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ABSTRACT

Organically grown crowdsourcing networks, which includes
production firms and social network-based crowdsourcing
applications, tend to have a hierarchical structure. Con-
sidering the entire crowdsourcing system as a consolidated
organization, a primary goal of a designer is to maximize the
net productive output of this hierarchy using reward sharing
as an incentive tool. Every individual in a hierarchy has a
limited amount of effort that they can split between produc-
tion and communication. Productive effort yields an agent
a direct payoff, while the communication effort of an agent
improves the productivity of other agents in her subtree. To
understand how the net output of the crowdsourcing net-
work is influenced by these components, we develop a game
theoretic model that helps explain how the individuals trade
off these two components depending on their position in the
hierarchy and their shares of reward. We provide a detailed
analysis of the Nash equilibrium efforts and a design recipe
of the reward sharing scheme that maximizes the net pro-
ductive output. Our results show that even under strategic
behavior of the agents, it is sometimes possible to achieve
the optimal output and also provide bounds on the achiev-
ability when this is not the case.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Economics; K.4.3
[Computers and Society]: Organizational Impacts
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1. INTRODUCTION
The organization of economic activity as a means for the

efficient co-ordination of effort is a cornerstone of economic
theory. We take the perspective that organizations have the
goal of ‘crowdsourcing’ production or other economic activ-
ity through incentives, to maximize production at minimum
cost. Organizations that grow over time, either through re-
ferrals or hiring, tend to have a hierarchical structure. In
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addition to typical large corporations, more recent exam-
ples of hierarchical organizations include those that arise
in ‘diffusion-based task environments’ where agents become
aware of tasks through recruitment [18, 25]. A well known
example of this is the winning solution of the 2009 DARPA
Red Balloon Challenge, who adopted an indirect reward
scheme where the reward associated with successful com-
pletion of subtasks was shared with other agents in the net-
work [18]. This example gave rise to its analysis in the con-
text of identity fraud [16] or in information misreporting and
verification costs [15]. In this context, our study serves as
a complementary approach of understanding how individ-
uals trade off efforts between searching and spreading the
message that lead to the productive output of an already
formed hierarchy.

There is a long history on the role of organizational struc-
ture on economic efficiency [23]. More recently, [19, 20, 14]
study the role of hierarchies; see [24] for a survey of differ-
ent perspectives. In this paper, we draw attention to the
interaction between various common aspects of network in-
fluence, such as profit sharing [10], information exchange [4],
influence and production in crowdsourcing networks. At the
same time different individuals in a network exert different
amounts of effort toward various tasks. In this paper, we
are motivated by the possibility that the phenomenon can
be understood as a consequence of the strategic behavior of
the participants, the reward sharing scheme and their posi-
tions in the network.

In networked organizations, agents are responsible for two
processes: information flow (communication effort) and task
execution (productive effort). The objective of the organi-
zation designer is to maximize the net productive output of
the networked system. However, the individuals in an or-
ganization are rational and intelligent and select the level
of effort which maximizes their payoff. Hence, to under-
stand how organizations can boost their productive output,
we need to understand how the individuals connected over a
network split their efforts between work vs. investing effort
in communicating tasks to others depending on the amount
of direct and indirect rewards. When an agent communi-
cates with another, we call the former an influencer and the
latter an influencee. Influencers can improve the produc-
tivity of the influencees, at the cost of reducing their own
production. Influencees, in turn, share a part of their re-
wards with the influencers, and this interaction induces a
game between the agents connected over the network.

1.1 Overview and Main Results
We model the network as a directed graph, where the di-



rection represents the direction of information flow or com-
munication between nodes and the rewards are shared in the
reverse direction. For an easier exposition, in this work, we
focus on hierarchies where the network is a directed tree.
Each agent in the organization decides how to split its ef-
fort between (i) production effort, which incurs a cost to the
agent but results in direct payoff and indirect reward to other
agents on the path from the root to the agent, and (ii) com-
munication effort, which serves to improve the productivity
of his descendants on the tree (e.g., explaining the problem
to others, conveying insights and the goals of the organi-
zation). Committing effort to communication can improve
productivity of descendants, which in turn improves their
output, should they decide to invest effort in direct work,
and thus give an agent a return on investment through an
indirect payoff. A natural constraint is imposed on the to-
tal effort spent in complementary tasks of production and
communication.

Each agent decides, based on his position in the hierarchy,
how to split his effort between production and communi-
cation, in order to maximize the sum of direct payoff and
indirect reward, accounting for the cost of effort. For most
of our results we adopt a specific exponential productivity
(EP) model, where the quality of communication falls expo-
nentially with effort spent in production with a parameter
β. The model has the useful property that a pure-strategy
Nash equilibrium always exists and has a closed form ex-
pression (Theorem 1). We develop tight conditions for the
uniqueness of the equilibrium (Theorems 2 and 3).

