−S)) and the
sink agents do not pay anything and together they receive the payments made by the other agents.
The advantage of a sink mechanism is that it is strategyproof if it is strategyproof for the agents
other than the sink agents and the surplus is divided among the sink agents in some reasonable
manner, and sink mechanisms are budget balanced by design. An example of a sink mechanism
is where S = {is} (only one sink agent) and f(v−is) chooses an alternative that would be efficient
had agent is not exist, that is, f(v−is) = argmaxa∈A

∑

i∈N\{is}
vi(a). The Clarke (1971) payment

rule can be applied here to make the mechanism strategyproof for the rest of the agents—that
is, for agents other than is, pi(v−is) = maxa∈A

∑

j∈N\{is,i}
vj(a) −

∑

j∈N\{is,i}
vj(f(v−is)), ∀i ∈

N \ {is}. Paying agent is the ‘leftover’ money (that is, pis(v−is) = −
∑

j∈N\{is}
pj(v−is)) makes the

mechanism budget balanced. Our first result establishes that the existence of a sink agent is not
only sufficient but also necessary for deterministic mechanisms.

Theorem 1 Let |A| > 3. Any deterministic, strategyproof, budget-balanced, neutral mechanism
〈f,p〉 in the domain V has at least one sink agent.6

The proof involves two steps.

1. We leverage the fact that a mechanism that satisfies the stated axioms must necessarily be
a neutral affine maximizer (Equation (1)) and has a specific structure for payments. The
characterization of the payment structure comes from revenue equivalence.

5We are grateful to an anonymous referee to raise this point and providing the example.
6Green and Laffont’s impossibility result holds for efficient mechanisms, and all efficient mechanisms are neutral.

However, the neutrality of an efficient rule is up to tie-breaking, and Green-Laffont applies no matter how the tie
is broken. Similarly, our result also holds irrespective of how the tie is broken. Therefore, this theorem covers and
generalizes that result since having at least one sink agent implies that the outcome cannot be efficient.
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2. The core of the proof then lies in showing that for such payment functions, it is impossible
to have no sink agents (identified as agents that have zero weights, wi = 0, in the affine
maximizer). This is shown in a contrapositive manner—assuming that there is no sink agent,
we construct valuation profiles that lead to a contradiction to budget balance.

The complete proof is given in the appendix.
Our next goal is to find the mechanism in this class that gives the lowest sample inefficiency

(Equation (2)). In the proof of the next theorem (presented in the appendix) we show that this is
achieved when there is exactly one sink and the neutral affine maximizer weights are equal for all
agents other agents. This, in turn, yields the following lower bound on inefficiency.

Theorem 2 Let |A| > 3. For every deterministic, strategyproof, budget-balanced, neutral mecha-
nism 〈f,p〉 over V , rMn (f) > 1

n
. This bound is tight.

The lower bound of inefficiency is achieved by a mechanism that uses a single sink agent and the
alternative is chosen to be the efficient one without the sink. As discussed before, the Clarke
payment makes this SCF implementable in dominant strategies. Observe that, the payment of
every non-sink agent i, given by pi(v−is) = maxa∈A

∑

j∈N\{is,i}
vj(a) −

∑

j∈N\{is,i}
vj(f(v−is)), is

non-negative since the first term on the RHS is no less than the second by definition. Hence, in
this mechanism, every non-sink agent pays a non-negative amount of money, which is collected and
transferred to the sink. So, we have the following observation.

Observation 1 In the one-sink mechanism with Clarke payment for the non-sink agents, the sink
agent always receives a non-negative transfer of money.

This fact guarantees that the sink never needs to subsidize the rest of the agents. However, this
does not guarantee individual rationality of the players. For example, the payment to the sink may
not always be sufficient to offset the negative value incurred by the sink agent due to the choice of
alternative that did not take her valuation into account.

4 Jointly minimizing budget imbalance and inefficiency

In the previous section, we considered strategyproof, budget-balanced mechanisms that are min-
imally inefficient. We achieved a sample inefficiency lower bound of 1

n
. Could one do better by,

instead of requiring budget balance and minimizing inefficiency, relaxing budget balance by allowing
money burning, and then minimizing the inefficiency from the allocation plus the inefficiency caused
by money burning (or required subsidy from outside the mechanism)? This would seem like the
sensible objective for minimizing overall waste.

In this section, we consider the joint problem of minimizing inefficiency and budget imbalance in
the setting of deterministic mechanisms. We consider a convex combination of these two quantities
since in the quasi-linear domain both of them contribute additively in the agents’ utilities and
social welfare. We assume that the combination proportions are normative constants with which
the planner associates importance to the two factors of inefficiency and budget balance. Therefore,
the coefficients of the convex combination are independent of the number of agents. We show that
for unbounded valuations, i.e., when the valuation bound M is large, considering this joint problem
does not yield a better than 1/n rate of decay of the efficiency-budget spillover defined as follows.

ρn(f,p) := lim
M→∞

1

nM
sup
v∈V

[λ · T n
1 (f, v) + (1− λ) · T n

2 (p, v)] , (4)
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Where T n
1 (f, v) =

(

maxa∈A
∑

i∈N vi(a)−
∑

i∈N vi(f(v))
)

and T n
2 (p, v) =

∣

∣

∑

i∈N pi(v)
∣

∣ . For λ =
1, that is, when budget imbalance is not a concern, one can use the VCG mechanism to get
ρn(f,p) = 0. Similarly, for λ = 0, a sink mechanism will give ρn(f,p) = 0. So, the interesting
cases are when λ ∈ (0, 1), and for this we have a solution that decays as 1/n. In this section,
we will assume that λ, 0 < λ < 1 is exogenous. Our goal is to find a strategyproof and neutral
mechanism 〈f,p〉 that minimizes the objective ρn. We have shown in Section 3 that T n

1 (f, v)
can at most be a constant when T n

2 (p, v) is zero for every v. Hence, for any improvement in
the efficiency-budget spillover metric, that is, for ρn(f,p) = o(rn(f)), it is necessary that the
term supv∈V [λ · T n

1 (f, v) + (1− λ) · T n
2 (p, v)] be o(1). Since both T n

1 (f, v) and T n
2 (p, v) are non-

negative, it is necessary that the factor T n
2 (p, v) = o(1) for every v ∈ V . Our next result shows

that it is impossible to have T n
2 (p, v) = o(1), ∀v ∈ V ⇔ limn→∞ supv∈V T n

2 (p, v) = 0. Hence,
for deterministic mechanisms with unbounded valuations, the bound on inefficiency with no budget
imbalance (presented in Section 3) is asymptotically optimal for this joint optimization problem as
well.7

Theorem 3 (Unimprovability) Let |A| > 3. For every deterministic, strategyproof, and neutral
mechanism 〈f,p〉 over V and for every λ ∈ (0, 1), ρn(f,p) = Ω

(

1
n

)

. This bound is tight. For
λ = 0, a sink mechanism, and for λ = 1, the VCG mechanism, achieves zero spillover.

Note that this result ensures optimality of the one-sink mechanism only in an asymptotic sense.
It shows that if we aimed to minimize money-burning instead of inefficiency, that would give the
same rate of decay in the spillover factor. However, the question of finding a mechanism that yields
a better reduction in absolute spillover remains to be investigated.

5 Randomized, strategyproof, budget-balanced mechanisms

In Section 3, we saw that the best sample inefficiency achieved by a deterministic budget balanced
mechanism is 1

n
. In this section, we discuss how the inefficiency can be reduced by considering

randomized mechanisms.
An intuitive approach is to consider a mechanism where each agent is picked as a sink with

probability 1
n
.

Definition 8 (Näıve Randomized Sink) A näıve randomized sink (NRS) mechanism picks ev-
ery agent as a sink w.p. 1

n
and takes the efficient allocation without that agent. The payments of

the non-sink agents are VCG payments without the sink. The surplus is transferred to the sink.

Clearly, this mechanism is strategyproof, budget balanced, and neutral by design. In addition,
since this is a randomized version of the deterministic sink mechanism, this also has the property
of non-negative payment to the sink – as given by Observation 1. One can anticipate that this
may not yield the best achievable inefficiency bound. Unlike deterministic mechanisms, very little
is known about the structure of randomized strategyproof mechanisms in the general quasi-linear
setting. Furthermore, we consider mechanisms that are budget-balanced in addition. Hence, even
though we can obtain an upper bound on the expected sample inefficiency (rMn (f)) by considering
specific mechanisms like the NRS mechanism described above, the problem of providing a lower
bound (i.e., no randomized mechanism can achieve a smaller rMn (f) than a given number), seems
elusive in the general quasi-linear setting.

