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Abstract

When a company undergoes a merger or transfers its ownership, the existing governing body
has an opinion on which buyer should take over as the new owner. Similar situations occur while
assigning the host of big sports tournaments, like the World Cup or the Olympics. In all these
se�ings, the values of the external bidders are as important as the opinions of the internal experts.
Motivated by such scenarios, we consider a social welfare maximizing approach to design and
analyze truthful mechanisms in hybrid social choice se�ings, where payments can be imposed to
the bidders, but not to the experts. Since this problem is a combination of mechanism design
with and without monetary transfers, classical solutions like VCG cannot be applied, making this
a novel mechanism design problem. We consider the simple but fundamental scenario with one
expert and two bidders, and provide tight approximation guarantees of the optimal social welfare.
We distinguish between mechanisms that use ordinal and cardinal information, as well as between
mechanisms that base their decisions on one of the two sides (either the bidders or the expert)
or both. Our analysis shows that the cardinal se�ing is quite rich and admits several non-trivial
randomized truthful mechanisms, and also allows for closer-to-optimal welfare guarantees.

1 Introduction

Most well-studied problems in computational social choice [Brandt et al., 2016] deal with combining
individual preferences over alternatives into a collective choice. More o�en than not, the mechanisms
employed for this aggregation task are ordinal, i.e., they do not use the intensities of the preferences of
the individuals, and non-truthful, which is justi�ed by several impossibility theorems [Gibbard, 1973,
1977, Sa�erthwaite, 1975]. On the other hand, the class of truthful cardinal mechanisms has been
shown to be much richer [Barbera et al., 1998, Feige and Tennenholtz, 2010, Freixas, 1984] and the
additional information provided by the numerical values can notably increase the well-being of society
[Cheng, 2016, Filos-Ratsikas and Miltersen, 2014, Guo and Conitzer, 2010]. At the same time, truthful
mechanisms with money are pre�y well-understood and welfare-maximizing mechanisms for a wide
class of problems are known [Nisan et al., 2007].

However, in a rich set of problems, where monetary transfers are possible only for some partici-
pants, designing truthful, cardinal mechanisms is more challenging – one needs to combine elements
of mechanism design with money and social choice. In this work, we consider such a se�ing where the
agents are partitioned into two types, such that some of them o�er monetary compensations, while
other do not. �e objective is to make a decision that maximizes the social welfare, which includes the
cardinal values of both types of agents. �is is a hybrid social choice se�ing, which blends together
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classical social choice and classical mechanism design with money, but is distinct from both of them,
thereby rendering celebrated solutions like the VCG mechanism [Clarke, 1971, Groves, 1973, Vickrey,
1961] insu�cient.

Let us provide a few examples of such hybrid social choice scenarios. Government agencies rou-
tinely sell public assets such as spectrum, land, or government securities, by transferring their own-
ership (or usage rights) to interested buyers. As such transfers may have huge impact to citizens, the
decision about the new ownership is not simply the outcome of some competitive process among the
potential buyers (e.g., through an auction), but usually also involves experts from the citizen commu-
nity who provide advice regarding the societal impact of each potential ownership transfer [Janssen,
2004, PTI, 2018]. In contrast to each potential buyer who faces a value-for-money trade-o�, the experts
care only about societal value; their compensation is unrelated to the ownership decision and instead
depends on their reputation and experience only. �e government needs both parties for a success-
ful transfer of the public assets and a reasonable goal would be to maximize the social welfare, which
aggregates the values of buyers and experts for the ownership transfer. Furthermore, in the organi-
zation of sporting events, the bids of the potential hosts are taken into consideration along with the
recommendations of a respective sports’ administrative body (e.g., IOC for Olympic Games, FIFA for
the World Cup, FIA for Formula One, etc.).

1.1 Our contribution and techniques

We study a very simple but fundamental hybrid social choice se�ing with two competing biddersA and
B, and a single expert with cardinal preferences over the three options of selling to bidder A, selling
to bidder B, or not selling at all. A mechanism takes as input the bids and the expert’s preferences,
and decides one of the three options as outcome. In general, mechanisms are randomized; for a given
input, they select the outcome using a probability distribution (or lo�ery) over the three options.

We consider mechanisms that can be implemented truthfully. Besides the outcome, the mechanism
also outputs payments which are imposed to the bidders. �e lo�ery and the payments should be such
that

• the expert is incentivized to report her true preferences in order to maximize her (expected) value
for the outcome, and

• the bidders are incentivized to report their true values as bids in order to maximize their utility,
i.e., their expected value for the outcome minus their payment to the mechanism.

In the following, we refer to mechanisms with such implementations as truthful mechanisms.
Interestingly, the theory of mechanism design allows us to abstract away from payments and view

truthful mechanisms simply as lo�eries. Well-known characterizations for single-parameter mech-
anism design with money from the literature, as well as new characterizations that we prove here
for lo�eries that guarantee truthfulness from the expert’s side, are the main tools we use in order to
constrain the design space of truthful mechanisms in our se�ing.

Additional informational restrictions can further divide truthful mechanisms into the following
classes:

• ordinal mechanisms, which ignore the exact bids and the expert’s preference values and instead
take into account only their relative order,

• bid-independent mechanisms, which ignore the bids and base their decision solely on the expert’s
cardinal preferences,

• expert-independent mechanisms, which ignore the expert’s preferences and base their decision
solely on the bids, and
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• general truthful mechanisms, which may take both the bids and the expert’s preference values
into account.

We measure the quality of truthful mechanisms in terms of the social welfare, i.e., the aggregate
value of the bidders and the expert for the outcome. Unfortunately, our se�ing does not allow for
a truthful implementation of the social welfare-maximizing outcome. So, we resort to near-optimal
truthful mechanisms and use the notion of the approximation ratio to measure their quality. Even
though the se�ing that we study seems simple, it turns out that identifying the best possible truthful
mechanism for the several classes mentioned above is a challenging task, and the mechanisms them-
selves, as well as their analyses, are o�en quite involved.

For the classes of ordinal, bid-independent, and expert-independent mechanisms, we prove lower
bounds on the approximation ratio of truthful mechanisms in the class, and identify the best possi-
ble among them, with approximation ratios of 1.5, 1.377, and 1.343, respectively. Furthermore, by
slightly enhancing expert-independent mechanisms and allowing them to utilize a single bit of infor-
mation about the expert’s preferences, we de�ne a template for the design of new truthful mechanisms.
�e template de�nes always-sell mechanisms that select either bidder A or bidder B as the outcome.
We present two mechanisms that follow our template, one deterministic and one randomized, with
approximation ratios 1.618 and 1.25, respectively. �e former is best-possible among all deterministic
truthful mechanisms. �e la�er is best-possible among all always-sell truthful mechanisms. We also
present an unconditional lower bound of 1.141 on the approximation ratio of any truthful mechanism.
�ese results are summarized in Table 1.

class of mechanisms approximation ratio reference
ordinal 1.5 mechanisms EOM, BOM (�eorem 3)

best possible (�eorem 4)
bid-independent 1.377 mechanism BIM (�eorem 7)

best possible (�eorem 8)
expert-independent 1.343 mechanism EIM (�eorem 11)

best possible (�eorem 11)
our template 1.25 randomized mechanism R (�eorem 14)

best possible, always-sell (�eorem 15)
1.618 deterministic mechanism D (�eorem 14)

best possible, deterministic (�eorem 17)
all mechanisms 1.141 unconditional lower bound (�eorem 16)

Table 1: Overview of our results. Unless speci�ed otherwise, the term “best possible” means best
possible among the mechanisms in the particular class of mechanisms.

Both our positive and negative results have been possible by narrowing the design space using
truthfulness characterizations, the particular structure in each class of mechanisms, as well as the goal
of low approximation ratio. In most cases, by carefully blending together all these factors, the design
of new mechanisms turns out to be as simple as drawing a curve in a restricted area of a 2-dimensional
plot (e.g., see Fig. 2 and Fig. 3).