Based on these results, we are then able to ask and an-
swer the question ‘What effect does the design of reward
share have to maximize the social output of a hierarchical
organization?’ We define the social output to be the sum of
the individual outputs which are products of productivity,
due to the communication efforts of ancestors, and individ-
ual production effort. Our next result is that for balanced
hierarchies with EP, there exists a threshold β∗ on a com-
munication quality parameter β such that if β ≤ β∗, i.e.,
communication is ‘good enough’, then the equilibrium social
output can be made equal to the optimal social output by
choosing an appropriate reward sharing scheme. The phe-
nomenon is captured by the fraction called Price of Anarchy
(PoA) [13]. If the reward share is not chosen appropriately,
PoA can be large (Theorem 4). For β > β∗, i.e., low qual-
ity communication, we give closed-form bounds on the PoA
(Theorem 5), which we show are tight in special networks.
Our results highlight the importance of the design of reward
sharing in organizations accounting for both network struc-
ture and communication process in order to achieve a higher
social output.

1.2 Prior Work
In this section, we describe the literature that is relevant

for presenting our results. A complete survey of the liter-
ature in organizational theory can be found in [24, 12, 17,
6]. The study of effort levels in network games, where an
agent’s utility depends on actions of neighboring agents has
recently received much attention [8]. For example, [3] show
how the level of activity of a given agent depends on the
Bonacich centrality of the agent in the network, for a spe-
cific utility structure that results in a concave game. Our
model differs in two aspects: (a) we have multiple types
of efforts (namely production and communication) and (b)

we show results for utilities that are non-concave, both of
which result in a different structure and form to the corre-
lation among the efforts of agents. In particular, we also
provide a specific grounding of our more general results, to
exponential decrease in influence and balanced hierarchical
organizations, that allows us to derive structural properties
of the effect of parameters like communication strength or
effectiveness on effort levels of agents. Even for the case of
non-linear influences, our results give a design recipe for the
reward sharing schemes that maximize production. We also
provide a lower bound on the communication that allows for
designing reward schemes to achieve the same productive
output as a centralized organization. We also provide suffi-
ciency conditions for uniqueness of the Nash equilibrium.

Rogers [21] analyzes the efficiency of equilibria in two spe-
cific types of games (i) ‘giving’ and (ii) ‘taking’, where an
edge means utility is sent on an edge. A strategic model of
effort is discussed in the public goods model of [5], where
utility is concave in individual agents’ efforts, and the struc-
tures of the Nash and stable equilibria are shown. Their
model applies to a very specific utility structure where the
same benefit of the ‘public good’ is experienced by all the
first level neighbors on a graph. In our model, the individual
utilities can be asymmetric, and depend on the efforts and
reward shares in multiple levels on the graph. Our utility
model cleanly separate the effects of two types of influence,
that we term information and incentives, and our analysis is
post formation of the network. Also, we study games where
agents have continuous actions spaces (their effort levels)
and so questions of existence and uniqueness are non-trivial.
In addition, we are still able to show that for hierarchical tree
structured organizational graphs exploiting the structure of
the influence of ancestors or descendants can lead to fast
algorithms for computing the effort equilibria. To measure
the sub-optimality in output due to the self interested nature
of agents, we use the Price of Anarchy (PoA) [13]. In the
network contribution games literature, [2] considers a model
where an agent’s contribution locally benefit the nodes who
share an edge with him, and give existence and PoA results
for pairwise equilibrium for different contribution functions.
The PoA in cooperative network formation is considered in
[7], while [22, 9] have considered the question in a selfish
network routing context. In our model, the strategies are
the efforts of the agents, which distinguishes it from the
network formation and selfish routing literature, and we use
multiple levels of information and reward sharing and study
utilities that are asymmetric even for the neighboring nodes
in the network, which distinguishes itself from the network
contribution games.

Due to space constraints, we have provided some key
proofs and sketches of proofs for the rest.

2. A HIERARCHICALMODEL OF INFLU-

ENCER AND INFLUENCEE
In this section, we formalize a specific version of the hierar-

chical network model. Let N = {1, 2, . . . , n} denote a set of
agents who are connected over a hierarchy T (see Figure 1).
Each node i has a set of influencers, whose communication
efforts influence his own direct payoff, and a set of influ-
encees, whose direct payoffs are influenced by node i. In
turn the production efforts of these influencees endow agent
i with indirect payoffs. The origin (denoted by node θ) is a
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Figure 1: A typical hierarchical model.

node assumed to be outside the network, and communicates
perfectly with the first (root) node, denoted by 1.