7It is easy to see that the conclusions of Theorems 1 and 2 hold even under the assumption of large M .
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Therefore, in the following two subsections, we consider two approaches, respectively. First, we
show lower bounds in a special class of strategyproof, budget-balanced, randomized mechanisms.
Second, we analytically provide a lower bound of the optimal, strategyproof, budget-balanced, ran-
domized mechanism for two agents and two alternatives, using a discrete relaxation of the original
problem (in the spirit of automated mechanism design (Conitzer and Sandholm, 2002; Sandholm,
2003)). This approach provides an approximation to the strategyproofness and optimality of the
original problem. However, the problems of finding a mechanism that matches this lower bound
and extending the lower bound to any number of agents and alternatives are left as future work.

5.1 Generalized sink mechanisms

In the first approach, we consider a broad class of randomized, budget-balanced mechanisms, which
we coin generalized sink mechanisms. In this class, the probability of an agent i to become a sink
is dependent on the valuation profile v ∈ V , and we consider mechanisms with only one sink, i.e.,
if the probability vector returned by a generalized sink mechanism is g(v), then w.p. gi(v), agent
i is treated as the only sink agent. (One can think of a more general class of sink mechanisms
where multiple agents are treated as sink agents simultaneously. However, it is easy to see—by a
similar argument to that in the context of deterministic mechanisms, just before Lemma 2—that
using multiple sinks cannot decrease inefficiency.) Clearly, the näıve randomized sink mechanism
belongs to this class. Once agent i is picked as a sink, the alternative chosen is the efficient one
without agent i. All agents j 6= i are charged a Clarke tax payment in the world without i, and
the surplus amount of money is transferred to the sink agent i. Algorithm 1 shows the steps of a
generic mechanism in this class.

Algorithm 1 Generalized Sink Mechanisms, G

1: Input: a valuation profile v ∈ V
2: A generic mechanism in this class is characterized by a probability distribution over the agents

N (which may depend on the valuation profile), g : V → ∆N
3: The mechanism randomly picks one agent i in N with probability gi(v)
4: Treat agent i as the sink

Clearly, not every mechanism in this class is strategyproof. The crucial aspect is how the
probabilities of choosing the sink are decided. If the probability gi(v) depends on the valuation
of agent i, that is, vi, then there is a chance for agent i to misreport vi to have higher (or lower)
probability of being a sink (being a sink could be beneficial since she gets all the surplus). For
example, the irrelevant sink mechanism given in Algorithm 2 is not strategyproof.

10



Algorithm 2 Irrelevant Sink Mechanism (not strategyproof)

1: Input: a valuation profile v ∈ V
2: for agent i in N do
3: Define: a∗(v−i) = argmaxa∈A

∑

j 6=i vj(a)
4: if

∑

j 6=i vj(a
∗(v−i))−

∑

j 6=i vj(a) > M for all a ∈ A \ {a∗(v−i)} then
5: Call i an irrelevant agent
6: if irrelevant agent is found then
7: Arbitrarily pick one of them as a sink with probability 1
8: else
9: Pick an agent i with probability 1

n
and treat as sink

The intuition of this mechanism is that if agent i’s maximum valuation sweep (−M/2 to M/2)
cannot change the alternative, this irrelevant agent can be selected as a sink, which yields the
efficient alternative. However, when there is no such irrelevant agent, the decision of choosing every
agent equi-probably leads to a chance of manipulation. An agent whose true valuation report does
not lead her to become a sink can misreport a valuation so that there is no irrelevant agent, thereby
increasing her own probability of being selected as a sink. For example, consider two valuation
profiles with three agents (numbered 1, 2, 3) and three alternatives (a, b, c), and M = 1. The
agents’ valuations in the first profile are v1 = (0.5, 0,−0.5), v2 = (−0.5, 0, 0.5), v3 = (0,−0.5, 0.5),
and in the second profile they are v′1 = (0.5, 0,−0.5), v′2 = (−0.5, 0, 0.5), v′3 = (−0.5, 0, 0.5). The
mechanism returns agent 1 as the irrelevant agent in the first profile and therefore picks alternative
c with probability 1. There is no irrelevant agent in the second profile and hence each agent is
picked as a sink with uniform probability, leading to the probability vector (2/3, 0, 1/3) for the
alternatives a, b, c. But agent 3 strictly gains by moving from the first profile to the second.8

A small modification of the previous mechanism leads to a strategyproof generalized sink mech-
anism. This shows that the class of generalized sink mechanisms is indeed richer than the constant
probability sink mechanisms. In the modified version, we pick a default sink with a certain proba-
bility, which will be the sink if there exists no irrelevant agent among the rest of the agents. The
change here is that when an agent is picked as a default sink, her valuation has no effect in deciding
the sink. See Algorithm 3.

We emphasize, however, that we present the modified irrelevant sink (MIS) (Algorithm 3)
mechanism to illustrate that there exist non-trivial mechanisms in the space of generalized sink
mechanisms. We will see later that despite this non-trivial construction, it yields same expected
sample inefficiency as the näıve randomized sink (NRS) mechanism.

8One can also verify that the weak monotonicity condition, which is a necessary condition for strategyproofness,
is violated for agent 3 between these two profiles.
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Algorithm 3 Modified Irrelevant Sink Mechanism (strategyproof)

1: Input: a valuation profile v ∈ V
2: Pick agent i as a default sink with probability pi
3: for agent j in N \ {i} do
4: if irrelevant agent(s) found within N \ {i} then
5: Arbitrarily pick one of them as a sink
6: Irrelevant agent is found
7: if no irrelevant agent is found within N \ {i} then
8: Treat agent i as sink

It is easy to verify that this mechanism is strategyproof. The difference of the MIS with the
NRS mechanism is in the way a tie is broken when more than one irrelevant sink exists in N \ {i}
(step 5 in Algorithm 3). If the irrelevant sink is picked in a ‘non-uniformly-random’ fashion, then it
marks a difference with the NRS. If the irrelevant sink was picked uniformly at random, then NRS
and MIS becomes identical. This is because, if j is irrelevant in N \{i}, by definition of irrelevance,
i too is irrelevant in N \ {j} – therefore a uniformly random pick of the irrelevant agent will pick
one agent uniformly at random and assign her as the sink, which is the NRS.

Interestingly, no generalized sink mechanism can improve the expected sample inefficiency over
deterministic mechanisms if there are more alternatives than agents (m > n).

Theorem 4 (Generalized Sink for m > n) If m > n, every generalized sink mechanism has
expected sample inefficiency > 1

n
.

The proof is critically dependent on m > n. However, we can hope for a smaller inefficiency if
the number of alternatives is small. Therefore we consider the case when m = 2 and compute the
inefficiency of NRS and MIS mechanisms. For two alternatives, the following theorem shows that
the NRS and MIS mechanisms reduce the inefficiency by a factor of two.

Theorem 5 (Inefficiencies of Randomized Sink Mechanisms) For m = 2, the expected
sample inefficiency of both the NRS and MIS mechanisms is 1

n2

⌈

n
2

⌉

∼ 1
2n .

Even though the MIS mechanism (Algorithm 3) is sophisticated in its use of the valuation profile,
it also yields the same inefficiency as that of the NRS mechanism. This is because, NRS and MIS
have the same inefficiency on every valuation profile. Both mechanisms choose a single agent as a
sink. The default sink for MIS is chosen uniformly at random, identical to the choice of the sink
for NRS. If there does not exist an irrelevant sink in the rest of the agents, the inefficiency remains
the same as that for the default sink, which is identical to the inefficiency of NRS for that choice of
sink. But even if an irrelevant sink exists, by the construction of the irrelevant sink, the resulting
alternative is the efficient alternative for the agents except the default sink. This outcome would
have resulted even if the default sink was chosen as the sink. Therefore, the inefficiencies in MIS
and NRS mechanisms are the same.

The above result does not say much about the lowest achievable expected sample inefficiency
(even in this special class of generalized sink mechanisms). In order to understand the limit of low-
est achievable inefficiency for randomized mechanisms, we take an optimization-based approach.
However, to keep the analysis simple and tractable, we focus on the special case of two agents and
two alternatives. Our next result gives a lower bound on the inefficiency for the class of generalized
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sink mechanisms in that setting. Since we now fix the number of agents in the analysis, minimiz-
ing the expected sample inefficiency is equivalent to minimizing the expected absolute inefficiency
given by nrMn (f) which is 1

M
supv∈V

{

Ef(v)

[

maxa∈A
∑

i∈N vi(a)−
∑

i∈N vi(f(v))
]}

. Without loss
of generality we will assume M = 1. For the rest of this section, we let ‘inefficiency’ mean the
expected absolute inefficiency.

Theorem 6 (Lower Bound of Generalized Sink) For n = m = 2, the expected absolute inef-
ficiency of every strategyproof generalized sink mechanism is lower bounded by 1

2 .