1.2 Related work

Our se�ing can be viewed as an instance of approximate mechanism design, with [Nisan and Ronen,
2001] and without money [Procaccia and Tennenholtz, 2013], which was proposed for problems where
the goal is to optimize an objective under the strict truthfulness requirement. A result that will be
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very useful to our analysis is Myerson’s characterization for single-parameter domains [Myerson,
1981], which provides necessary and su�cient conditions for (deterministic or randomized) mecha-
nisms (with money) to be truthful. It allows us to abstract away from the payment functions (which
are uniquely determined given the selection probabilities) on the bidders’ side. Furthermore, simi-
lar arguments based on the same characterization enable us to reason about the structure of truthful
mechanisms (without money) on the expert’s side as well.

When monetary transfers are allowed, the well-known Vickrey-Clarke-Groves (VCG) mechanism
[Clarke, 1971, Groves, 1973, Vickrey, 1961] is deterministic, truthful, and maximizes the social welfare
in many se�ings of interest. However, as we pointed out in the discussion above, in our hybrid mech-
anism design se�ing, one needs to take the values of the expert into account as well, and therefore
VCG is no longer truthful nor optimal. On the expert’s side, truthful mechanisms can be thought of as
truthful voting rules; any positive results for deterministic such rules are impaired by the celebrated
Gibbard-Sa�erthwai�e impossibility theorem [Gibbard, 1973, Sa�erthwaite, 1975] which limits this
class to only dictatorial mechanisms.

In contrast, the class of randomized truthful voting rules is much richer and includes many rea-
sonable truthful rules that are not dictatorial. In fact, Gibbard [1977] characterized the class of all such
ordinal rules; a general characterization of all cardinal voting rules is still elusive. To this end, a notable
amount of work in the classical economics literature as well as in computer science has been devoted
towards designing such rules and proving structural properties for restricted classes. Gibbard [1978]
provided a similar characterization to his 1977 result, which however only holds for discrete strategy
spaces, and later Hylland [1980]1 proved that the class of truthful rules that are Pareto-e�cient reduces
to random dictatorships. Freixas [1984] used the di�erential approach to mechanism design, proposed
by La�ont and Maskin [1980], to design a class of truthful mechanisms which actually characterizes
the class of twice di�erentiable mechanisms over subintervals of the valuation space; the best-possible
truthful bid-independent mechanism that we propose in this paper can be seen as a mechanism in
this class. Barbera et al. [1998] showed that there are many interesting truthful mechanisms which
do not fall into the classes considered by Freixas [1984]. In the computer science literature, Feige and
Tennenholtz [2010] designed a class of one-voter cardinal truthful mechanisms, where the election
probabilities are given by certain polynomials.

Social welfare maximization without payments has been studied in a plethora of related papers in
the computer science literature, in general social choice se�ings [Bhaskar et al., 2018, Filos-Ratsikas and
Miltersen, 2014], as well as in restricted domains, such as matching and allocation problems [Cheng,
2016, Filos-Ratsikas et al., 2014, Guo and Conitzer, 2010]. Similarly to what we do here, Filos-Ratsikas
and Miltersen [2014] make use of one-voter cardinal truthful mechanisms to achieve improved welfare
guarantees. However, the presence of the bidders signi�cantly di�erentiates our se�ing from theirs
(as well as the other related works), since we have to consider both sides in the design and analysis
of mechanisms. Another relevant notion is that of the distortion of (non-truthful) mechanisms which
operate under limited information (typically ordinal mechanisms) [Amanatidis et al., 2019, Anshelevich
et al., 2018, Boutilier et al., 2015, Caragiannis and Procaccia, 2011, Caragiannis et al., 2016, 2017]. While
the lack of information has also been a restrictive factor for some of our results (in conjunction with
truthfulness), we are mainly interested in cardinal mechanisms for which truthfulness is the limiting
constraint.

1.3 Roadmap

�e rest of the paper is structured as follows. We begin with preliminary de�nitions, notation and
examples in Section 2. �en, Section 3, Section 4, and Section 5 are devoted to ordinal, bid-independent
and expert-independent mechanisms, respectively. Our template and the corresponding best possible

1�ite remarkably, this paper is unpublished – the result was revisited by Du�a et al. [2007].
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deterministic and randomized mechanisms are presented in Section 6, while our unconditional lower
bounds are presented in Section 7. We conclude with a discussion of possible extensions and open
problems in Section 8. Due to lack of space, some proofs appear in appendix.

2 Preliminaries

Our se�ing consists of two agents A and B who compete for an item and an expert E. �e agents
have valuations wA, wB ∈ R≥0 denoting the (maximum) amount of money that they would be willing
to spend for the item, and the expert has a valuation function v : O → R≥0 over the following three
options: agentA is selected to get the item, or agentB is selected, or no agent is selected to get the item.
We use� to denote this last option; hence,O = {A,B,�}. We usew = (wA, wB) to denote an agent
pro�le and letW be the set of all such pro�les. Similarly, we use v = (v(A), v(B), v(�)) to denote an
expert pro�le and let V be the set of all such pro�les. �e domain of our se�ing is D = V ×W . From
now on, we use the term pro�le to refer to elements of D.

A mechanismM takes as input a pro�le (v,w) and decides, according to a probability distribution
(or lo�ery) PM a pair (o,p) consisting of an option o ∈ O and a vector p = (pA, pB) indicating the
payments that are imposed to the agents. �e execution of the mechanism yields a utility to the expert
and the agents. Given an outcome (o,p) of the mechanism, the utility of the expert is uE(o,p) = v(o);
the utility of agent i ∈ {A,B} is ui(o,p) = wi − pi if i = o and ui(o,p) = −pi otherwise.

�e mechanism asks the expert to submit a report and the agents to submit their bids. All of them
however may have incentive to misreport their true values in order to maximize their utility. We are
interested in mechanisms that do not allow for such strategic manipulations. We say that a mechanism
M is truthful for agent i ∈ {A,B} if for any value wi and any pro�le (v′,w′),

E[ui(M(v′, (wi, w
′
−i))] > E[ui(M(v′,w′))],

where the expectation is taken with respect to the lo�ery PM . �is means that bidding her true value
wi is a utility-maximizing strategy for the agent, no ma�er what the other agent bids and the expert
reports. Similarly, mechanismM is said to be truthful for the expert if for any expert pro�le v and any
pro�le (v′,w′),

E[uE(M(v,w′))] > E[uE(M(v′,w′))].

Again, this means that reporting her true valuation pro�le is a utility-maximizing strategy for the
expert, no ma�er what the agents bid. A mechanismM is truthful if it is truthful for the agents and
truthful for the expert.

Our goal is to design truthful mechanisms that achieve high social welfare, which is the total value
of the agents and the expert for the outcome. For a meaningful de�nition of the social welfare that
weighs equally the valuations of the expert and the agents, we adopt a canonical representation of
pro�les. �e expert has normalized von Neumann-Morgenstern valuations, i.e., her values for two of the
options are 0 and 1, while her value for the third option lies in the interval [0, 1]. �e values of the
agents are normalized in the de�nition of the social welfare, which is de�ned as

SW(o,v,w) =

{
v(o) + wo

max{wA,wB} , if o ∈ {A,B}
v(�), otherwise.

We measure the quality of a truthful mechanism M by its approximation ratio, which (by abusing
notation a bit and interpretingM(v,w) as the option decided by the mechanism) is de�ned as

ρ(M) = sup
(v,w)∈D

maxo∈O SW(o,v,w)

E[SW(M(v,w),v,w)]
.

Of course, low values of ρ(M), as close as possible to 1, are most desirable.
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2.1 An alternative view of pro�les and mechanisms

In order to simplify the exposition of our results in the following sections, we devote some space here to
introduce two alternative ways of representing pro�les, which we call the expert’s view and the agents’
view. Without essentially restricting the space of mechanisms that can achieve good approximation
ratios according to our de�nition of social welfare, we focus on mechanisms that base their decisions
on the normalized bid values, i.e., on the quantities wA

max{wA,wB} and
wB

max{wA,wB} . It will be convenient
to use the following two alternative ways(

1 x 0
ha `a za

)
and

[
hE `E nE
1 y 0

]
to represent a pro�le (v,w). �e �rst representation is the expert’s view, and the second one is the
agents’ view. Each column corresponds to an option.