We number nodes sequentially, so that each child has a
higher index than his parent, thus the adjacency matrix is
an upper triangular matrix with zeros on the diagonal.

The set of influencers of node i consists of the nodes (ex-
cluding node i) on the unique path from the origin to the
node, and is denoted by Pθ→i. The set of influencees of
node i consists of the nodes (again, excluding node i) in the
subtree Ti below her.

The production effort, denoted by xi ∈ [0, 1], of node i
yields a direct payoff to the node, and the particular way in
which this occurs depends on its productivity. The remaining
effort, 1 − xi, goes to communication effort, and improves
the productivity of the influencees of the node. The constant
sum of production effort and communication effort models
the constraint on an agent’s time, and therefore it is enough
to write both the direct and indirect payoff of a node as
a function of the production effort xi. In particular, the
productivity of a node, denoted by pi(xPθ→i

), depends on
the communication effort (and thus the production effort) of
the influencers on path Pθ→i to the node. The production
effort profile of these influencers is denoted by xPθ→i

.
It is useful to associate xipi(xPθ→i

) with the value from
the direct output of node i. The payoff to node i comprises
of two additive terms that capture: (1) the direct payoff,
which depends on the value generated by the direct output
of a node and the cost of production and communication
effort, and is modulated by the productivity of the node,
and (2) the indirect payoff, which is a fraction of the value
associated with the direct output of any influencee j of the
node. Taken together, the payoff to a single node i is:

ui(xi, x−i) = pi(xPθ→i
)f(xi)+

∑

j∈Ti\{i}

hijpj(xPθ→j
)xj . (1)

The first term is the product of the direct payoff and a func-
tion f(xi) (which models production output and cost) and
captures the trade-off between direct output and cost of pro-
duction and communication effort. The second term is the
total indirect payoff received by node i due to the output
pj(xPθ→j

)xj of its influencees. We insist that the produc-
tivity pj(·) of any node j is non-decreasing in the commu-
nication effort of each influencer, and thus non-increasing
in the production effort of each influencer, and we require
∂

∂xi
pj(xPθ→j

) ≤ 0 for all nodes j, where i is an influencer

of j. Each node i receives a share hij of the value of the
direct output of influencee j. The model can also capture a
setting where an agent can only share output he creates, i.e.,

the total fraction of the output an agent retains and shares
with the influencers is bounded at 1. Let us assume that
agent j retains a share sjj and shares sij with influencers
i ∈ Pθ→j . A budget-balance constraint on the amount of di-
rect value that can be shared requires

∑

i∈Pθ→j∪{j} sij ≤ 1.

Assume that sjj = γ > 0, for all j, so that each node retains
the same fraction γ of its direct output value. Then, the
earlier inequality can be written as,

∑

i∈Pθ→j

sij
γ

≤ 1
γ
− 1.

By now defining hij =
sij
γ
, then the whole system is scaled

by a factor γ. In addition to notational cleanliness, this
transformation gives the advantage of not having any upper
bound on the

∑

i∈Pθ→j
hij , since any finite sum can always

be accommodated with a proper choice of γ. Let us call the
matrix H = [hij ] containing all the reward shares as the
reward sharing scheme.

To highlight our results, we focus on a specific form of
the payoff model, namely the Exponential Productivity (EP)
model, which is an instantiation of the direct-payoff function
f(.) and the productivity function pi(·) as follows.

f(xi) = xi −
x2
i

2
− b

(1− xi)
2

2
, (2)

pi(xPθ→i
) =

∏

k∈Pθ→i

µ(Ck)e
−βxk , (3)

where b ≥ 0 is the cost of communication, Ck is the number
of children of node k, function µ(Ck) ∈ [0, 1] is required to
be non-increasing, and β ≥ 0 denotes the quality of com-
munication, with higher β corresponding to a lower quality
of communication. We assume p1 = 1 for the root node to
denote that the root gets unattenuated information. We in-
terpret the term µ(Ck)e

−βxk ∈ [0, 1] as the communication
influence of node k on the agents in his subtree.

The direct payoff of an agent i is quadratic in production
effort xi, and reflects a linear benefit xi from direct produc-
tion effort but a quadratic cost x2

i /2 for effort. The utility
model given by Equation (1) resembles the utility model
given in [3]. However, there are a few subtle differences in
our model than that in this paper: (a) each agent has two
types of effort, namely production and communication, and
the communication effort of an agent is complementary to
the production efforts of her influencees, while the produc-
tion efforts are substitutable to each other. Also, the comple-
mentarity is nonlinear, which captures a more general form
of reward sharing. (b) We also consider the cost of commu-
nication, captured by b(1−xi)