5.2 Unbounded randomized mechanisms

We now move on to study optimal randomized mechanisms without restricting attention neces-
sarily to generalized sink mechanisms. Finding a mechanism that achieves the minimum absolute
inefficiency can be posed as the following optimization problem.

min
f,p

sup
v∈V

[

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v))

]

s.t. vi(f(vi, v−i))− pi(vi, v−i)

> vi(f(v
′
i, v−i))− pi(v

′
i, v−i), ∀vi, v

′
i, v−i,∀i ∈ N

∑

a∈A

fa(v) = 1, ∀v ∈ V,

∑

i∈N

pi(v) = 0, ∀v ∈ V,

fa(v) > 0, ∀v ∈ V, a ∈ A.

(5)

The objective function denotes the absolute inefficiency. The first set of inequalities in the con-
straints denote the strategyproofness requirement, where the term vi(f(v)) = vi · f(v) denotes the
expected valuation of agent i due to the randomized mechanism f . The second and last set of
inequalities ensure that the fa(v)’s are valid probability distributions, and the third set of inequal-
ities ensure that the budget is balanced. The optimization is over the social choice functions f
and the payments p, where the f variables are non-negative but the p variables are unbounded.
Clearly, this is a linear program (LP), which has an uncountable number of constraints (because
the equalities and inequalities have to be satisfied at all v ∈ V , which are the profiles of valuation
functions mapping alternatives to an open interval). We address this optimization problem using
finite constrained optimization techniques by discretizing the valuation levels. We assume that each
agent’s valuations are uniformly discretized with k levels in [−M/2,M/2], which makes the set of
valuation profiles V finite. The optimal value of such a discretized relaxation of the constraints pro-
vides a lower bound on the optimal value of the original problem. This is because (i) the discretized
relaxation of the valuations only increases the feasible set since as some of the constraints are re-
moved, more f ’s and p’s satisfy the constraints, and (ii) discretization of valuations also reduces
the supremum in the objective function – thus allowing a potentially lower value to be achieved for
the minimization objective.

We argue that this is the only possible looseness in the bounds.9 Consider a mechanism 〈f, p〉
from the discretized space which satisfies the constraints. Then consider the non-direct revelation

9We are grateful to an anonymous reviewer for pointing this out.
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mechanism where each agent’s report is a chosen type from the discretized space and then f and p
are applied to these reports. This mechanism is clearly budget balanced, it has a direct revelation
version which is incentive compatible, and by construction it agrees with 〈f, p〉 on the discretized
space. So all looseness in the bounds must come from the fact that some type profiles have been
eliminated rather than allowing new feasible 〈f, p〉.

We now prove a lower bound when the number of discretized levels is three. The analysis uses
a primal-dual argument on the discrete relaxation of the problem.

Theorem 7 (Lower Bound of Inefficiency for Randomized Mechanisms) For n = m =
2, and for k = 3 discrete levels of valuations, the absolute inefficiency is lower bounded by 1

7 =
0.142857.
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Figure 1: Lower bound for the discrete relaxation of the inefficiency minimization LP.

The proof technique can be extended to a larger number of discrete levels to obtain a tighter
lower bound on the actual inefficiency. We conducted a form of automated mechanism de-
sign (Conitzer and Sandholm, 2002; Sandholm, 2003) by solving this LP using Gurobi (2015) for
increasing values of k. We apply the same optimization-based approach for generalized sink and
the deterministic cases as well, even though for these cases we have theoretical bounds. The solid
lines in Figure 1 show the optimization-based results (denoted as AMD) and the dotted lines show
the theoretical bounds. Note that for deterministic case, the theoretical and optimization-based
approaches overlap since the inefficiency is unity even with two valuation levels. The convergence of
the optimization-based approach for generalized sink mechanism shows the efficacy of the approach
and helps to predict the convergence point for the optimal randomized mechanism. One can see
that the lower bound is greater than 0.2 for the optimal mechanism, but it seems to converge to a
value much lower than 0.5.
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6 Experiments with real data

Even though the näıve randomized sink (NRS) (Definition 8) mechanism gives a worst-case sample
inefficiency between 1/2n (for 2 alternatives, Theorem 5) and 1/n (for more alternatives than
agents, m > n, Theorem 4), in this section we investigate its average and worst-case performances
on real datasets of user preferences. Going back to the example of movie selection by a group of
friends (Section 1), we consider several sizes of the group. A small group consists of tens of friends,
while if the decision involves screening a movie at a school auditorium, the group size could easily
be in the hundreds. This is why we consider group sizes spanning from 10 to 210 in steps of 50.

A similar situation occurs when a group of people decides which comedian/musician to invite
in a social gathering, where they need to pay the cost of bringing the performer.

Keeping these motivating situations in mind, we used two datasets that closely represent the
scenarios discussed. We used the MovieLens 20M dataset (Harper and Konstan, 2016) and the
Jester dataset (Goldberg et al., 2001) to compare the performance of the two mechanisms with
their worst case bounds. The first dataset contains preferences for movies, while the second contains
preferences for online jokes. The MovieLens 20M dataset (ml-20m) describes users’ ratings between
1 and 5 stars from MovieLens, a movie recommendation service. It contains 20,000,263 ratings
across 27,278 movies. These data were created from the ratings of 138,493 users between January
09, 1995 and March 31, 2015. For our experiment, we sampled the preferences of a specific number
of users (shown as agents on the x-axis of Figure 2) multiple times uniformly at random from the
whole set of users that rated a particular genre of movies, and computed the sample inefficiency on
this sampled set and plotted the average expected sample inefficiency and standard deviation.

The Jester dataset (jester-data-1) used in our experiment contains data from 24,983 users
who have rated 36 or more jokes, a matrix with dimensions 24983 X 100, and is obtained from
Jester, an online joke recommendation system.10

Figure 2a shows that the real preferences of users yield much lower expected sample inefficiencies
for the näıve randomized sink (NRS) mechanism than the theoretical worst-case guarantee. The
improvement ranges from roughly a factor of 5 (for a group size of 10) to almost 100 (for a group
size of 210). This also indicates that the rate of decay of the inefficiency with the size of the
group is faster than the theoretical guarantee. The experiment is run for different sizes of the
agent groups with a random group of each size drawn multiple times from the dataset. The bars
in Figure 2a shows the average expected sample inefficiencies of the mechanism with the standard
deviations around them. Since NRS is a randomized mechanism, it is also worth looking at its
worst-case performance on the same sampled datasets. Figure 2b shows the average worst-case
sample inefficiency along with its standard deviation. The line plot in both the figures shows the
worst-case expected sample inefficiency for NRS for two alternatives.

By the arguments following Theorem 5, we know that the inefficiency of the modified irrelevant
sink (MIS) (Algorithm 3) will be same as NRS. Since the MIS mechanism also picks exactly one
sink, the worst-case behavior of a single sink illustrated above also applies to the MIS mechanism.

10In both datasets there are missing values because a user has typically not rated all movies/jokes. Before our
experiment, we filled the missing values with a random realization of ratings drawn from the empirical distribution
for that alternative (movie or joke). The empirical distribution of an alternative is created from the histogram of the
available ratings of the users. We cleaned the dataset by keeping only those alternatives that have at least 10 or more
available ratings and filled the rest using their empirical distributions.
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(a) Näıve Random Sink mechanism

10 60 110 160 210

Number of Agents, n

10-5

10-4

10-3

10-2

10-1

S
a
m

p
le

 I
n
e
ff

ic
ie

n
c
y
 (

w
o
rs

t-
c
a
s
e
)

Sample inefficiency of the worst sink

Worst-case Bound, m=2

Movie Data: Genre Drama

Movie Data: Genre Comedy

Jester Data

(b) Worst-case behavior

Figure 2: Performance of näıve randomized sink mechanism on MovieLens and Jester datasets.

7 Summary and future research

In this paper, we provided several new results on the classic question of the interplay between
efficiency and budget balance, properties that are incompatible with strategyproofness due to the
Green-Laffont impossibility result, in the general quasi-linear setting. We sought to understand the
limits of minimal compromise between these two properties, both in the context of deterministic
and randomized mechanism design framework.

We proved characterization results, and a tight lower bound for inefficiency, for deterministic
budget-balanced mechanisms. We also proved that for unbounded valuations, minimizing ineffi-
ciency and budget imbalance together does not provide any asymptotic advantage in the determin-
istic paradigm over requiring budget balance and minimizing inefficiency.

We proved that randomization helps—particularly when the number of alternatives is small
compared to the number of agents. Motivated by our result for deterministic mechanisms that shows
that a strategyproof, budget-balanced, neutral mechanism must include a sink, we introduced the
class of generalized sink mechanisms which is a general (and adaptive to the valuation profile) way
of picking sink agents. We showed that there exists strategyproof non-trivial mechanism (modified
irrelevant sink) in this class that reduces the worst-case inefficiency by a factor of 2. We used an
automated mechanism design approach for two agents and showed analytically that an optimal
randomized mechanism offers further reduction in the inefficiency.

Experiments with real data from two applications compare the näıve randomized sink with its
theoretical worst-case upper bound. We see that the mechanism perform well in practice and yield
very little inefficiency (∼ 1% to 0.01% depending on the group size). This inefficiency is 5–100 times
smaller than the worst case, and this relative difference increases with the number of agents. We
also consider the worst-case realization of this mechanism, and found that the sample inefficiency
is close to the worst-case expected sample inefficiency of the mechanism.