• According to the expert’s view on the le�, the columns are ordered in terms of the values of the
expert, which appear in the �rst row. �e quantities ha, `a, and za hold the normalized agent
bids for the corresponding option and 0 for option �. Essentially, ha is the value of the expert’s
favorite option, which can be equal to 1 if it corresponds to the value of the agent with the
highest value (high-bidder), equal to some value y ∈ [0, 1] if it corresponds to the value of the
agent with the lowest value (low-bidder), or 0 if it corresponds to the no-sale option�. Similarly,
`a and za are the values of the expert’s second and third favorite options, respectively.

• According to the agents’ view on the right, the columns are ordered in terms of the bids, which
appear in the second row. �e quantities hE , `E , and nE now hold the valuations of the expert
for the corresponding options. Essentially, hE is the value of the expert for the high-bidder, `E
is the value of the expert for the low-bidder, and nE is the value of the expert for the no-sale
option. All of them can take values in the interval [0, 1] such that one of them is equal to 1 and
another is equal to 0.

�ese representations yield a crisper way to argue about truthfulness for the expert and the agents in
our main results. Speci�cally, in Section 4, we will study bid-independent mechanisms, and therefore
it makes sense to use the expert’s view of pro�les, whereas in Section 5, it will be easier to argue about
our expert-independent mechanisms based on the agents’ view instead. �e agents’ view will also be
used in Section 6, where the mechanisms we present use the expert’s opinion only to appropriately
partition the input pro�les into categories, and it is therefore easier to argue about their properties
using the agents’ view. In Section 7 we will again use the expert’s view to prove our unconditional
lower bounds.

Similarly to the expert’s and the agents’ view described above, we use two di�erent representations
of the lo�ery PM , depending on whether we represent pro�les according to the expert’s or the agents’
view. From the expert’s viewpoint, PM is represented by three functions gM , fM , and ηM , which
correspond to the probability of selecting the �rst, second, and third favorite option of the expert,
respectively. Similarly, from the agents’ viewpoint, PM is represented by three functions dM , cM , and
eM , which correspond to the probability of selecting the high-bidder, the low-bidder, or option �.

In the upcoming sections, to simplify our discussion, we will sometimes drop a,E andM from our
notation when the pro�le view and the mechanisms are clear from context.
Example 1. Let us present an example. Consider a pro�le with expert valuations 1 for option �, 0.3
for optionA and 0 for optionB, and normalized bids of 1 from agentA and 0.9 from agentB. Consider
a lo�ery which for the particular pro�le uses probabilities 0.4 for option A, 0.1 for option B, and 0.5
for option �. �e expert’s and agents’ views of the pro�le are(

1 0.3 0
0 1 0.9

)
and

[
0.3 0 1
1 0.9 0

]
,

6



respectively. �e functions gM , fM and ηM are de�ned over the 4-tuple of arguments (x, ha, `a, za) =
(0.3, 0, 1, 0.9), which compactly represents the expert’s view, and take values 0.5, 0.4, and 0.1, respec-
tively. Similarly, the functions dM , cM , and eM are de�ned over the 4-tuple of arguments (y, hE , `E , nE) =
(0.9, 0.3, 0, 1), which compactly represents the agents’ view, and take values 0.4, 0.1, and 0.5, respec-
tively.

To handle ties in the expert’s report or the agents’ bids, we use the �xed priority A � B � �
in order to identify the high- and low-bidder as well as the highest and lowest expert valuation. For
example, if the expert has value 1 for options � and B, we interpret this as option B being her most
favorite one. Similarly, when the bids are equal, agent A is always the high-bidder and agent B is
the low-bidder. �is is used in the de�nition of our mechanisms only; lower bound arguments do not
depend on such assumptions in order to be as general as possible.

2.2 Reasoning about truthfulness

Let us now explain the truthfulness requirements having these pro�le representations in mind. �ere
are two di�erent kinds of possible misreports by the expert. She can a�empt to make

• a level change in the reported valuation (or ECh, for short) by changing her second highest valu-
ation without a�ecting the order of her valuations for the options, or

• a swap in the reported valuation (ESw) by changing the order of her valuations for the options as
well as the particular values.

For example, the pro�le (
1 0.6 0

0.9 0 1

)
is the result of a swap in the reported valuation by the expert who changes her valuations from
(1, 0.3, 0) (that she has in Example 1) to (0.6, 0, 1) for the three options (�, A,B).

Similarly, there are also two di�erent kinds of possible misreports by each agent. In particular, the
agent can a�empt to make

• a level change in the bid (BCh) by changing her bid without a�ecting the order of bids or

• a swap in the reported bid (BSw) by changing both the bid order and the corresponding values.

For example, the pro�le [
0 0.3 1
1 0.25 0

]
is the result of a swap in the reported bid by the low-bidder, who increases her bid in the pro�le of
Example 1 to a new bid that is four times the bid of the other agent.

A truthful mechanism never incentivizes (i.e., it is incentive compatiblewith respect to) such misre-
ports. We use the terms ECh-IC, ESw-IC, BCh-IC, and BSw-IC to refer to incentive compatibility with
respect to the misreporting a�empts mentioned above. A truthful mechanism, therefore, satis�es all
these IC conditions. Before we proceed, we provide a few examples of truthful mechanisms.

Example 2 (A bid-independent ordinal mechanism). Consider the following mechanism that ignores
the bids reported by the agents. With probability 2/3 output the expert’s favorite option, and with
probability 1/3 output the expert’s second favorite option. Adopting the expert’s view and the corre-
sponding representation of the lo�ery PM , the mechanism can be wri�en as:

gM (x, ha, `a, za) =
2

3
, fM (x, ha, `a, za) =

1

3
and ηM (x, ha, `a, za) = 0.
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�e mechanism can be seen to be truthful by the fact that (a) it ignores the bids of the agents and (b)
it always assigns higher probability to the most-preferred outcome for the expert and 0 probability to
the least-preferred outcome. Note that using the terminology above, any ordinal mechanism is ECh by
construction, since changing the level in the reported valuation does not change the outcome.

Example 3 (A bid-independent mechanism which is not ordinal). Consider the expert’s view (ac-
cording to which x is the value of the expert for her second favorite outcome) and the corresponding
representation of the lo�ery PM , which is given by:

gM (x, ha, `a, za) =
4− x2

6
, fM (x, ha, `a, za) =

1 + 2x

6
and ηM (x, ha, `a, za) =

1− 2x+ x2

6
.

Note that this mechanism ignores the bids of the agents and uses the cardinal information reported by
the expert. �is mechanism has been referred to in the literature as the quadratic lo�ery and has been
proved to be truthful [Feige and Tennenholtz, 2010, Freixas, 1984].

Example 4 (A deterministic expert-independent mechanism). Consider the following mechanism that
ignores the expert’s values for the di�erent outcomes. Output the high-bidder and charge this agent a
payment equal to the bid of the other agent. Charge the other agent a payment of 0. In terms of the
agents’ view, the outcome of the mechanism can be wri�en as:

dM (y, hE , `E , nE) = 1, cM (y, hE , `E , nE) = 0 and eM (y, hE , `E , nE) = 0.

�is mechanism is the well-known second-price auction [Vickrey, 1961], which is known (and easily
seen) to be truthful.

It is not hard to see that none of themechanisms presented in the above examples can achieve a very
strong approximation ratio. As wewill see in Section 3, themechanism of Example 2 is actually the best
possible among the restricted class of ordinal mechanisms. Later on, the use of cardinal information
will allow us to decisively outperform it. We also note that while the second-price auction in Example 4
is welfare-optimal for the agents, which is a well-known fact, it provides only a 2-approximation when
it comes to our objective of the combined welfare of the agents and the expert.

We continue with important conditions that are necessary and su�cient for BCh-IC and ECh-IC.
�e next lemma is essentially the well-known characterization of Myerson [1981] for single-parameter
domains.

Lemma 1 (Myerson [1981]). A mechanism M is BCh-IC if and only if the functions dM and cM are
non-increasing and non-decreasing in terms of their �rst argument (the low bid), respectively.