2/2. The productivity of node
j, given by pj(xPθ→j

), where j ∈ Ti \ {i} warrants careful
observation. Here we explain the components of this func-
tion and the reasons for choosing them. Consider µ(Ck),
which is non-increasing in the number of children, Ck, cap-
tures the idea that the effect of the communication effort
is reduced if the node has more children to communicate
with. An increase in production effort xk reduces the pro-
ductivity of influencees of node k. In particular, the expo-
nential term in the productivity captures two effects: (a) a
linear decrease in production effort gives exponential gain
in the productivity of influencee, which captures the impor-
tance of communication and management in organizations
[1]. Smaller values of β model better communication and a
stronger positive effect on an influencee. (b) We can approx-
imate other models by choosing β appropriately, e.g., linear
productivity corresponds to small values of β. This property
is useful when the effects of production and communication



on the payoff are equally important. For large β there is
very small communication quality between agents and the
value of communication effort is low.

The successive product of these exponential terms in the
path from root to a node reflects the fact that a change in the
production effort of an agent affects the productivity of the
entire subtree below her. In the next section we will demon-
strate the structure and required conditions for uniqueness
of a Nash equilibrium. For brevity of notation, we will drop
the arguments of productivity pi at certain places where it
is understood.

Our results on the structure, uniqueness of the equilib-
rium and their interpretations generalize to other network
structures beyond hierarchies, which we skip for space lim-
itations. The applications pervade beyond crowdsourcing
into more general models of networked organizations. Even
though the simplicity of the EP model gives certain ana-
lytical tractability, it serves to illustrate the importance of
influence, both communication and incentives, and gives in-
sight on outcome efforts in a networked organization.

2.1 Results on the Equilibrium Efforts
The effect of communication efforts between nodes i and

j, where i ∈ Pθ→j is captured by the fractional productivity
pj
pi

defined as, pij(xPi
−

→j
) =

∏

k∈Pi
−

→j
µ(Ck)e

−βxk , (the

node i− is the parent of i in the hierarchy). This term is de-
pendent only on the production efforts in the path segment
between i and j and accounts for ‘local’ effects. We show in
the following theorem that the Nash equilibrium production
effort of node i depends on this local information from all
its descendants.

Theorem 1 (Structure of a Nash Equilibrium).
A Nash equilibrium always exists in the effort game in
the EP model, and is given by the production effort profile
(x∗

i , x
∗
−i) that satisfies,

x∗
i =



1− β

1 + b

∑

j∈Ti\{i}

hijpij(x
∗
Pi

−
→j

)x∗
j





+

(4)

Proof. The existence is immediate since the strategy spaces
are compact and the utilities are continuous [11]. The fo-
cus of the proof is to get a closed form expression of the
equilibrium, and is provided in the Appendix. �

This theorem shows that the EP model allows us to guar-
antee the existence of (at least one) Nash equilibrium. In
particular, we can make certain observations on the equilib-
rium production effort, some of which are intuitive.
• If communication improves, i.e., β becomes small, the pro-

duction effort of each node increases.
• If the cost of management b increases, the production ef-

fort of each node increases.
• When reward sharing (hij) is large, agents reduce produc-

tion effort and focus more on communication effort, which
is more productive in terms of payoffs.

• The computation of a Nash equilibrium at any node de-
pends only on the production efforts of the nodes in its
subtree. Thus, we can employ a backward induction al-
gorithm which exploits this property that helps in an ef-
ficient computation of the equilibrium (this will be shown
formally in the corollaries later in this section).
We turn now to establishing conditions for the unique-

ness of this Nash equilibrium. Let us define the maximum

reward share that any node i can accumulate from a hi-
erarchy T given a reward sharing scheme H as, hmax(T ) =
supi

∑

j∈Ti\{i}
hij . We also define the effort update function

as follows.

Definition 1 (Effort Update Function (EUF)).
Let the function F : [0, 1]n → [0, 1]n be defined as,

Fi(x) =



1− β

1 + b

∑

j∈Ti\{i}

hijpij(xPi
−

→j
)xj





+

.

Note that the RHS of the above expression contains the
production efforts of all the agents in the subtree of agent i.
This function is a prescription of the choice of the production
effort of agent i, if the agents below the hierarchy choose a
certain effort profile. Hence the name ‘effort update’.

Theorem 2 (Sufficiency for Uniqueness). If β <
√

1+b
hmax(T )

, the Nash equilibrium effort profile (x∗
i , x

∗
−i) is

unique and is given by Equation (4).

Proof sketch. The proof idea here is to show that F is a
contraction, and x∗ is the unique fixed point of F . �

Theorem 3 (Tightness). The sufficient condition of
Theorem 2 is tight.