Future research includes studying the structure of the optimal randomized mechanisms that
achieve the (theoretical) improved efficiency. Future work also includes investigating the rate of
improvement of the optimal bound for a general number of agents.
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Appendix

Proof of Theorem 1

Proof : Consider the class of deterministic, strategyproof, and neutral mechanisms.
Mishra and Sen (2012) have shown that in the domain V , when |A| > 3, an allocation that sat-
isfies the properties above must be a neutral affine maximizer (Definition 5), that is, there exists
wi > 0,∀i ∈ N , not all zero, such that,

f(v) ∈ argmax
a∈A

∑

i∈N

wivi(a). (6)

Additionally, the results by Rockafellar (1997) and Krishna and Maenner (2001) state that for any
convex type space, if the valuations are linear in type, then a strategyproof allocation satisfies
revenue equivalence (Definition 6). In our setting, the types of the agents are their valuations,
which implies, trivially, that the valuations are linear in type. Also, they are drawn from the
interval (−M

2 ,
M
2 ), which is convex. So, revenue equivalence holds for the allocations in our setting.

The following payment implements the affine maximizer allocation f given by Equation (6):

pi(vi, v−i) =















−
1

wi





∑

j 6=i

wjvj(f(v))



 , wi > 0

0, wi = 0

(7)

for all i ∈ N . Since revenue equivalence holds in this setting, we conclude that any payment
p̂i, i ∈ N that makes 〈f, p̂〉 strategyproof, will be different from the above mentioned payments p
by an additive factor hi(v−i) for each agent i in every valuation profile.

Now, we turn to proving the result of the theorem. We have the functional form of deterministic,
strategyproof, neutral mechanisms given by Equation (6). If, on this class of mechanisms, we show
that one cannot have weights wi > 0 for all i ∈ N while imposing budget balance, then we are done.
This is because, if there exists one agent i ∈ N , for which wi = 0, that agent is a sink agent as her
valuations are never used by the social choice function and she is charged no payment. By revenue
equivalence, any other payment that can implement the same allocation f is hi(v−i). Putting this in
the budget balance equation, we get hi(v−i) = −

∑

j∈N\{i} pj(v), that is, she receives the payments
made by the other agents. Thus agent i is a sink agent. Hence, the proof is completed by proving
the following claim.

Lemma 1 (Existence of wi = 0 Agent) Let |A| > 3. A budget balanced mechanism 〈f,p〉, where
f is a neutral affine maximizer on the domain V , must have at least one agent i that has wi = 0.

Proof : We develop the proof gradually through the cases of two alternatives and two agents to
two alternatives and n agents, and finally generalize to m alternatives and n agents. Note that the
affine maximizer characterization result holds for m > 3. Therefore, we use the same expressions
for the SCF and payment for m = 2 as an assumption to build the structure of the proof. The
assumption is WLOG for m > 3 due to the results cited above.

This is a proof via contradiction, and we construct a valuation profile where a neutral
affine maximizer cannot have positive wi’s for all i ∈ N . Suppose for contradiction that
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wi > 0,∀i ∈ N . Suppose f is a neutral affine maximizer (Equation (6)) and revenue equiv-
alence holds in V (Equation (7)), we know that the payments are of the form pi(vi, v−i) =

hi(v−i)−
1
wi

(

∑

j 6=iwjvj(f(v))
)

,∀v ∈ V,∀i ∈ N .

Additionally, since the mechanism 〈f,p〉 is also budget balanced, we have

n
∑

i=1



hi(v−i)−
1

wi





∑

j 6=i

wjvj(f(v))







 = 0, ∀v ∈ V

⇒
n
∑

i=1

hi(v−i)−
n
∑

i=1





∑

j 6=i

1

wj



wivi(f(v)) = 0, ∀v ∈ V. (8)

Case 1, two alternatives, two agents: Let A = {a1, a2}, n = 2. By assumption, w1, w2 > 0.
Pick two valuation profiles (v+1 , v2) and (v−1 , v2) such that the affine maximizer alternative in the
first is a1 while that in the second is a2, that is,

w1v
+
1 (a1) + w2v2(a1) > w1v

+
1 (a2) + w2v2(a2) (9)

w1v
−
1 (a1) + w2v2(a1) < w1v

−
1 (a2) + w2v2(a2) (10)

This can be done by choosing v+1 (a2) = v−1 (a2) = v1(a2) (say) small and v2 to be small enough for
both alternatives, so that the valuation of agent 1 for a1 determines the resulting alternative of f .
Therefore, the RHS of the inequalities above are the same. Since the inequality of Equation (10)
is strict, let the difference of the RHS and LHS be δ > 0. The allocations at these two profiles
are: f(v+1 , v2) = a1 and f(v−1 , v2) = a2. Since the payments satisfy revenue equivalence and budget
balance, Equation (8) holds, which gives

−
1

w1
w2v2(a1) + h1(v2)−

1

w2
w1v

+
1 (a1) + h2(v

+
1 ) = 0

−
1

w1
w2v2(a2) + h1(v2)−

1

w2
w1v

−
1 (a2) + h2(v

−
1 ) = 0.

Subtracting the first equation from the second and rearranging, we get

1

w1
w2(v2(a1)− v2(a2)) =

1

w2
w1(v

−
1 (a2)− v+1 (a1))− h2(v

−
1 ) + h2(v

+
1 ). (11)

Note that the RHS is independent of v2. Therefore, if v2(a1) is increased by a small amount
(< δ/w2), both the inequalities given by Equations (9) and (10) still hold, but Equation (11) fails
to hold, which is a contradiction.

Case 2, two alternatives, n > 2 agents: We prove this for a set of alternatives A = {a1, a2}. In
alternative a2, every agent gets a value of zero, and when a1 is chosen the valuation of each agent
is denoted by a single real number. An example of such a valuation space is the undertaking of a
public project, where a1 refers to when the project is undertaken, and a2 when it is not.

Let the agents be numbered in decreasing order of their weights WLOG, that is, wi > wi+1, i =
1, 2, . . . , n − 1. We consider the following valuation profile: (v1 + δ, v2 + δ, . . . , vn−1 + δ, vn), δ > 0
(where the numbers represent the values for alternative a1) such that

−δ

n−1
∑

i=1

wi <

n
∑

i=1

wivi < −δ

n−2
∑

i=1

wi (12)
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The above inequalities imply that the affine maximizer alternative given by Equation (6) for the
profile mentioned above is a1. However, if any agent i’s, i = 1, 2, . . . , n − 1, valuation changes
from vi + δ to vi, the alternative changes to a2. We use a generic notation vS to denote this
profile, where S denotes the set of agents such that the valuations of all the agents k ∈ S are vk,
and the valuations of the agents j /∈ S are vj + δ. Hence, v{n} is the profile mentioned before:
(v1+ δ, v2+ δ, . . . , vn−1+ δ, vn) and v{n−1,n} is the profile: (v1+ δ, v2+ δ, . . . , vn−1, vn), for example.

Since, f(v{n}) = 1, from Equation (8) we have,
((

n−1
∑

i=1

hi(v
{n}
−i )

)

+ hn(v
{n}
−n )

)

−





n
∑

i=1





∑

j 6=i

1

wj



wivi +

n−1
∑

i=1





∑

j 6=i

1

wj



wiδ



 = 0. (13)

We make a series of substitutions in the first parentheses of the expression above, leaving the
terms in the other parentheses unchanged. Note that, the expression in the second parentheses

depends on vn, while the expression hn(v
{n}
−n ) does not. The substitutions sequentially eliminate

the dependency on vn from all the terms in the first parentheses, similar to what we did in the two
agent case before. This leads to a contradiction, since vn can be perturbed arbitrarily small so that
it continues to satisfy the inequalities of Equation (12), our only assumed condition, but violates
the equality in Equation (13).

Consider the term
∑n−1

i=1 hi(v
{n}
−i ) in the first parentheses of Equation (13). Consider the profiles

v{j,n}, j = 1, . . . , n − 1. In each of these profiles, f(v{j,n}) = a2 (due to the choice of v{n} in
Equation (12)). Hence,

n−1
∑

i=1

hi(v
{j,n}
−i ) + hn(v

{j,n}
−n ) = 0, ∀j ∈ {1, . . . , n− 1}. (14)

Note that v
{i,n}
−i = v

{n}
−i . Hence, we can substitute terms from Equation (14) to the terms in the

first parentheses of Equation (13) to get,


−





n−1
∑

i=1

∑

j 6={i,n}

hj(v
{i,n}
−j )



−
∑

j 6=n

hn(v
{j,n}
−n ) + hn(v

{n}
−n )



−





n
∑

i=1





∑

j 6=i

1

wj



wivi +
n−1
∑

i=1





∑

j 6=i

1

wj



wiδ



 = 0.