As long as the output of a mechanism satis�es the monotonicity condition of Lemma 1, one can
always �nd payments for the agents that will make the mechanism BCh-IC. In fact, when the mecha-
nisms are required to charge a payment of zero to an agent with a zero bid, then these payments are
uniquely de�ned, and are given by the following formula

pi(wi, w−i) = wi · qi(wi, w−i)−
∫ wi

0
qi(t, w−i) dt,

where qi is the probability that agent i ∈ {A,B} will be selected as the outcome, pi is the payment
function, wi is the bid of agent i and w−i is the bid of the other agent. �erefore, we can avoid refer-
ring to the payment function when designing our mechanisms, as we can choose the above payment
function, provided that the outcome probabilities satisfy the monotonicity conditions of Lemma 1. On
the other hand, our lower bounds apply to all mechanisms, regardless of the payment function, as they
only use the monotonicity condition.

Next, we provide a similar proof to that of Myerson [1981] for characterizing ECh-IC in our se�ing.
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Lemma 2. A mechanism M is ECh-IC if and only if the function fM is non-decreasing in terms of its
�rst argument and the function gM satis�es

gM (x, ha, `a, za) = gM (0, ha, `a, za)− xfM (x, ha, `a, za) +

∫ x

0
fM (t, ha, `a, za) dt, (1)

for every 4-tuple (x, ha, `a, za) representing a pro�le as seen by the expert.

As a corollary, functions gM and hM are non-increasing in terms of the �rst argument.

Proof. To shorten notation, we use b = (ha, `a, za) as an abbreviation of the information in the second
row of a pro�le in expert’s view and (x,b) as an abbreviation of (x, ha, `a, za). Also, we dropM from
notation (hence, f(x,b) is used instead of fM (x, ha, `a, za)) since it is clear from context. Due to
ECh-IC, the expert has no incentive to a�empt a level change of her valuation for her second favorite
option from x to x′. �is means that

g(x,b) + xf(x,b) > g(x′,b) + xf(x′,b). (2)

Similarly, she has no incentive to a�empt a level change of her valuation for her second favorite option
from x′ to x. �is means that

g(x′,b) + x′f(x′,b) > g(x,b) + x′f(x,b). (3)

By summing Ineq. (2) and Ineq. (3), we obtain that

(x− x′)(f(x,b)− f(x′,b)) > 0,

which implies that f is non-decreasing in terms of its �rst argument.
To prove Eq. (1), we observe that Ineq. (2) yields

g(x,b) + xf(x,b) > g(x′,b) + x′f(x′,b) + (x− x′)f(x′,b). (4)

�is means that function g(x,b) + xf(x,b) is convex with respect to its �rst argument and has f as
its subgradient [Rockafellar, 2015]. Hence, from the standard results of convex analysis we get

g(x,b) + xf(x,b) = g(0,b) +

∫ x

0
f(t,b) dt,

which is equivalent to Eq. (1).
To verify that the conditions of the lemma are also su�cient for a mechanism to be ECh-IC, assume

that f is non-decreasing, g satis�es Eq. (1), and the expert has an incentive to make a level change of
her valuation for her second favorite option from x to x′. �is means that

g(x,b) + xf(x,b) < g(x′,b) + xf(x′,b),

which, by replacing g, is equivalent to

(x′ − x)f(x′,b) <

∫ x′

x
f(t,b) dt,

which contradicts the assumption that f is non-decreasing. Hence, the expert does not have any
incentive to make such level changes.

We remark here that while Lemma 2 will be fundamental for our proofs, it does not provide a
characterization of all truthful one-voter mechanisms in the unrestricted social choice se�ing (such
mechanisms are referred to as unilateral in the literature). �e reason is that (a) it applies only to
changes in the intensity of the preferences and not swaps in the ordering of alternatives and (b) it only
provides conditions for three alternatives, as opposed to many alternatives in the general se�ing.
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3 Warmup: Ordinal mechanisms

We will consider several classes of truthful mechanisms depending on the level of information that
they use. Let us warm up with some easy results on ordinal mechanisms, which do not use the exact
values of the expert’s report and the bids, but only their relative order. It turns out that the best possible
approximation ratio of such mechanisms is 3/2 and is achieved by two symmetric mechanisms, one
depending only on the ordinal information provided by the expert (expert-ordinal), while the other
depends only on the relation between the bids (bid-ordinal).

�e expert-ordinal mechanism EOM selects the expert’s favorite option with probability 2/3 and
her second best option with probability 1/3. Symmetrically, the bid-ordinal mechanism BOM selects
the high-bidder with probability 2/3 and the low-bidder with probability 1/3. As we show next, both
EOM and BOM are optimal among all ordinal mechanisms.

�eorem 3. Mechanisms EOM and BOM are truthful and have approximation ratio at most 3/2.

Proof. EOM is clearly truthful for the agents since it ignores the bids. It is also clearly truthful for the
expert since the probabilities of selecting the options follow the order of the expert’s valuations for
them. BOM is clearly truthful for the expert (since her input is ignored); truthfulness for the agents
follows by observing that the probability of selecting an agent is non-decreasing in terms of her bid.

We prove the approximation ratio for mechanism BOM only; the proof for EOM is completely

symmetric. Consider the pro�le
[
h ` n
1 y 0

]
in agents’ view, where we have dropped E to simplify

notation. We distinguish between two cases. If 1 + h > y + `, the optimal welfare is 1 + h and the
approximation ratio is

1 + h
2
3(1 + h) + 1

3(y + `)
6

3

2

since y + ` > 0. If 1 + h 6 y + `, the optimal welfare is y + ` and the approximation ratio is

y + `
2
3(1 + h) + 1

3(y + `)
=

1
2
3
1+h
y+` + 1

3

6
3

2

since 1+h
y+` > 1

2 .

�eorem 4. �e approximation ratio of any ordinal mechanism is at least 3/2.

Proof. Let ε ∈ (0, 1/2) and consider the following two pro�les:(
1 ε 0
0 ε 1

)
and

(
1 1− ε 0
0 1− ε 1

)
.

Since the order of the expert valuations and the bids is the same in both pro�les, an ordinal mechanism
behaves identically in all these pro�les for every ε ∈ (0, 1/2). Assume that such a mechanism selects
the middle option with probability p. �en, the approximation ratio of this mechanism is at least the
maximum between its approximation ratio for these two pro�les. Considering all pro�les for ε ∈
(0, 1/2), we get an approximation ratio of at least

sup
ε∈(0,1/2)

{
1

1− p+ 2εp
,

2(1− ε)
1− p+ 2(1− ε)p

}
= max

{
1

1− p
,

2

1 + p

}
.

�is is minimized to 3/2 for p = 1/3.
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4 Bid-independent mechanisms

In this section, we consider cardinal mechanisms, but restrict our a�ention to ones that ignore the bids
and base their decisions only on the expert’s report. It is convenient to use the expert’s view of pro�les(

1 x 0
ha `a za

)
. �en, a bid-independentmechanism can be thought of as using univariate functions

gM , fM , and ηM which indicate the probability of selecting the expert’s �rst, second, and third favorite
option when she has value x ∈ [0, 1] for the second favorite option. We drop a andM from notation
since the pro�le view and themechanismwill be clear from context. �e next lemma provides su�cient
and necessary conditions for bid-independent mechanisms with good approximation ratio.

Lemma 5. LetM be a bid-independent mechanism that uses functions g, f and η. �enM has approxi-
mation ratio at most ρ if and only if the inequalities

2g(x) + xf(x) > 2/ρ (5)
g(x) + (1 + x)f(x) > (1 + x)/ρ (6)

hold for every x ∈ [0, 1].

Proof. Consider the application ofM on the pro�le
(

1 x 0
h ` z

)
. If 1+h > x+` the optimal welfare

is 1 + h and the approximation ratio is

1 + h

(1 + h)g(x) + (x+ `)f(x) + zη(x)
6

1 + h

(1 + h)g(x) + (x+ `)f(x)
6

2

2g(x) + xf(x)
.