Proof. Consider a 3 node hierarchy with nodes 2 and 3
being the children of node 1 (Figure 2). We show that if
the sufficient condition is just violated, it results in multiple
equilibria. Let b = 0, and h12 = h13 = 0.25, therefore
hmax(T ) = 0.25. Theorem 2 requires that β < 1/

√
0.25 = 2.

We choose β = 2. The equilibrium efforts for node 2 and
3 are 1. Node 1 solves the following equation to find the
equilibria.

1− x1 = e−2x1 .

This equation has multiple solutions, x1 = 0, 0.797, showing
non-uniqueness. �

2 3

1

θ

Figure 2: Tightness of the
sufficiency (Theorem 2).

The uniqueness con-
dition indicates that
the communication
quality needs to be
‘good enough’ (small
β) to ensure uniqueness
of an equilibrium. It is
worth noting that the
uniqueness condition
ensures the convergence
of the best response dy-
namics, in which all the
players start from any
arbitrary effort profile
xinit, and sequentially update their efforts via the function
F , to the unique equilibrium. This is a consequence of the
fact that F is a contraction.

We now turn to the computational complexity of a Nash
equilibrium. If there are multiple NE, the following corollary
holds for computing a NE.

Corollary 1. The worst-case complexity of computing
the equilibrium effort for node i is O(|Ti|2). As a result, The
worst-case complexity of computing the equilibrium efforts of
the whole network is O(n2).



Proof. To compute the equilibrium production effort x∗
i ,

node i needs to compute Equation (4), which requires to
compute the equilibrium efforts for each node in i’s sub-
tree Ti. Because of the fact that x∗

i depends only on the
equilibrium efforts of the subtree below i, we can apply
the backward induction method starting from the leaves to-
wards the root of this sub-hierarchy Ti. The worst-case com-
plexity of such a backward induction occurs when the sub-
hierarchy is a line. In such a case the complexity would be
|Ti|(|Ti| − 1)/2 = O(|Ti|2). In order to compute the equilib-
rium efforts of the whole network, it is enough to determine
the equilibrium effort at the root because this would, in the
process, determine the equilibrium efforts of each node in
the hierarchy. This is also a consequence of the backward
induction method of computing the equilibrium. The worst-
case complexity of finding the equilibrium effort at the root
is O(n2) and therefore the worst-case complexity of com-
puting the equilibrium efforts of the whole network is also
O(n2). �

With the characterization results on the Nash equilibrium
efforts, we now move on to the focus of this paper, where
we design reward sharing scheme in order to maximize the
productive output of the crowdsourcing network.

3. MAXIMIZING THE PRODUCTIVE

OUTPUT OF THE NETWORK
In our model, the equilibrium behavior of the agents are

tightly coupled with the network structure and the reward
sharing scheme as seen from Equation (4). In this section,
we look at how the equilibrium behavior given a reward
sharing scheme affects the social output of the hierarchy T
for a given effort vector x ∈ [0, 1]n, defined as follows.

SO(x, T ) =
∑

i∈N

pi(xPθ→i
)xi (5)

This quantity captures the sum of the output of each indi-
vidual agents in the network, where the output of each agent
is the product of their productivity and production effort.
For a given hierarchy T , let us define the optimal effort vec-
tor as xOPT ∈ arg maxx SO(x, T ). This is the production
effort profile across the network that maximizes the total
direct output value, considering also the effect of commu-
nication effort (induced by lower production effort) on the
productivity of other nodes. Ideally the designer would like
to achieve this maximal social output for the given hierar-
chy. However, the strategic choice of the individuals might
not lead to this performance of the system as a whole. The
question we address in this section is how the Nash equilib-
rium effort level x∗ performs in comparison to the socially
optimal outcome xOPT.

We will consider cases where the equilibrium is unique,
hence, the price of anarchy [13] is given by:

PoA =
SO(xOPT, T )

SO(x∗, T )
. (6)

This quantity measures the degree of efficiency of the
network. Making PoA equal to unity would be the ideal
achievement for the designer. However, that may not al-
ways be possible given the parameters of the model. In such
a case, we provide a design procedure of the reward sharing
scheme that yields the maximum social output.

We note that the equilibrium effort profile x∗ depends on
the reward sharing scheme H , while xOPT does not. The
goal of this section is to understand how one can engineer
the H to reduce the PoA (thereby making the social output
closer to the optimal). The following theorem shows that if
the reward sharing is not properly designed, the PoA can be
arbitrarily large. We consider a single-level hierarchy (see
Figure 3). To simplify the analysis, we also assume that the
function µ(C1) = 1, irrespective of the number of children
of node 1. By symmetry, we consider a single value h, such
that h12 = h13 = . . . = h1n = h. We refer to this model
as FLAT. We show that PoA can be large when there is bad
communication (β large) and no profit sharing (h = 0).