(15)

Continue replacing the terms hj(v
{i,n}
−j ) in the first summation of the first parentheses above. All

other terms in that parentheses are hn functions and, therefore, are independent of vn. For every
i 6= n, consider the valuation profiles v{j,i,n}, j 6= i, n. By Equation (12), f(v{j,i,n}) = a2, so we

get an equality similar to Equation (14):
∑n−1

k=1 hk(v
{j,i,n}
−k ) + hn(v

{j,i,n}
−n ) = 0, ∀j 6= i, n. Also,

v
{j,i,n}
−j = v

{i,n}
−j . So, we follow the same procedure to replace the terms hj(v

{i,n}
−j ) in Equation (15)

to yield a similar equality where more terms that were dependent on vn are now replaced with hn
functions, which are independent of vn.

To understand each step of this general transformation, we show the complete expansion for
n = 3. The terms in the first parentheses of Equation (15) are as follows.

−





2
∑

i=1

∑

j 6={i,3}

hj(v
{i,3}
−j )



−
(

h3(v
{1,3}
−3 ) + h3(v

{2,3}
−3 )

)

+ h3(v
{3}
−3 )

= −
(

h2(v
{1,3}
−2 ) + h1(v

{2,3}
−1 )

)

−
(

h3(v
{1,3}
−3 ) + h3(v

{2,3}
−3 )

)

+ h3(v
{3}
−3 ) (16)
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Now applying the budget balance condition for the terms in the inner parentheses of first parentheses
of Equation (15), we have

2
∑

k=1

hk(v
{1,2,3}
−k ) + h3(v

{1,2,3}
−3 ) = 0

=⇒ h2(v
{1,3}
−2 ) + h1(v

{2,3}
−1 ) + h3(v

{1,2}
−3 ) = 0

The implication holds since h2(v
{1,2,3}
−2 ) = h2(v

{1,3}
−2 ) and h1(v

{1,2,3}
−1 ) = h1(v

{2,3}
−1 ). Substituting

h2(v
{1,3}
−2 )+h1(v

{2,3}
−1 ) with −h3(v

{1,2}
−3 ) as given by the expression above into Equation (16), we get

the expression to be independent of v3, and we are done.
Since the number of agents n is finite, this process will stop after a finite number of iterations,

reducing the terms in the first parentheses of Equation (15) consisting only of hn functions, that
are independent of vn. This construction shows that a small perturbation of vn, which keeps Equa-
tion (12) unaffected, will violate the equality obtained through the iterative procedure described
above. This completes the proof of the lemma for two alternatives and n > 2 agents.

Case 3, m > 2 alternatives, n > 2 agents: Case 2 trivially extends to address the case of
m > 2 alternatives. We set the values for alternative a1 with a real number as mentioned in Case
2, and the values for all agents for all alternatives a2, . . . , am are set to zero. The construction of
Equation (12) and the analyses that follow remain identical and a similar contradiction is reached.
This completes the proof of the lemma. �

Lemma 1 shows that there exists an agent with weight zero, which is a sink agent, and hence the
proof of Theorem 1 is complete. �

Proof of Theorem 2

Proof : From Theorem 1, we know that any f that satisfies the properties mentioned in the
statement of the current theorem must be a neutral affine maximizer with at least one agent i∗

that has wi∗ = 0. We now show that the minimum sample inefficiency rMn (f) is achieved when
there is exactly one such agent i∗ and the weights of the other agents i ∈ N \ {i∗} are equal. We
prove this in two steps: (a) first we show that the proposed single-sink mechanism indeed gives
a worst-case sample inefficiency of 1/n, and having multiple sinks can only make the inefficiency
worse, (b) having unequal weights for the rest of the agents is suboptimal for sample inefficiency.
This immediately proves the theorem since the proposed mechanism has sample inefficiency 1

n
.

Step (a): the proposed mechanism, having exactly one i∗ such that wi∗ = 0, picks the welfare
maximizing allocation not considering the sink agent i∗, that is, f(v) ∈ argmaxa∈A

∑

j∈N\{i∗} vj(a).
Denoting a∗(v) to be the efficient allocation, we write:

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v)) =
∑

i∈N

vi(a
∗(v)) −

∑

i∈N

vi(f(v))

= vi∗(a
∗(v)) − vi∗(f(v)) +





∑

j∈N\{i∗}

vj(a
∗(v))−

∑

j∈N\{i∗}

vj(f(v))



 <

(

M

2
−

(

−
M

2

))

+ 0 = M

(17)

23



The first part of the above inequality comes from the fact that the valuations are drawn from
(−M

2 ,
M
2 ) so the difference in valuation can at most be M . The second part of the inequality holds

because f(v) is the welfare maximizing allocation excluding agent i∗.
It is easy to verify that this inequality is tight at the following valuation profile: vi∗(a) =

M
2 − δ, vi∗(z) = −M

2 + γ, ∀z 6= a, and vj(b) = −M
2 + ǫ, vj(z) = −M

2 + ǫ
2 , ∀z 6= b,∀j 6= i∗, where

δ, γ, ǫ > 0 are arbitrarily small. The alternatives are: a∗(v) = a, f(v) = b. Clearly, this satisfies
the above inequality and by taking δ, γ, ǫ → 0, we get that the supremum of the difference term
approaches M , and hence the sample inefficiency becomes 1

n
.

This counterexample also shows that having more than one sink agent will make the sample
inefficiency worse—that is, larger. This is because we can replicate the valuation of i∗ for every
other sink and the inequality above will be tightly upper bounded at 2M for 2 sinks, 3M for 3
sinks, etc. Consequently, the sample inefficiency increases to 2

n
, 3
n
etc.

To prove step (b), we use the following lemma.

Lemma 2 (Lowest Sample Inefficiency) In the class of neutral affine maximizers given by
Equation (6) having a sink agent i∗ (i.e., wi∗ = 0), the lowest sample inefficiency is achieved
when wi = w for all i ∈ N \ {i∗}.

Proof : Suppose not, that is, ∃j, j′ ∈ N \ {i∗} such that, WLOG, wj > wj′ . Consider the following
valuation profile:

vi∗(a) = −M
2 + γ,

vj(a) = M
2 − δ,

vj′(a) = −M
2 + γ,

vi∗(b) = M
2 − δ,

vj(b) = M
2 −

wj′

wj
M − ǫ,

vj′(b) = M
2 − δ,

vi(a) = vi(b), ∀i ∈ N \ {i∗, j, j′},

vi(z) = −M
2 + γ

2 , ∀z ∈ A \ {a, b},∀i ∈ N.

The constants δ, γ, ǫ > 0 are arbitrarily small. It is easy to verify that on this profile, by choosing
the constants δ, γ, ǫ appropriately small, the affine maximizer will return a. But the efficient
alternative is a∗(v) = b. Consider the term

∑

i∈N vi(a
∗(v)) −

∑

i∈N vi(f(v)). To this term,

agent i∗ contributes inefficiency M , agent j′ contribute M , and agent j contributes
(

−
wj′

wj
M
)

,

taking the limiting values of δ, γ, ǫ → 0. Therefore, the inefficiency term on this profile equals

M +
(

1−
wj′

wj

)

M > M , the maximum inefficiency when the weights are equal except i∗ (by

the arguments just before Lemma 2). Hence, this mechanism cannot achieve the lowest sample
inefficiency, which is a contradiction. �

Lemma 2 and the arguments before it complete the proof of the theorem. �

Proof of Theorem 3

Proof : The steps of the proof of this theorem closely follows that of the proof of Lemma 1.
Therefore, we illustrate the steps for two alternatives which can be generalized to more than two
alternatives in a similar fashion.

Suppose, there exists a deterministic, strategyproof, and neutral mechanism 〈f,p〉 that also
satisfies limn→∞ supv∈V T n

2 (p, v) = 0. It implies that, at the limit, the mechanism has no budget
imbalance, i.e., limn→∞ supv∈V |

∑n
i=1 pi(v)| = 0. From the arguments in Theorem 1 (Equations (6)

and (7)), we know that f is a neutral affine maximizer and payments are of the form pi(vi, v−i) =
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hi(v−i)−
1
wi

(

∑

j 6=iwjvj(f(v))
)

,∀wi > 0. We already have the sink mechanism where at least one

wi = 0 and the above sum can be made smallest (exactly zero) for every profile v ∈ V . However,
that yields a constant upper bound for the term λ ·T n

1 (f, v)+ (1− λ) ·T n
2 (p, v). Hence, we need to

consider the case wi > 0,∀i, which implies that

lim
n→∞

sup
v∈V

∣

∣

∣

∣

∣

∣

n
∑

i=1



hi(v−i)−
1

wi





∑

j 6=i

wjvj(f(v))









∣

∣

∣

∣

∣

∣

= 0.