�e �rst inequality follows since zη(x) > 0, and the second inequality follows since the expression in
the middle is non-increasing in ` ≥ 0 and non-decreasing in h ≤ 1. �en, the �rst inequality of the
statement follows as a su�cient condition so thatM has approximation ratio at most ρ. To see why
it is also necessary, observe that the inequalities in the derivation above are tight for the pro�le with
h = 1, ` = 0, and z = 0.

If 1 + h 6 x+ ` the optimal welfare is x+ ` and the approximation ratio is

x+ `

(1 + h)g(x) + (x+ `)f(x) + zη(x)
6

x+ `

(1 + h)g(x) + (x+ `)f(x)
6

1 + x

g(x) + (1 + x)f(x)
.

�e �rst inequality follows since again zη(x) > 0, while now the second inequality follows since the
expression in the middle is non-decreasing in ` ≤ 1 and non-increasing in h ≥ 0. �en, the second
inequality of the statement follows as a su�cient condition so thatM has approximation ratio at most
ρ. To see why it is also necessary, observe that the two inequalities in the derivation above are tight
for the pro�le with h = 0, ` = 1, and z = 0.

Truthfulness of bid-independent mechanisms in terms of the agents follows trivially (since the bids
are ignored). In order to guarantee truthfulness from the expert’s side, we will use the characterization
of ECh-IC from Lemma 2 together with additional conditions that will guarantee ESw-IC. �ese are
provided by the next lemma.

Lemma 6. An ECh-IC bid-independent mechanism is truthful if and only if the functions g, f , and η it
uses satisfy g(x) > f(x′) and f(x) > η(x′) for every pair x, x′ ∈ (0, 1).

Proof. We �rst show that the �rst condition is necessary. Assume that the �rst condition is violated,
i.e., f(x1) > g(x2) for two points x1, x2 ∈ (0, 1). If x1 > x2, by the monotonicity of g (due to ECh-
IC; see Lemma 2) we have g(x1) 6 g(x2) and f(x1) > g(x1). Otherwise, by the monotonicity of
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f , we have f(x2) > f(x1) and f(x2) > g(x2). In any case, there must exist x∗ ∈ (0, 1) such that
f(x∗) > g(x∗). Now consider the swap from expert valuation pro�le (1, x∗, 0) to the pro�le (x∗, 1, 0).
�e utility of the expert in the initial true pro�le is g(x∗)+x∗f(x∗) while her utility at the new pro�le
becomes f(x∗) + x∗g(x∗), which is strictly higher.

Now, we show that the second condition is necessary. Again, assuming that the second condition
is violated, we obtain that there is a point x∗ ∈ (0, 1) such that η(x∗) > f(x∗). Now, the swap
from expert’s valuation pro�le (1, x∗, 0) to the pro�le (1, 0, x∗) increases the utility of the expert from
g(x∗) + x∗f(x∗) to g(x∗) + x∗η(x∗), which is again strictly higher.

In order to show that the condition is su�cient for ECh-IC, we need to consider �ve possible
a�empts for valuation swap by the expert.

Case 1. Consider the swap from the valuation pro�le (1, x, 0) to the pro�le (1, 0, x′). �e utility of the
expert at the new pro�le is g(x′) + xη(x′) 6 g(0) +

∫ x
0 f(t) dt = g(x) + xf(x), where the inequality

holds due to the fact that η(x′) 6 f(t), for every t ∈ [0, x]. Observe that the RHS of the derivation is
the expert’s utility at the initial true pro�le.

Case 2. Consider the swap from the valuation pro�le (1, x, 0) to the pro�le (x′, 1, 0). �e utility of the
expert at the new pro�le is f(x′) + xg(x′) 6 g(x′) + xf(x′) = g(x′) + x′f(x′) + (x − x′)f(x′) 6
g(x)+xf(x), which is her utility at the initial true pro�le. �e �rst inequality follows by the condition
g(x′) > f(x) of the lemma and the second one is due to the convexity of function g(x) + xf(x). See
also the proof of Lemma 2.

Case 3. Consider the swap from the valuation pro�le (1, x, 0) to the pro�le (x′, 0, 1). �e utility of the
expert at the new pro�le is f(x′) + xη(x′), which is at most g(x) + xf(x) due to the conditions of the
lemma.

Case 4. Consider the swap from the valuation pro�le (1, x, 0) to the pro�le (0, x′, 1). �e utility of the
expert at the new pro�le is η(x′) +xf(x′) 6 f(x) +xg(x) 6 g(x) +xf(x), which is her utility at the
initial true pro�le.

Case 5. Consider the swap from the valuation pro�le (1, x, 0) to the pro�le (0, 1, x′). �e utility of
the expert at the new pro�le is η(x′) + xg(x′) 6 f(x′) + xg(x′) and the proof proceeds as in Case 2
above.

We are now ready to propose our mechanism BIM. Let τ = −W
(
− 1

2e

)
, whereW is the Lambert

function, i.e., τ is the solution of the equation 2τ = eτ−1. Mechanism BIM is de�ned as follows:

g(x) =

{
1+τ
1+3τ , x ∈ [0, τ ]
2τ(1+x)e1−x

1+3τ , x ∈ [τ, 1]
f(x) =

{
τ

1+3τ , x ∈ [0, τ ]
1+τ−2τe1−x

1+3τ , x ∈ [τ, 1]
η(x) =

{
τ

1+3τ , x ∈ [0, τ ]
2τ(1−xe1−x)

1+3τ , x ∈ [τ, 1]

BIM is depicted in Fig. 1. All functions are constant in [0, τ ] and have (admi�edly, counter-intuitive at
�rst glance) exponential terms in [τ, 1]. Interestingly, BIM is the unique best possible solution to a set
of constraints that need to be satis�ed by all bid-independent truthful mechanisms, which are derived
in the proof of �eorem 8. Its properties are proved in the next statement.

�eorem 7. Mechanism BIM is truthful and has approximation ratio at most
1−3W(− 1

2e)
1−W(− 1

2e)
≈ 1.37657,

whereW is the Lambert function.

Proof. Tedious calculations can verify that BIM is truthful. �e function f is non-decreasing in x and
g is de�ned exactly as in Eq. (1). Hence, ECh-IC follows by Lemma 2. ESw-IC follows since f , g, and h
satisfy the conditions of Lemma 6.
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Figure 1: A pictorial view of the lo�ery used by mechanism BIM. τ is the solution of the equation
2τ = eτ−1.

Now, let ρ = 1+3τ
1+τ . We use the de�nition of BIM and Lemma 5 to show the bound on the ap-

proximation ratio. If x ∈ [0, τ ], Ineq. (5) and Ineq. (6) are clearly satis�ed since x > 0 and x 6 τ ,
respectively. If x ∈ [τ, 1], we have

2g(x) + xf(x) = 2
2τ(1 + x)e1−x

1 + 3τ
+ x

1 + τ − 2τe1−x

1 + 3τ
,

which is minimized for x = τ (recall that 2τ = eτ−1) at 2+2τ+τ2

1+3τ > 2/ρ. Hence, Ineq. (5) holds. Also,
Ineq. (6) can be easily seen to hold with equality.

We now show that the above mechanism is optimal among all bid-independent truthful mecha-
nisms. �e proof exploits the characterization of ECh-IC mechanisms from Lemma 2, the characteri-
zation of ESw-IC bid-independent mechanisms from Lemma 6, and Lemma 5.

�eorem8. �eapproximation ratio of any truthful bid-independentmechanism is at least
1−3W(− 1

2e)
1−W(− 1

2e)
≈

1.37657, whereW is the Lambert function.

Proof. LetM be a bid-independent mechanism that uses functions g, f , and h to de�ne the probability
of selecting the expert’s �rst, second, and third favorite option and has approximation ratio ρ > 1. Let
α be any value in [0, 1].