1

. . .2 n

θ

Figure 3: FLAT hierarchy.

Theorem 4 (Large PoA). For n ≥ 3, the PoA is
n−1
2

in the FLAT hierarchy when β = ln(n− 1) and h = 0.

Proof. For FLAT, the social output is given by,
SO(x, FLAT) =

∑n

i=2 e
−βx1xi + x1. We see that β =

ln(n − 1) ≥ − ln
(

1− 1
n−1

)

, for all n ≥ 3. It is easy to

check that the optimal effort profile that maximizes the so-
cial output is xOPT = (0, 1, . . . , 1). Hence the optimal so-
cial output is (n − 1). However, for reward sharing factor
h = 0, we get the equilibrium effort profile from Equation
(4) to be x∗ = (1, 1, . . . , 1). This yields a social output of
(n− 1)e−β + 1. Hence the PoA is n−1

(n−1)e− ln(n−1)+1
= n−1

2
.

�

However, if h is chosen appropriately, e.g., if it were chosen
to be large positive, the equilibrium effort profile given by
Equation (4) would have been closer to that of the optimal.
Hence PoA could have been reduced and made closer to 1.

This raises a natural question: is it always possible to
design a suitable reward sharing scheme that can make PoA
= 1 for any given hierarchy? To answer that, we define the
stability of an effort profile x.

Definition 2 (Stable Effort Vector). An ef-
fort profile x = (x1, . . . , xn) is stable, represented by
x ∈ S, if x ≥ 0, and there exists a reward sharing matrix
H = [hij ], hij ≥ 0, such that,

∑

j∈Ti\{i}

aij(x)hij ≥ 1− xi;
∑

j∈Ti\{i}

hij ≤ 1 + b

β2
, ∀i ∈ N.

(7)
Where, aij(x) = β

1+b
pij(xPi

−
→j

)xj, for all j ∈ Ti \ {i},
and zero otherwise. We call the corresponding solution H∗

a stable reward sharing matrix.

The inequalities capture a required balance between in-
centives and information flow. In the first inequality, for



a fixed communication factor β and cost coefficient b, the
term aij(·) is proportional to the fractional output (frac-
tional productivity × production effort) of an agent j. Af-
ter multiplying with hij , this is the effective indirect output
that i receives from j. The RHS of the inequality can be
interpreted as the communication effort of agent i. Hence,
this inequality says that the total indirect benefit should be
at least equal to the effort put in by a node for commu-
nicating the information to its subtree. If we consider that
the agents share information based on the reward share they
receive, the flow of information and reward forms a closed
loop. The second inequality says that the closed loop ‘gain’
of the information flow (β2) and the reward share accumu-
lated by agent i (

∑

j∈Ti\{i}
hij) should be bounded by the

cost of sharing the information. The closed loop ‘gain’ is
essentially the reward that an agent accumulates due to his
communication effort through his descendants. We can con-
nect a stable effort vector with the Nash equilibrium of the
effort game.

Lemma 1 (Stability-Nash Relationship). If an ef-
fort profile x = (x1, . . . , xn) is stable, it is the unique Nash
equilibrium of the effort game with the corresponding stable
reward sharing matrix.

Proof. Let x is a stable effort profile. So, there exists
a stable reward sharing matrix corresponding to it. Let
H = [hij ], hij ≥ 0 be the matrix, s.t. Equation (7) is sat-
isfied with x. Also x ≥ 0. Therefore, reorganizing the
first inequality of Equation (7) and noting the fact that
xi ≥ 0, ∀i ∈ N , we get,

xi =



1−
∑

j∈Ti\{i}

aij(x)hij





+

, ∀i ∈ N.

Under the condition given by the second inequality of Equa-
tion (7), the Nash equilibrium is unique and is given by the
above expression (recall Theorem 2). Hence, x is the unique
Nash equilibrium of this game. �

Now it is straightforward to see that the stability of xOPT

is sufficient for PoA to be 1. This is because now the H that
makes the xOPT vector stable can be used as the reward
sharing scheme, and for that H the equilibrium effort profile
will coincide with xOPT. In other words, the optimal effort
vector can be supported in equilibrium by a suitable reward
sharing scheme. Hence, the following lemma is immediate.

Lemma 2 (No Anarchy). A stable reward sharing
scheme corresponding to xOPT yields a PoA of 1.

A couple of important questions are then: how efficiently
can we check if a given effort profile x is stable or not? And
how to choose a reward sharing scheme that makes the effort
profile stable? The answer is that we can solve the following
feasibility linear program (LP) for a given effort profile:

min 1

s.t.

∑

j∈Ti\{i}
aij(x)hij ≥ 1− xi,

∑

j∈Ti\{i}
hij ≤ 1+b

β2 ,

hij ≥ 0, ∀j,







∀i ∈ N.