This implies that for every ǫ > 0, there exists Nǫ ∈ Z>0 such that for all n > Nǫ,

∣

∣

∣

∣

∣

∣

n
∑

i=1



hi(v−i)−
1

wi





∑

j 6=i

wjvj(f(v))









∣

∣

∣

∣

∣

∣

< ǫ, ∀v ∈ V. (18)

We show that this identity leads to a contradiction for an appropriately chosen v. Note that this
immediately proves the theorem, because if there does not exist any mechanism 〈f,p〉 that satisfies
the properties mentioned in the theorem statement and makes limn→∞ supv∈V T n

2 (p, v) = 0, then
the best possible lower bound is a constant, i.e., supv∈V T n

2 (p, v) = Ω(1). Therefore, the best lower
bound for the spillover factor ρn(f,p) is Ω

(

1
n

)

and this is achievable by the sink mechanism.
We prove this for a set of alternatives A = {0, 1} for similar reasons mentioned in Lemma 1.

As an illustration of the general proof, let us consider the same argument when Nǫ = 2. Let the
valuations are (v1 + δ, v2) for alternative 1 and zero otherwise (δ > 0). Also assume that the
numbers are such that

w1(v1 + δ) + w2v2 > 0, and w1v1 + w2v2 < 0.

That means, the affine maximizer results in 1 at profile (v1 + δ, v2) and 0 at (v1, v2). The above
inequalities can be written concisely as

−w1δ < w1v1 + w2v2 < 0. (19)

Now by the convergence relation of Equation (18), we have

∣

∣

∣

∣

h1(v2) + h2(v1 + δ) −
w2

w1
v2 −

w1

w2
(v1 + δ)

∣

∣

∣

∣

< ǫ

|h1(v2) + h2(v1)| < ǫ

These inequalities imply11

∣

∣

∣

∣

h2(v1 + δ)−
w2

w1
v2 −

w1

w2
(v1 + δ) − h2(v1)

∣

∣

∣

∣

< 2ǫ

⇒

∣

∣

∣

∣

w2

w1
v2 +

(

h2(v1)− h2(v1 + δ) +
w1

w2
(v1 + δ)

)∣

∣

∣

∣

< 2ǫ (20)

But this inequality is violated by choosing a large enough δ and large negative v2 in Equation (19).
This is possible to pick since the valuations are picked from (−M/2,M/2) and M is large by

11If |x+ z| < ǫ and |y + z| < ǫ, then |x− y| = |x+ z − (y + z)| 6 |x+ z|+ |y + z| < 2ǫ.
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definition of ρn (Equation (4)). Also note that, the term within parentheses in Equation (20) is
independent of v2, hence changes in the v2 will not affect them. Our only assumed relation is
Equation (19), and a suitable choice satisfying it violates Equation (20).

The general proof of this theorem extends this idea for any Nǫ = n > 2. Let the agents are
numbered in the decreasing order of their weights WLOG, i.e., wi > wi+1, i = 1, 2, . . . , n − 1. We
consider the valuation profile (v1 + δ, v2 + δ, . . . , vn−1 + δ, vn), δ > 0 such that

−δ

n−1
∑

i=1

wi <

n
∑

i=1

wivi < −δ

n−2
∑

i=1

wi (21)

The above inequalities imply that the affine maximizer alternative for the profile mentioned above
is 1. However, if any agent i’s, i = 1, 2, . . . , n−1, valuation changes to vi from vi+δ, the alternative
changes to 0. We use a generic notation vS to denote this profile, where S denotes the set of agents
such that for all agents k ∈ S, the valuations are vk, and for all j /∈ S, the valuations are vj + δ.
Hence, v{n} is the profile mentioned before: (v1 + δ, v2 + δ, . . . , vn−1 + δ, vn) and v{n−1,n} is the
profile: (v1 + δ, v2 + δ, . . . , vn−1, vn), for example. Note that, the following term in Equation (18)
can be reorganized as

n
∑

i=1

1

wi





∑

j 6=i

wjvj(f(v))



 =

n
∑

i=1





∑

j 6=i

1

wj



wivi(f(v)).

Since, f(v{n}) = 1, from Equation (18) we have

∣

∣

∣

∣

∣

∣

(

n−1
∑

i=1

hi(v
{n}
−i ) + hn(v

{n}
−n )

)

−





n
∑

i=1





∑

j 6=i

1

wj



wivi +

n−1
∑

i=1





∑

j 6=i

1

wj



wiδ





∣

∣

∣

∣

∣

∣

< ǫ. (22)

The idea of the proof is to make a series of substitutions in the first parentheses of the expression
above, leaving the terms in the other parentheses unchanged. Note that, the expression in the second

parentheses depends on vn, while the expression hn(v
{n}
−n ) does not. The substitutions sequentially

eliminate the dependency on vn from all the terms in the first parentheses, similar to what we did
in the two agent case before. This will also increase the RHS of the inequality in Equation (22),
but it will be a finite constant factor of ǫ. This leads to a contradiction, since vn can be chosen
arbitrarily large negative by choosing a large positive δ, and still continues to satisfy Equation (21)
but violates Equation (22).

The substitutions will involve the term
∑n−1

i=1 hi(v
{n}
−i ) in the first parentheses of Equation (22).

Consider the profiles v{j,n}, j = 1, . . . , n − 1. In each of these profiles, f(v{j,n}) = 0 (due to the
choice of v{n} in Equation (21)). Hence,

∣

∣

∣

∣

∣

n−1
∑

i=1

hi(v
{j,n}
−i ) + hn(v

{j,n}
−n )

∣

∣

∣

∣

∣

< ǫ, ∀j ∈ {1, . . . , n− 1}. (23)

Note that v
{i,n}
−i = v

{n}
−i . Hence, we can substitute terms from Equation (23) to the terms in the

26



first parentheses of Equation (22) to get
∣

∣

∣

∣

∣

∣



−

n−1
∑

i=1

∑

j 6={i,n}

hj(v
{i,n}
−j )−

∑

j 6=n

hn(v
{j,n}
−n ) + hn(v

{n}
−n )



−





n
∑

i=1





∑

j 6=i

1

wj



wivi +
n−1
∑

i=1





∑

j 6=i

1

wj



wiδ





∣

∣

∣

∣

∣

∣

< nǫ. (24)

We now replace the terms hj(v
{i,n}
−j ) in the first summation of the first parentheses above. All other

terms in that parentheses are hn functions and, therefore, are independent of vn. For every i 6= n,
consider the valuation profiles v{j,i,n}, j 6= i, n. By Equation (21), f(v{j,i,n}) = 0, hence, we get an
inequality similar to Equation (23):

∣

∣

∣

∣

∣

n−1
∑

k=1

hk(v
{j,i,n}
−k ) + hn(v

{j,i,n}
−n )

∣

∣

∣

∣

∣

< ǫ, ∀j 6= i, n. (25)

Also, note that, v
{j,i,n}
−j = v

{i,n}
−j . So, we follow the same procedure to replace the terms hj(v

{i,n}
−j )

in Equation (24) to yield a similar inequality where the RHS is replaced by a larger term. Since
the number of agents is finite, this process will stop after a finite number of iterations, reducing the
terms in the first parentheses only consisting of hn functions, which are independent of vn, and the
RHS of the inequality being a finite factor K(n)ǫ (say). This construction shows that the choice of
a suitably large δ and negative vn, which keeps Equation (21) unaffected, can violate the inequality
obtained through the iterative procedure described above. Hence the claim is established. �

Proof of Theorem 4

Proof : Assume m = n + 1. The proof generalizes to any m > n. Consider the valuation
profile vi = (vi(a1), . . . , vi(an), vi(an+1)) where vi(ai) = −M/2 + ǫ/2, vi(an+1) = M/2 − ǫ and
vi(aj) = M/2 − ǫ/2,∀j 6= i, n + 1, and ǫ > 0 is arbitrarily small, i ∈ N . This profile is possible to
construct since m > n. Clearly, the efficient alternative is an+1, but if any agent i is picked as a
sink, the alternative changes to ai, which has inefficiency of M − ǫ. Therefore the expected sample
inefficiency for any generalized sink mechanism is 1

nM
(M−ǫ). Taking ǫ → 0 proves the theorem. �

Proof of Theorem 5

Since we discussed why NRS and MIS have the same expected sample inefficiency, here we prove
the bound only for the NRS.
Proof : In this setting, the set of alternatives is A = {a, b}. Let a∗(v) ∈ argmaxa∈A

∑

i∈N vi(a).
Denote the SCF when agent i is chosen as the sink as f sink=i. Therefore, f sink=i(v) ∈
argmaxx∈A

∑

j∈N\{i} vj(x). We claim that the following inequality holds:

∑

i∈N





∑

j∈N

(

vj(a
∗(v)) − vj(f

sink=i(v))
)



 6

⌈n

2

⌉

M. (26)
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Note that if this holds then we have proved one part of the theorem (the other part requires an
example where the bound is tight, which we show later in this proof). This is because, the NRS
mechanism chooses each agent as sink with probability 1

n
. Therefore, the expected inefficiency can

at most be 1
n
·
⌈

n
2

⌉

·M . Divide this by nM to get the expected sample inefficiency which is at most
1
2n .