By the necessary condition Eq. (1) for ECh-IC in Lemma 2, we know that

g(x) = g(0)− xf(x) +

∫ x

0
f(t) dt. (7)

Due to the fact that f(1) + g(1) 6 1, we have

g(0) +

∫ 1

0
f(t) dt 6 1. (8)

By the necessary condition for ESw-IC in Lemma 6 and since g is non-increasing (by Lemma 2), we
also have f(x) > η(x) = 1 − f(x) − g(x) > 1 − f(x) − g(0), i.e., g(0) + 2f(x) > 1, for x ∈ (0, 1).
Integrating in the interval (0, α], we get

αg(0) + 2

∫ α

0
f(t) dt > α. (9)

Since, the mechanism is ρ-approximate, Lemma 5 yields

g(0) > 1/ρ (10)
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(by applying Ineq. (5) with x = 0) and

g(x) + (1 + x)f(x) > (1 + x)/ρ,∀x ∈ [α, 1].

Using Eq. (7), this last inequality becomes

g(0) + f(x) +

∫ x

0
f(t) dt > (1 + x)/ρ,∀x ∈ [α, 1].

Now, let λ be a continuous function with λ(x) 6 f(x) in [α, 1] such that

g(0) +

∫ α

0
f(t) dt+

∫ x

α
λ(t)dt+ λ(x) = (1 + x)/ρ.

Se�ing Λ(x) =
∫ x
α λ(t)dt (clearly, Λ is di�erentiable due to the continuity of λ in [0, 1]), we get the

di�erential equation

g(0) +

∫ α

0
f(t) dt+ Λ(x) + Λ′(x) = (1 + x)/ρ

which, given that Λ(α) = 0, has the solution

Λ(x) =
x

ρ
− g(0)−

∫ α

0
f(t) dt+

(
g(0)− α

ρ
+

∫ α

0
f(t) dt

)
exp (α− x)

for x ∈ [α, 1]. Hence,∫ 1

α
f(t) dt > Λ(1) =

1− αeα−1

ρ
−
(
1− eα−1

)
g(0)−

(
1− eα−1

) ∫ α

0
f(t) dt. (11)

Now, bymultiplying Ineq. (8), Ineq. (9), Ineq. (10), and Ineq. (11) by coe�cients 2, eα−1, (2−α)eα−1,
and 2, respectively, and then summing them, we obtain

ρ >
2− 3αeα−1 + 2eα−1

2− αeα−1
.

Picking α = −W
(
− 1

2e

)
(i.e., α satis�es eα−1 = 2α), we get that

ρ >
2− 6α2 + 4α

2− 2α2
=

1 + 3α

1 + α
=

1− 3W
(
− 1

2e

)
1−W

(
− 1

2e

) .
�is completes the proof.

5 Expert-independent mechanisms

In this section, we consider mechanisms that depend only on the bids. Now, it is convenient to use the

agents’ view of pro�les
[
hE `E nE
1 y 0

]
. �en, an expert-independent mechanism can be thought

of as using univariate functions dM , cM , and eM which indicate the probability of selecting the high-
bidder, the low-bidder, and the option � in terms of the normalized low-bid y. Again, we drop E and
M from notation. Following the same roadmap as in the previous section, the next lemma provides
su�cient and necessary conditions for expert-independent mechanisms with good approximation ra-
tio.
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Lemma 9. Let M be an expert-independent mechanism that uses functions d, c, and e with d(y) =
1− c(y) and e(y) = 0 for y ∈ [0, 1]. If

1

ρ
− 1− 1/ρ

y
6 c(y) 6

2(1− 1/ρ)

2− y
(12)

for every y ∈ [0, 1], then M has approximation ratio at most ρ. Condition (12) is necessary for every
ρ-approximate expert-independent mechanism.

Proof. Consider the application ofM on the pro�le with agents’ view
[
h ` n
1 y 0

]
. We distinguish

between two cases. If 1 + h > y + `, assuming that Condition (12) is true, the approximation ratio of
M is

1 + h

(y + `)c(y) + (1 + h)(1− c(y))
=

1
y+`
1+hc(y) + 1− c(y)

6
1

1− (1− y/2)c(y)
6 ρ.

�e �rst inequality follows since y+`
1+h > y/2 when y ∈ [0, 1], while the second one is essentially the

right inequality of Condition (12).
Otherwise, if 1 + h 6 y+ `, again assuming that Condition (12) is true, the approximation ratio of

M is

y + `

(y + `)c(y) + (1 + h)(1− c(y))
=

1

c(y) + 1+h
y+` (1− c(y))

6
1 + y

1 + yc(y)
6 ρ.

�e �rst inequality follows since 1+h
y+` > 1

1+y when y ∈ [0, 1], while the second one is now the le�
inequality of Condition (12).

To see that Condition (12) is necessary for every mechanism, �rst consider a mechanismM ′ that
uses functions d, c and e such that the function c violates the le� inequality of Condition (12), i.e.,
c(y∗) < 1

ρ−
1−1/ρ
y∗ for some y∗ ∈ [0, 1]. �en, using this inequality and the fact that d(y∗) 6 1−c(y∗),

the approximation ratio ofM ′ for the pro�le
[

0 1 0
1 y∗ 0

]
is

y∗ + 1

(y∗ + 1)c(y∗) + d(y∗)
>

1 + y∗

1 + y∗c(y∗)
> ρ.

Now, assume that c violates the right inequality in Condition (12), i.e., c(y∗) > 2(1−1/ρ)
2−y∗ for some

y∗ ∈ [0, 1]. �en, using this together with the fact that d(y∗) 6 1− c(y∗), the approximation ratio of

M ′ for the pro�le
[

1 0 0
1 y∗ 0

]
is

2

2d(y∗) + y∗c(y∗)
>

2

2− (2− y∗)c(y∗)
> ρ

as desired.

Fig. 2 shows the available space (gray area) for the de�nition of the function c(y), so that the
corresponding mechanism has an approximation ratio of at most ρ. It can be easily veri�ed that the
value ρ = 7 − 4

√
2 ≈ 1.3431 (see the right part of Fig. 2) is the minimum value for which the

LHS of Condition (12) in Lemma 9 is smaller than or equal to the RHS so that a function satisfying
Condition (12) does exist.
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Figure 2: Pictorial views of the statement of Lemma 9 for ρ = 7/5 (le�) and ρ = 7 − 4
√

2 (right).
�e gray area corresponds to the available space that allows for the de�nition of (the function c of)
expert-independent mechanisms with approximation ratio at most ρ. �e truthfulness requirements
are obtained if c is non-decreasing (for BCh-IC; see Lemma 1) and takes values not higher than 1/2
(for BSw-IC; see Lemma 10). �e blue line at the right is the c-function used by our mechanism EIM,
which has all the above properties for ρ = 7− 4

√
2.

Our aim now is to de�ne an expert-independent truthful mechanism achieving the best possible
approximation ratio of ρ = 7 − 4

√
2. Clearly, truthfulness for the expert follows trivially (since the

expert’s report is ignored). We restrict our a�ention to the design of a mechanism that never selects
option �, and thus d(y) = 1 − c(y) for every y ∈ [0, 1]. Lemma 1 and Lemma 9 guide this design
as follows. In order to be BCh-IC and ρ-approximate, our mechanism should use a non-decreasing
function c(y) in the space available by Condition (12). Still, we need to guarantee BSw-IC; the next
lemma gives us the additional su�cient (and necessary) condition.

Lemma 10. A BCh-IC expert-independent mechanism is truthful if and only if d(1) > c(1).

Proof. Consider an a�empted bid swap according to which the low-bidder increases her normalized
bid of y so that it becomes the high-bidder and the normalized bid of the other agent is y′. Essentially,

this a�empted bid swap modi�es the initial pro�le
[
h ` n
1 y 0

]
to
[
` h n
1 y′ 0

]
. �e deviating agent

corresponds to the middle column in the initial pro�le and has probability c(y) of being selected. In
the new pro�le, she corresponds to the �rst column, and has probability d(y′) of being selected. So, the
necessary and su�cient condition so that BSw-IC is guaranteed is c(y) 6 d(y′) for every y, y′ ∈ [0, 1].
Since, by Lemma 1, c and d are non-decreasing and non-increasing, respectively, this condition boils
down to d(1) > c(1).

�e case in which the high-bidder decreases her bid so that it gets a normalized value of y′ is
symmetric.