(8)
If a solution exists to the above LP, we conclude that x is
stable and declare the corresponding H to be the resulting

reward sharing scheme. Linear programs can be efficiently
solved and therefore checking an effort profile for stability
can be done efficiently.

A Note on the Reward Share Design.
This condition gives us a recipe for reward sharing scheme

design. However, the next question is: what happens when
the xOPT is unstable? If the above feasibility LP does not
return any solution matrix H , we conclude that xOPT /∈ S.
In such a scenario, we cannot guarantee PoA to be unity.
However, for any given reward sharing matrix H , there is
an equilibrium effort profile x∗(H). We can, therefore, solve
for Hmax ∈ arg maxH:x∗(H)∈S SO(x∗(H)) which leads to an
equilibrium effort profile x∗(Hmax) that lies in the stable set
and maximize the social output. Therefore, when we cannot
find a reward sharing scheme to achieve the optimal social
output, Hmax is an optimal design of reward share. Com-
puting Hmax for general hierarchies may be a hard problem,
and we leave that as a future work. However, for certain spe-
cial classes of hierarchies, it is possible to derive bounds on
the PoA (thereby providing a design recipe for H to achieve
a lower bound on the social output). In the following sec-
tion, we do the same for the balanced hierarchies. The price
of anarchy analysis, therefore, serves as a means to find the
optimal reward sharing scheme that gives a theoretical guar-
antee on the social output of the system.

3.1 Price of Anarchy in Balanced Hierarchies
While the results in previous sections apply to general hi-

erarchies, we now consider a simple yet representative class
of hierarchies, namely the balanced hierarchies, and analyze
the effect of communication on PoA and provide efficient
bounds. Hierarchies in organizations are often (nearly) bal-
anced, and the FLAT or linear networks are special cases of
the balanced hierarchy (depth = 1 or degree = 1). Hence,
the class of balanced hierarchies can generate useful insights.
In addition, the symmetry in balanced hierarchies allows us
to obtain interpretable closed-form bounds and understand
the relative importance of different parameters.

We consider a balanced d-ary tree of depth D. By sym-
metry, the efforts of the nodes that are at the same level of
the hierarchy are same at both equilibrium and optimality.
This happens because of the fact that in the EP model, both
the equilibrium and optimal effort profile computation fol-
lows a backward induction method starting from the leaves
towards the root. Since the nodes in the same level of the hi-
erarchy is symmetric in the backward induction steps, they
have identical effort profiles.

With a little abuse of notation, we denote the efforts of
each node at level i by xi. We start numbering the levels
from root, hence, there are D + 1 levels. Note that there
are a few interesting special cases of this model, namely (a)
d = 2: balanced binary tree, (b) D = 1: flat hierarchy, (c)
d = 1: line. We assume, for notational simplicity only, that
the function µ(Ck) = 1, for all Ck, though our results gen-
eralize. This function is the coefficient of the productivity
function. µ(Ck) = 1 also models organizations where each
manager is assigned a small team and there is no attenua-
tion in productivity due to the number of children. In order
to present the price of anarchy (PoA) results, we define the



set ξ:

ξ(β) =

{

x : x =

[

1− 1

β
e−βx

]+
}

. (9)

This set is the set of possible equilibrium effort levels for
agents at the penultimate level of the EP model hierarchy
when β > 1. Note that this set is a singleton, when β > 1.
Depending on β, we define a lower bound φ(d, β) on the
contribution of an agent toward the social output, and a
sequence of nested functions ti, where d is the degree of
each node.

φ(d, β) = max

{

1

β
(1 + ln(dβ)), dβ + (1− dβ)ξ(β)

}

,

t1(d, β) = φ(d, β),

t2(d, β) = φ(d · t1(d, β), β),
. . .

tD(d, β) = φ(d · tD−1(d, β), β).
(10)

Theorem 5 (Price of Anarchy). For a balanced d-
ary hierarchy with depth D, as β increases, we can show the
following price of anarchy results.

When 0 ≤ β ≤ 1, PoA = 1,

and when 1 < β < ∞, PoA ≤ dD

tD(d, β)
.