To prove the claim of Equation (26), assume WLOG, a∗(v) = a. We call an agents to be
pivotal sink if after removing them the welfare maximizing alternative becomes b, i.e., her presence
is critical for the chosen alternative to be a. Denote the set of all pivotal sinks at a valuation profile
v as

P (v) := {i ∈ N : f sink=i(v) = b}.

The set of non-pivotal sinks is denoted by NP (v) = N \P (v). Then the LHS of Equation (26) can

be written as
∑

i∈P (v)

(

∑

j∈N (vj(a)− vj(b))
)

= |P (v)|(Va − Vb), where Vx =
∑

j∈N vj(x), x = a, b.

Define a few more terms as follows (we omit the expressions’ dependence on valuation profile v
where it is understood).

dj := vj(a)− vj(b),

DP :=
∑

j∈P (v)

(vj(a)− vj(b)) =
∑

j∈P (v)

dj ,

DNP :=
∑

j∈NP (v)

(vj(a)− vj(b)) =
∑

j∈NP (v)

dj ,

Clearly, DP +DNP = Va − Vb > 0, by assumpion of a∗(v) = a.

Consider an arbitrary agent i ∈ P (v). By definition of pivot, we have
∑

j∈N\{i}

vj(a) 6
∑

j∈N\{i}

vj(b) ⇒ Va − vi(a) 6 Vb − vi(b) ⇒ di > Va − Vb.

Hence, DP =
∑

i∈P (v) di > |P (v)|(Va − Vb), which is the LHS of Equation (26). We claim that

DP 6
⌈

n
2

⌉

M and then we are done.
Suppose the claim is false, i.e., DP >

⌈

n
2

⌉

M . Since vi(x) ∈ (−M/2,M/2) for all x ∈ A, the
maximum value di can take for all i ∈ P (v) is M . Therefore there are at least >

⌈

n
2

⌉

, i.e., at least
⌈

n
2

⌉

+ 1 pivotal sinks. Hence, |P (v)| >
⌈

n
2

⌉

+ 1. Therefore, there are at most n− |P (v)| =
⌊

n
2

⌋

− 1
non-pivotal sinks. Since dj can be at least −M for all j ∈ NP (v), we have DNP > −

(⌊

n
2

⌋

− 1
)

M .
Then Va − Vb = DP +DNP >

⌈

n
2

⌉

M −
(⌊

n
2

⌋

− 1
)

M > M . Since di = vi(a)− vi(b) can be at most
M for all i ∈ P (v), then Va − Vb − (vi(a)− vi(b)) > 0 which is a contradiction to i ∈ P (v) because
then the welfare maximizing alternative remains a even without i, i.e., f sink=i(v) = a instead of b.
In other words, the gap between Va and Vb is so high that the alternative does not flip even without
one pivotal sink, which is the contradiction. Hence we have proved the the claim.

Note that this bound (Equation (26)) is tight. Consider the following example. Let vi(a) =
M
2 − δ

2 and vi(b) = −M
2 + δ

2 , for i = 1, . . . ,
⌈

n
2

⌉

, and vj(a) = −M
2 + δ

2 and vj(b) = M
2 − δ

2 , for
j =

⌈

n
2

⌉

+1, . . . , n. Clearly, the efficient outcome is a, and if any of the agents in the first partition
is selected as a sink the inefficiency is M , and for the latter partition, the inefficiency is zero. Hence
the absolute inefficiency is

⌈

n
2

⌉

M , assuming δ is arbitrarily small.
Hence, we have proved the theorem. �
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Proof of Theorem 6

Proof : For n = m = 2, either the two agents prefer the same candidate or opposing candidates.
(Ties are broken in favor of a1, say.) If they agree, any probability of the generalized sink mech-
anism yields zero absolute inefficiency, since the efficient alternative will be chosen irrespective of
which agent is the sink. Note that the payments are always zero for two-agent generalized sink
mechanisms. When the agents oppose, we claim that in every opposing profile, a strategyproof
generalized sink mechanism must have the same probability of picking the sinks. Suppose not, that
is, for a specific generalized sink mechanism g : V → ∆N , the probabilities of picking the sinks
are different in profiles v = (v1, v2) and v′ = (v′1, v

′
2), i.e., g(v) 6= g(v′). Consider the transition:

v = (v1, v2) → (v′1, v2) → (v′1, v
′
2) = v′. The sink-picking probabilities g must have changed in

at least one of these two transitions, that is, either g(v1, v2) 6= g(v′1, v2) or g(v′1, v2) 6= g(v′1, v
′
2).

But this is a contradiction to strategyproofness since at least one agent will misreport in that
profile pair. She will prefer to increase the probability of the other agent becoming sink so that
her favorite candidate has higher probability of being selected, which increases her utility since
payment is zero. For example, suppose in the first transition, the probability of agent 1 being
sink is higher in the profile (v1, v2), and consequently, probability of agent 2 being sink is lower.
Then agent 1 will misreport her valuation to v′1. Now, among all fixed probability distributions,
(0.5, 0.5) gives the minimum absolute inefficiency which is 1

2 . �

Proof of Theorem 7

The problem of Equation (5) can be written in a standard LP representation as follows. The
notation fa(v) denotes the probability of picking alternative a by the randomized mechanism f
when the valuation profile is v.

min
f,p

ℓ (27)

s.t.

[v1(a) · fa(v1, v2) + v1(b) · fb(v1, v2)− p1(v1, v2)]− [v1(a) · fa(v
′
1, v2)

+ v1(b) · fb(v
′
1, v2)− p1(v

′
1, v2)] > 0, ∀v1, v

′
1, v2, Agent 1, SP

[v2(a) · fa(v1, v2) + v2(b) · fb(v1, v2)− p2(v1, v2)]− [v2(a) · fa(v1, v
′
2)

+ v2(b) · fb(v1, v
′
2)− p2(v1, v

′
2)] > 0, ∀v1, v2, v

′
2, Agent 2, SP

fa(v) + fb(v) = 1, ∀v ∈ V, SCF

p1(v) + p2(v) = 0, ∀v ∈ V, Budget Balance

ℓ+ (v1(a) + v2(a)) · fa(v) + (v1(b) + v2(b)) · fb(v)

> max
x∈{a,b}

(v1(x) + v2(x)), ∀v ∈ V, Max Inefficiency

fa(v), fb(v) > 0, ∀v ∈ V
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Proof : For k = 3, each agent has 32 = 9 valuations, since the number of alternatives is 2, and
therefore, the number of valuation profiles is 81. The optimization variables are

x := (fa(v
0), fb(v

0), . . . , fa(v
80), fb(v

80), p1(v
0), p2(v

0), . . . , p1(v
80), p2(v

80), ℓ)⊤.

Here the 81 valuation profiles are indexed from 0 to 80 and are denoted by the superscripts.
Hence there are 81 × 4 + 1 = 325 variables to the discretized relaxation of the primal problem of
Equation (27). However, we can significantly reduce the number of variables using the symmetry
of the LP. The symmetry that we consider are anonymity, i.e., the SCF alternative is invariant to
the permutation of the agents, and the payments are permuted according to the permutation of the
agents (defined below), and neutrality, i.e., the relabeling of the alternatives changes the alternative
according to the same relabeling (Definition 4).

Definition 9 (Anonymity) A mechanism 〈f,p〉 is anonymous if for every permutation of the
agents λ we have

f(λ(v)) = f(v) and pλ(i)(λ(v)) = pi(v), ∀v ∈ V,∀i ∈ N.

Note that, similar to Definition 4, we have overloaded the notation of λ for the valuation profile to
denote that the profile where the agents are permuted according to λ.

Lemma 3 For every strategyproof, budget-balanced, randomized mechanism that achieves the mini-
mum absolute inefficiency, there exists an anonymous, neutral, strategyproof, budget-balanced, ran-
domized mechanism that achieves the same absolute inefficiency.

Proof : We prove this for two agents and two alternatives. The same argument generalizes to
any number of agents and alternatives. Consider an optimal solution of the optimization problem
of Equation (27). This yields a solution x∗ (say). Suppose, we relabel the agents 1 and 2 by
swapping their identities, which changes the valuation profiles accordingly. For example, now
the payment p1(v1, v2) is swapped with p2(v2, v1). We keep the SCF alternatives identical, i.e.,
fa(v1, v2) = fa(v2, v1). Now consider the resulting vector of variables x∗

AGENT-SWAP. Note that, this
permutation of the variables reorders the set of constraints in Equation (27). The SP constraints
of agent 1 now becomes the SP constraints of agent 2 and vice-versa. SCF constraints remain
identical, budget balance constraints are reordered but same, and the max-inefficiency constraints
are also reordered. Hence x∗

AGENT-SWAP is a feasible solution of the LP (Equation (27)) and since
x∗
AGENT-SWAP and x∗ has the same value for ℓ, x∗

AGENT-SWAP is an optimal solution of the LP
(Equation (27)).