For mechanisms with d(y) = 1− c(y) for y ∈ [0, 1], the condition of Lemma 10 becomes c(1) ≤ 1/2.
We are ready to propose our mechanism EIM, which uses the following functions. For ρ = 7−4

√
2,

c(y) =

{
2(1−1/ρ)

2−y , y ∈ [0, 3−ρ2 ]
1
ρ −

1−1/ρ
y , y ∈ [3−ρ2 , 1]

and d(y) = 1− c(y) for y ∈ [0, 1].
Essentially, EIM uses the blue line in Fig. 2, which consists of the curve that upper-bounds the gray

area up to point 3−ρ
2 = 2

√
2 − 2 and the curve that lower-bounds the gray area a�er that point. �e

properties of mechanism EIM are summarized in the next statement. It should be clear though that
the statement holds for every mechanism that uses a non-decreasing function in the gray area that is
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below 1/2. Given the discussion about the optimality of ρ = 7− 4
√

2 above, all these mechanisms are
optimal within the class of expert-independent mechanisms.

�eorem 11. Mechanism EIM is truthful and has approximation ratio at most 7− 4
√

2 ≈ 1.3431. �is
ratio is optimal among all truthful expert-independent mechanisms.

6 Beyond expert-independent mechanisms

In this section, we present a template for the design of even be�er truthful mechanisms, compared to
those presented in the previous sections. �e template strengthens expert-independent mechanisms
by exploiting a single additional bit of information that allows to distinguish between pro�les that have
the same (normalized) bid values.

We denote by T the set of mechanisms that are produced according to our template. In order to

de�ne a mechanismM ∈ T , it is convenient to use the agents’ view of a pro�le as
[
h ` n
1 y 0

]
. We

partition the pro�les of D into two categories. Category T1 contains all pro�les with ` > h or with
` = h such that the tie between the expert valuations ` and h is resolved in favor of the low-bidder.
All other pro�les belong to category T2.

For each pro�le in categoryT1, mechanismM selects the low-bidderwith probability c(y, T1),which
is non-decreasing in y, and the high-bidder with probability 1− c(y, T1). For each pro�le in category
T2, mechanism M selects the low-bidder with probability 0, and the high-bidder with probability 1.
Di�erent mechanisms following our template can be de�ned using di�erent functions c(y, T1). �e
mechanisms of the template ignore neither the bids nor the expert’s report; still, we can show that they
are truthful.

Lemma 12. Every mechanismM ∈ T is truthful.

Proof. We�rst show thatM is truthful for the agents. BCh-IC follows easily by Lemma 1, since c(y, T1)
and c(y, T2) are non-decreasing in y. To show BSw-IC, notice that a bid swap a�empt from a pro�le of
category T1 creates a pro�le of category T2 and vice versa. �is involves either the high-bidder who
decreases her bid to become the low-bidder in the new pro�le, or the low-bidder who increases her bid
to become the high-bidder in the new pro�le. In both cases, the increase or decrease in the selection
probability according toM follows the increase or decrease of the deviating bid.

To show that M is truthful for the expert, �rst observe that according to the expert’s view, the
lo�ery uses constant functions f , g, and h in terms of her value for her second favorite option. Hence,
Lemma 2 implies ECh-IC. To show ESw-IC, observe again that an expert’s report swap a�empt from a
pro�le of category T1 creates a pro�le of category T2 and vice versa. �e expected utility thatM yields

to the expert in the initial pro�le
[
h ` n
1 y 0

]
is `c(y, T1)+h(1−c(y, T1)) = h+(`−h)c(y, T1) > h

if it is of category T1 and h+(`−h)c(y, T2) = h if it is of category T2. A�er the deviation, the utility
of the expert becomes `c(y, T1) + h(1− c(y, T1)) = h+ (`− h)c(y, T1) 6 h if the new pro�le is of
category T1 and h+ (`− h)c(y, T2) = h if it is of category T2. Hence, such a swap a�empt is never
pro�table for the expert.

�e next lemma is useful in proving bounds on the approximation ratio of mechanisms in T .

Lemma 13. LetM be a mechanism of T and ρ > 1 be such that the function c(y, T1) used byM satis�es

1

ρ
− 1− 1/ρ

y
6 c(y, T1) 6

1− 1/ρ

1− y
.

�en,M has approximation ratio at most ρ.
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Figure 3: Pictorial views of the statement in Lemma 13 for ρ = 5/4 (le�) and ρ = φ (right). �e
gray area in both plots corresponds to the available space for the de�nition of T mechanisms (e.g.,
mechanisms R and D which are depicted by the blue lines).

Proof. Clearly, the approximation ratio ofM in pro�les of category T2 is always 1 since themechanism
takes the optimal decision of selecting the high-bidder with probability 1.

Now, consider a pro�le
[
h ` n
1 y 0

]
of category T1, i.e., ` > h. We distinguish between two

cases. If 1 + h > y + `, then the approximation ratio ofM is

1 + h

(y + `)c(y, T1) + (1 + h)(1− c(y, T1))
=

1

1− c(y, T1) + y+`
1+hc(y, T1)

6
1

1− (1− y)c(y, T1)
6 ρ.

�e �rst inequality follows since y+`
1+h > y when y ∈ [0, 1] and ` > h > 0, while the second one is due

to the right inequality in the condition of the lemma.
Otherwise, if 1 + h 6 y + `, the approximation ratio ofM is

y + `

(y + `)c(y, T1) + (1 + h)(1− c(y, T1))
=

1

c(y, T1) + 1+h
y+` (1− c(y, T1))

6
1 + y

1 + yc(y, T1)
6 ρ.

�e �rst inequality follows since 1+h
y+` > 1

1+y when y ∈ [0, 1] and h > ` > 0; the second one is due to
the le� inequality in the condition of the lemma.

�e conditions in the statement of Lemma 13 are depicted in the le� (for ρ = 5/4) and right plot
(for ρ = φ) of Fig. 3. �e gray area represents the available space for the de�nition of (the non-
decreasing) function c(y, T1) that a mechanism of T should use on pro�les of category T1 so that its
approximation ratio is at most ρ.

�ese plots explain the de�nition of the next two mechanisms that follow our template: the ran-
domized mechanism R and the deterministic mechanism D. For each pro�le of category T1, mecha-
nisms R and D use the functions

cR(y, T1) =
4y

5
cD(y, T1) =

{
0, y ∈ [0, 1/φ)

1, y ∈ [1/φ, 1]

corresponding to the blue lines in the le� and right plots of Fig. 3, respectively; φ = 1+
√
5

2 ≈ 1.618 is
the golden ratio. �eir properties are as follows.

�eorem 14. Mechanisms R and D are 5/4- and φ-approximate truthful mechanisms, respectively.

Proof. Since R,D ∈ T , their truthfulness follows by Lemma 12. �e approximation ratios follow by
verifying that the conditions of Lemma 13 are satis�ed for ρ = 5/4 and ρ = φ, respectively.
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We remark that the condition of Lemma 13 can be proved to be not only su�cient but also necessary
for achieving a ρ-approximation (using mechanisms from T ). �en, it can be easily seen that the value
of 5/4 is the lowest value for which the condition of the lemma is feasible. Hence, mechanism R is
best possible among mechanisms that use our template. More interestingly, 5/4 turns out to be the
lower bound of any mechanism that always sells, as we prove in the next theorem. MechanismD will
be proved to be optimal among all deterministic truthful mechanisms in the next section.

�eorem 15. �e approximation ratio of any mechanism that always sells is at least 5/4.

Proof. Consider pro�les in agents’ view
[
h ` n
1 y 0

]
and let M be any truthful always-sell mech-

anism. �en, M can be thought of as using functions d(y, h, `, n), c(y, h, `, n) and e(y, h, `, n) to
assign probabilities to the high-bidder, the low-bidder and the no-sale option, respectively, such that
d(y, h, `, n) = 1− c(y, h, `, n) and e(y, h, `, n) = 0.