(11)

Proof sketch. The proof is constructive and sets the H
matrix appropriately to achieve the bounds on PoA. The
H matrix constructed this way acts as the reward sharing
scheme to achieve a reasonable enough social output. We
skip the complete proof due to space limitations. �

As opposed to our choice of lower bound φ, a näıve lower
bound of 1

β
(1+ln(dβ)) can also be used. The corresponding

sequence of nested functions similar to the ones defined in
Equation (10) is denoted by qi, i = 1, . . . , D. However, this
gives a weaker bound for any hierarchy. As an example,
we demonstrate the weakness for FLAT (recall Figure 3) in
Figure 4 (the FLAT hierarchy is a balanced tree with D =
1, d = n − 1). Figure 4 shows that the bound given by
our analysis is tight for FLAT, indicating the value of the
analysis and also gives intuition to the shape of the effect of
β on the PoA. We can then have the following corollaries of
Theorem 5,

Corollary 2 (Optimal Effort). For the FLAT hier-
archy, if 0 ≤ β < − ln

(

1− 1
n

)

, the optimal effort profile is

where all nodes put unit effort. When − ln
(

1− 1
n

)

≤ β <
∞, the optimal changes to the profile where the root node
puts zero effort and each other node puts unit effort.

Corollary 3. For the FLAT hierarchy, when 0 ≤ β ≤ 1,
PoA = 1, and when 1 < β < ∞, PoA ≤ n

φ(d,β)
.

The second corollary above makes rigorous the intuition
that when β is small enough the optimal x can be achieved
by choosing a small enough reward share h. However, when
β grows, in order to ensure uniqueness of the Nash equilib-
rium, the choice of h becomes limited (as it has to satisfy
≤ (1 + b)/β2) resulting in a PoA, as captured in Figure 4.
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Figure 4: Bounds on PoA for FLAT, d = 6, D = 1.

4. CONCLUSIONS AND FUTUREWORK
In this paper, we built on the papers [5, 3] and developed

an understanding of the effort levels in crowdsourcing hierar-
chies of influencers and influencees. Taking a game theoretic
perspective, we introduce a general utility model, through
which we were able to show results on the existence, struc-
ture, and uniqueness of Nash equilibrium efforts. For the
space limitations, we focused on hierarchical networks, and
with the EP model we found closed form expressions and
a design recipe for the reward sharing scheme that maxi-
mize the productive output of the hierarchy. We show that
for a strategic crowd, achieving an optimal productive out-
put may not be possible, and we provided bounds on this
achievability via PoA analysis on balanced hierarchies. Our
results on existence and uniqueness extend to general di-
rected networks. Finding the output maximizing reward
sharing scheme design for non-hierarchical networks stands
as an interesting future work.
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APPENDIX

Proof of Theorem 1
Proof. Given that the existence is a corollary of [11], we
are left to show that a Nash equilibrium profile (x∗

i , x
∗
−i)

must satisfy Equation (4). For notational convenience, we
drop the arguments of pi and pij , which are functions of
xPθ→i

and xPi
−

→j
respectively. Each agent i ∈ N solves

the following optimization problem.

maxxi
ui(xi, x−i)

s.t. xi ≥ 0
(12)

Combining Equations (1), (2), and (3), we get,

ui(xi, x−i) = pi(xPθ→i
)

(

xi − x2
i

2
− b

(1− xi)
2

2

)

+
∑

j∈Ti\{i}

hijpj(xPθ→j
)xj .

Note that we have relaxed the constraint from 0 ≤ xi ≤ 1.
The first additive term in the utility function has the peak
at xi = 1. The second term has eβxi in the pj , which is
decreasing in xi. Therefore, the optimal xi that maximizes
this utility will be ≤ 1. Hence, in this problem setting, the
optimal solution for both the exact and the relaxed problems
is the same. So, it is enough to consider the above problem.
For this non-linear optimization problem, we can write down
the Lagrangian as follows.

L = ui(xi, x−i) + λixi, λi ≥ 0.

The KKT conditions for this optimization problem (12) are:

∂L
∂xi

= 0,⇒ ∂

∂xi

ui(xi, x−i) + λi = 0, (13)

λixi = 0, complementary slackness. (14)

Case 1: λi = 0, then from Equation (13) we get,

pi(1− xi + b(1− xi)) +
∑

j∈Ti\{i}

hij
∂pj
∂xi

xj = 0

⇒ pi(1 + b)(1− xi)− β
∑

j∈Ti\{i}

hijpjxj = 0

⇒ 1− xi =
β

1 + b

∑

j∈Ti\{i}

hijpijxj , with pij as defined

⇒ xi = 1− β

1 + b

∑

j∈Ti\{i}

hijpijxj . (15)

Case 2: λi > 0, then from Equation (14) we get xi = 0, and
from Equation (13), ∂

∂xi
ui(xi, x−i) < 0. Carrying out the

differentiation as in Equation (15) we get,

0 = xi > 1− β

1 + b

∑

j∈Ti\{i}

hijpijxj . (16)

∴ xi =



1− β

1 + b

∑

j∈Ti\{i}

hijpijxj





+

.

Since this condition has to hold for all nodes i ∈ N , the
equilibrium profile (x∗

i , x
∗
−i) must satisfy the above equality.
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