Similarly, we swap the alternatives a and b and the valuations accordingly to obtain a different
reordered vector x∗

ALT-SWAP. This relabeling of the alternatives again reorders all the constraints
in a different way than the earlier case, with ℓ remaining same in both these cases. In a similar
way as before, we argue that x∗

ALT-SWAP is an optimal solution of the LP (Equation (27)).
Now, we swap both the alternatives and agents to obtain x∗

AGENT-ALT-SWAP which reorders
the constraints in a two-fold manner, but the last variable of this vector remains ℓ as before, and
therefore it is also an optimal solution of the LP (Equation (27)).

Now, we have 4 optimal solutions given the original optimal solution x∗, which are complemen-
tary to each other in terms of agents and alternatives, but all of them are strategyproof, budget-
balanced, randomized mechanisms (since they are feasible solutions of Equation (27)). Consider
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the average of all these solutions:

xA,N =
1

4
(x∗ + x∗

AGENT-SWAP + x∗
ALT-SWAP + x∗

AGENT-ALT-SWAP).

By construction, xA,N is anonymous and neutral, but this is also another optimal solution of the
LP (Equation (27)) (since the set of constraints is convex). Hence, we have proved the lemma
for two agents and two alternatives. For n agents and m alternatives, we consider all n! and m!
possible permutations of the agents and alternatives respectively and take the mean of them to
obtain our resulting optimal solution that is both anonymous and neutral. �

Hence, it is WLOG to consider neutral and anonymous mechanisms to solve the optimization
problem of Equation (27). This reduces the number of variables in the primal problem, since for
valuations that are either agent permuted or alternative permuted or both permuted version of
a valuation profile we have already considered, we can replace their constraints with the already
considered variables. We write the coefficient matrix of the constraint set of the LP in Equation (27)
denoted by A as follows.

fa(v
0) fb(v

0) . . . . . . fa(v
80) fb(v

80) p1(v
0) p2(v

0) . . . . . . p1(v
80) p2(v

80) ℓ


















































v01(a) v01(b) −v81(a) −v81(b) 0 0 −1 0 1 0 0 0 0

















































v02(a) v02(b) −v12(a) −v12(b) 0 0 0 −1 0 1 0 0 0

0 0 . . . . . . 0 0 0 0 . . . . . . 0 0 0

0 0 −v792 (a) −v792 (b) v802 (a) v802 (b) 0 0 0 1 0 −1 0

0 0 . . . . . . 0 0 0 0 . . . . . . 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 . . . . . . 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 . . . . . . 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0

w0(a) w0(b) 0 0 0 0 0 0 0 0 0 0 1

0 0 . . . . . . 0 0 0 0 0 0 0 0 1

0 0 0 0 w80(a) w80(b) 0 0 0 0 0 0 1

(28)

Where wp(x) = vp1(x) + vp2(x), x ∈ {a, b}, and p denotes the profile index. The header of
the matrix shows the primal variables. The sections showed in dotted lines corresponds to the
strategyproofness, valid SCF, budget balance, and maximum inefficiency constraints respectively.
The RHS of the constrained inequalities of the LP is a vector b that looks as follows:

b := (0, . . . , 0,1|V |,0|V |,max
x

w0(x), . . . ,max
x

w80(x))⊤.

Denoting the cost vector of the LP as, c := (04|V |, 1)
⊤, we can represent the LP of Equation (27)

in the standard form:

primal
min
x

c⊤x

s.t. Ax > b
dual

max
y

b⊤y

s.t. y⊤A 6 c⊤
(29)
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Our goal is to provide a lower bound of the optimal value of the primal. Hence, we consider its
dual, and provide a feasible solution. By weak duality lemma, the value of the dual objective at
that feasible point will be a lower bound of the primal. The dual variables represented by y consists
of (λ, γ, µ, δ). The λ variables refer to the dual variables corresponding to the strategyproofness
constraints, and we denote the dual variable that represent the strategyproofness of agent i between
the profiles vk and vl by λi,vk ,vl . By this representation, we consider only such pairs of profiles vk

and vl where only agent i’s valuation changes. The γ variables are the dual variables corresponding
to the constraint that the SCF must add to unity, and we denote the dual variable corresponding to
value profile v as γv. Dual variables µ and δ corresponds to the budget balance and the maximum
inefficiency constraints. Since SCF and budget balance constraints are equalities, γ and µ are
unrestricted, while λ and δ are non-negative. Additionally, in the primal problem the payment
variable pi’s were unrestricted, hence in the dual the corresponding constraints are equalities.

We now provide a dual feasible solution, which is represented with respect to the reduced set of
dual variables. Using symmetry according to Lemma 3, we reduce the number of valuation profiles.
We number the profiles from 0 to 80 in the following way: for the valuation (−0.5,−0.5) of agent
1, all possible valuations of agent 2 from (−0.5,−0.5) to (0.5, 0.5) (9 profiles) are listed, and then
the valuation of agent 1 is moved to (−0.5, 0). Due to symmetry, setting a primal variable fa(v) to
a certain value also fixes 3 other variables that are agent-swapped or alternative-swapped or both-
swapped versions of this variable. Denote the reduced set of valuation profiles by VR. This also
reduces the dual variables γ, µ, δ from 81 to 27 independent variables. However, for the λ variables
we need to list all of them since they correspond to constraints that involve two valuation profiles.
Consider the following set of dual variables (numbers of v and v′ correspond to the valuation profile
numbers in the listing discussed above):

i v v′ λ

1 11 2 4/7
1 12 21 4/7
1 30 66 1/14
1 52 16 2/7
1 57 30 1/7
1 60 33 3/14
1 68 32 2/7
1 78 15 4/7
2 12 16 4/7
2 14 10 1/14
2 18 26 4/7
2 20 19 3/14

v γ

2 2/7
6 3/28
7 1/7
8 2/7
10 −1/28
11 2/7
14 −3/14
19 −4/7
24 −1/7

v µ

6 −1/14
7 1/7
8 4/7
11 −4/7
12 −4/7
14 3/14
24 2/7

v δ

2 2/7
6 1/7
11 4/7

All other entries of the variables that are not shown in the list above are zero. Note that for only
the λ variables, the valuation profiles listed go beyond the index 27, but for all other dual variables
they are represented by the 27 independent variables listed in VR.

We claim that this is a feasible solution of the dual. The proof requires an exhaustive verification
for each of the inequalities in the constraint set of the dual. However, we provide a few cases
to give an insight how this example is picked. Consider, the variables λ(1, 52, 16) = 2/7 and
λ(1, 68, 32) = 2/7. Note that, v24 = ((0, 0.5), (0.5, 0)) = v52 and v68 = ((0.5, 0), (0, 0.5)) is an
alternative swapped version of v24. Also, none of the other variables involve any agent or alternative
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or both swap of this profile in the example we gave. Therefore, now we need to concentrate on
the column fb(v

24) in the matrix of Equation (28). Note that the matrix of Equation (28) is also
reduced on the column and the rows. On the column, each of the f and p columns are reduced to
|VR|, and on the rows, only the strategyproofness constraints retain the original number, but the
SCF, budget balance and maximum inefficiency constraints reduce to |VR| in size. Carrying out
the product with the terms we get 0.5 × 2/7 + 0 × 2/7 = 1/7. While inspecting other variables,
we find γ(v24) = −1/7. Hence the sum of the products on the column fb(v

24) gives 1/7 − 1/7 = 0
which satisfies the inequality. This is not an isolated case, in all the columns fx(v) (the numbers of
such variables are reduced because of symmetry), the examples are chosen such that the sum of the
non-zero products in the SP constraints section and one non-zero product in the SCF constraints
section add up to a non-positive number (for example, repeat the same argument for v78 and v19).

Similarly, consider the column p2(v
12): the variable λ(2, 12, 16) = 4/7 gets multiplied with −1

in this column since the constraint for agent 2 in the profile v12 gives a −1 coefficient for p2(v
12).

However, the variable µ(v12) = −4/7 which is multiplied with 1 in this column, and we can inspect
that no other product is non-zero on this column. Hence the sum of the products is −8/7 which is
non-positive, and satisfies the dual constraint.

The easiest thing to verify is the last column, where the sum of the δv for the reduced set of v’s
add to unity (2/7 + 1/7 + 4/7). Therefore, the example provided is a dual feasible solution. We
compute the objective value of the solution:

∑

v∈VR

γv +
∑

v∈VR

δv max
x∈{a,b}

wv(x)

=
2

7
+

3

28
+

1

7
+

2

7
−

1

28
+

2

7
−

3

14
−

4

7
−

1

7
+ 0.5×

4

7

=
1

7

This completes the proof of the theorem. �
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