SinceM is truthful for the expert, the expert does not have any incentive to misreport her valua-
tions from (h, `, n) to (h′, `′, n′), for any ` > h and `′ > h′. �is means that

h · (1− c(y, h, `, n)) + ` · c(y, h, `, n) ≥ h · (1− c(y, h′, `′, n′)) + ` · c(y, h′, `′, n′)

or, equivalently, since ` > h,

c(y, h, `, n) ≥ c(y, h′, `′, n′) (13)

Similarly, the expert does not have incentive to misreport her valuations from (h′, `′, n′) to (h, `, n),
for any ` > h and `′ > h′. �is gives us that

h′ · (1− c(y, h′, `′, n′)) + `′ · c(y, h′, `′, n′) ≥ h′ · (1− c(y, h, `, n)) + `′ · c(y, h, `, n)

or, equivalently, since `′ > h′,

c(y, h′, `′, n′) ≥ c(y, h, `, n) (14)

�erefore, by Ineq. (13) and Ineq. (14), we have that c(y, h, `, n) is constant in all pro�les
[
h ` n
1 y 0

]
with ` > h.

Now, let ε ∈ (0, 1/2) and consider the following two pro�les:[
0 1 0
1 1/2 0

]
and

[
0 ε 1
1 1/2 0

]
Since ` > h in both pro�les, any truthful mechanismM that always sells the item behaves identically
in all such pro�les, for any ε ∈ (0, 1/2). Assume that such a mechanismM selects the low-bidder with
probability p (and the high-bidder with probability 1 − p). �en, the approximation ratio of M is at
least the maximum between its approximation ratio for these pro�les, i.e.,

sup
ε∈(0,1/2)

{
3
2

1− p+ 3
2p
,

1

1− p+ (ε+ 1
2)p

}
= max

{
3

2 + p
,

2

2− p

}
.

�is is minimized to 5/4 for p = 2/5.
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7 Unconditional lower bounds

In the previous sections, we presented (or informally discussed) lower bounds on the approximation
ratio of truthful mechanisms belonging to particular classes. Here, we present our most general lower
bound that holds for every truthful mechanism. �e proof exploits the ECh-IC characterization from
Lemma 2.

�eorem 16. �e approximation ratio of any truthful mechanism is at least 1.14078.

Proof. Let γ ∈ [0, 1] be such that 1 − 2γ − 4γ2 − 2γ3 = 0 and β = (1 + γ)−1, i.e., β ≈ 0.7709 and
γ ≈ 0.29716. Consider any ρ-approximate truthful mechanism and the pro�les(

1 β 0
γ 1 0

)
and

(
1 0 0
γ 1 0

)
.

Since the bids are identical in both pro�les, we can assume that the functions f and g are univariate
(depending only on the expert’s second highest valuation). Since the mechanism is ρ-approximate in
both pro�les, we have

(1 + γ)g(β) + (1 + β)f(β) >
1 + β

ρ
(15)

(1 + γ)g(0) + f(0) >
1 + γ

ρ
. (16)

By the condition of Eq. (1) in Lemma 2, g(x) = g(0)− xf(x) +
∫ x
0 f(t) dt which, due to the fact that

f is non-decreasing (again by Lemma 2), yields
∫ β
0 f(t) dt > βf(0). Hence,

g(x) > g(0)− βf(β) + βf(0). (17)

Also, clearly,

1 > g(β) + f(β). (18)

Now, multiplying Ineq. (15), Ineq. (16), Ineq. (17), and Ineq. (18) by γ
β+2βγ−γ2 ,

β−γ
β+2βγ−γ2 ,

(β−γ)(1+γ)
β+2βγ−γ2 ,

and β(1+γ)
β+2βγ−γ2 , and by summing them, we get

ρ >
β + 2βγ − γ2

β(1 + γ)
.

Substituting β and γ, we obtain that ρ > 1.14078 as desired.

Our last statement shows that mechanism D in Section 6 is best possible among all deterministic
truthful mechanisms.

�eorem 17. No truthful deterministic mechanism has approximation ratio be�er than φ.

Proof. LetM be a deterministic truthful mechanism. Consider a pro�le
(

1 x 0
h ` z

)
in expert’s view,

for some combination of values for h, `, and z. We will �rst show thatM selects the same option for
every value of x ∈ (0, 1). Indeed, assume otherwise; due to Lemma 2, f must be non-decreasing in x
and, hence, f(x1, h, `, z) = 0 and f(x2, h, `, z) = 1 for two di�erent values x1 and x2 in (0, 1) with
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x1 < x2. Let x3 ∈ (x2, 1), i.e., f(x3, h, `, z) = 1 due to monotonicity. �e condition of Eq. (1) in
Lemma 2 requires that

g(x3, h, `, z) = g(0, h, `, z)− x3 +

∫ x3

0
f(t, h, `, z) dt.

By our assumptions on f (and due to its monotonicity), we also have that

x3 − x2 6
∫ x3

0
f(t, h, `, z) dt 6 x3 − x1.

�ese last two (in)equalities imply that g(0, h, `, z) − g(x3, h, `, z) lies between x2 and x3, i.e., it is
non-integer. �is contradicts the fact thatM is deterministic.

Now let ε > 0 be negligibly small and consider the two pro�les(
1 1− ε 0
0 1/φ 1

)
and

(
1 ε/φ2 0
0 1/φ 1

)
.

IfM selects the low-bidder in both pro�les, its approximation ratio at the right one is 1
ε/φ2+1/φ

> φ−ε.
Otherwise, its approximation ratio at the le� pro�le is 1 + 1/φ − ε. In any case, the approximation
ratio is at least φ− ε, and the proof is complete.

Of course, �eorem 17 is meaningful for cardinal mechanisms. Deterministic ordinal mechanisms
can be easily seen to be at least 2-approximate.

8 Conclusion

We have presented a series of positive and negative results for a simple hybrid social choice model,
which combines elements of mechanism design with and without monetary transfers. Closing the
gap between the approximation ratio of 5/4 of the template mechanism R (see Section 6) and our
general unconditional lower bound of approximately 1.14 for any truthful mechanism (see Section 7)
is an important and de�nitely non-trivial challenge. Besides this concrete open problem, there are
many natural extensions of the model that are worth studying. For example, we have weighed equally
the contribution of the expert and the agents to the social welfare. Generalizing the de�nition of the
welfare by introducing a factor of α > 0, by which the contribution of the expert will be multiplied, is
a �rst such extension.

Another extension could be to consider a di�erent optimization objective, possibly by mixing the
welfare of the expert with the revenue that can be extracted by the agents. �e underlying mechanism
design problem now seems to be quite di�erent from the one we have studied here. For the revenue
to be (part of) a meaningful objective, one would have to restrict a�ention to individually rational
mechanisms, which guarantee that the agents obtain non-negative utility. �is is important, as oth-
erwise a truthful mechanism could ignore their bids and charge them the maximum amount. In fact,
the literature of revenue-maximization (e.g., see [Myerson, 1981]) focuses on mechanisms which are
individually rational.

It is not hard to see however that in our problem, bid-independent, individually rational mech-
anisms always extract zero revenue. It is also well-documented that revenue maximization is a less
meaningful objective in the absence of prior knowledge of the agents’ values [Hartline, 2013] and it
is commonly assumed that these values are drawn from some known distributions [Myerson, 1981,
Nisan et al., 2007]. Hence, designing e�cient truthful mechanisms for such an optimization objective
requires radically di�erent ideas, or perhaps even the migration to a Bayesian se�ing, like the one
mentioned above.
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Our model of one expert and two competing agents can be thought of as the simplest possible non-
trivial hybrid social choice scenario. �ere are many important generalizations that one could consider
for future research. Indicatively, these could include larger populations of experts and agents, more
than one assets to be transferred with combinatorial constraints governing their acquisition, or even
dynamic expert preferences that depend on the bidding information. �ese questions pose quite a few
challenges. For example, even having two experts enlarges the space of possible truthful mechanisms
signi�cantly, as now other mechanisms, known as duples and hierarchical unilaterals come into play.
Adding more agents seems more manageable, but our characterization of Lemma 2 no longer applies,
at least in its current form. �e case of more than one assets seems even more challenging, because
the se�ing on the agents’ part is no longer single-parameter, and therefore we can not use Myerson’s
characterization from Lemma 1.
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