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Abstract

The assignment of tasks to multiple resources
becomes an interesting game theoretic prob-
lem, when both the task owner and the re-
sources are strategic. In the classical, non-
strategic setting, where the states of the tasks
and resources are observable by the con-
troller, this problem is that of finding an op-
timal policy for a Markov decision process
(MDP). When the states are held by strate-
gic agents, the problem of an efficient task
allocation extends beyond that of solving an
MDP and becomes that of designing a mech-
anism. Motivated by this fact, we propose a
general mechanism which decides on an allo-
cation rule for the tasks and resources and a
payment rule to incentivize agents’ participa-
tion and truthful reports.

In contrast to related dynamic strategic con-
trol problems studied in recent literature,
the problem studied here has interdependent
values : the benefit of an allocation to the
task owner is not simply a function of the
characteristics of the task itself and the al-
location, but also of the state of the re-
sources. We introduce a dynamic extension
of Mezzetti’s two phase mechanism for inter-
dependent valuations. In this changed set-
ting, the proposed dynamic mechanism is ef-
ficient, within period ex-post incentive com-
patible, and within period ex-post individu-
ally rational.

1 Introduction

Let us consider the example of an organization hav-
ing multiple sales and production teams. The sales
teams receive project contracts, which are to be exe-
cuted by the production teams. The problem that the
management of both teams faces is that of assigning

the projects (tasks) to production teams (resources).
If the efficiency levels of the production teams and the
workloads of the projects are observable by the man-
agement (controller), this problem reduces to an MDP,
which has been well studied in the literature (Bert-
sekas, 1995; Puterman, 2005). Let us call the efficiency
levels and workloads together as states of the tasks and
resources.

However, the states are usually observed privately by
the individual teams (agents), who are rational and
intelligent. They, therefore, might strategically mis-
report to the controller to increase their net returns.
Hence, the problem changes from a completely or par-
tially observable MDP into a dynamic game among
the agents. We will consider cases where the solution
of the problem involves monetary transfer. Hence, the
task owners pay the resources to execute their tasks.
A socially efficient mechanism would demand truthful-
ness and voluntary participation of the agents in this
setting.

The reporting strategy of the agents and the decision
problem of the controller is dynamic since the state
of the system is varying with time. In addition, the
above problem has two characteristics, namely, inter-
dependent values : the task execution generates values
to the task owners that depend on the efficiencies of
the assigned resources, and exchange economy: a trade
environment where both buyers (task owners) and sell-
ers (resources) are present. An exchange economy is
also referred to as a market.

The above properties have been investigated sepa-
rately in literature on dynamic mechanism design.
Bergemann and Välimäki (2010) have proposed an
efficient mechanism called the dynamic pivot mecha-
nism, which is a generalization of the Vickrey-Clarke-
Groves (VCG) mechanism (Vickery, 1961; Clarke,
1971; Groves, 1973) in a dynamic setting, which also
serves to be truthful and efficient. Athey and Segal
(2007) consider a similar setting with an aim to find an
efficient mechanism that is budget balanced. Cavallo
et al. (2006) develop a mechanism similar to the dy-



namic pivot mechanism in a setting with agents whose
type evolution follows a Markov process. In a later
work, Cavallo et al. (2009) consider the periodically
inaccessible agents and dynamic private information
jointly. Even though these mechanisms work for an
exchange economy, they have the underlying assump-
tion of private values, i.e., the reward experienced by
an agent is a function of the allocation and her own
private observations. Mezzetti (2004, 2007), on the
other hand, explored the other facet, namely, interde-
pendent values, but in a static setting, and proposed
a truthful mechanism.
In this paper, we propose a dynamic mechanism which
combines the flavors of interdependent values with ex-
change economy that applies to the strategic resource
assignment problem. It extends the results of Mezzetti
(2004) to a dynamic setting, and serves as an efficient,
truthful mechanism, where agents receive non-negative
payoffs by participating in it. The key feature that
distinguishes our model and results from that of the
existing dynamic mechanism literature is that we ad-
dress the interdependent values and exchange econ-
omy together. We model dependency among agents
through the dependency in value functions, while the
types (private information) evolve independently. This
novel model captures the motivating applications more
aptly, though there are other ways of modeling depen-
dency, e.g., through interdependent type transitions
(Cavallo et al., 2009; Cavallo, 2008). We also provide
simulations of our mechanism and carry out an exper-
imental study to understand which set of properties
is satisfiable in this setting. We emphasize that the
assignment of tasks to strategic resources serves as a
strong motivation for this work, but the scope of the
mechanism applies to a more general setting as men-
tioned above.
The rest of the paper is organized as follows. We moti-
vate the problem and review relevant definitions from
mechanism design theory in Section 2. We introduce
the model in Section 3, and present the main results
in Section 4. In Section 5, we illustrate the properties
of our mechanism using simulations. We conclude the
paper in Section 6 with some potential future works.

2 Model and Background

The problem of dynamic assignment of tasks to re-
sources can be thought of choosing a subset from a pool
of tasks and resources, indexed by N = {0, 1, . . . , n},
available at all time steps t = 1, 2, . . .. The time-
dependent state of each resource or characteristics
(workload) of each task is denoted by θi,t ∈ Θi

for i ∈ N . We will use the shorthands θt =
(θ0,t, θ1,t, . . . , θn,t) = (θi,t, θ−i,t), where θ−i,t denotes
the state vector of all agents excluding agent i, θt ∈
Θ = ×i∈NΘi. We will refer to θt as the state and to

task owners and resources jointly as agents.
The action to be taken by the controller at t is the
allocation of resources to the tasks: at ∈ A = 2N .
The combined state θt follows a first order Markov
process which is governed by F (θt+1|at, θt).
The states of the tasks and the resources θ0, . . . , θn in-
fluence the individual valuations vi for i ∈ N , i.e. for
both task owner and resources. This interdependence
is expressed in the assumption that the valuation for i
is a function of the allocation and the complete state
vector; vi : A×Θ → R. This is in contrast to the classi-
cal independent valuations (also called private values)
case where valuations are assumed to be only based on
i’s own state; vi : A×Θi → R.
The controller aims to maximize the sum of the val-
uations of task owners and resources, summed over
an infinite horizon, geometrically discounted with fac-
tor δ ∈ (0, 1). The discount factor is the same for
controller, task owner, and resources and is a com-
mon knowledge. We will use the terms controller
and central planner interchangeably. If the controller
would have perfect information about θt’s, his objec-
tive would be to find a policy π : Θ → A that guaran-
tees an efficient allocation defined as follows.

Definition 1 (Efficient Allocation, EFF) An alloca-
tion rule π is efficient if for all t and for all state
profiles θt ,

π(θt) ∈ arg max
γ

Eγ,θt

[
∞∑

s=t

δs−t
∑

i∈N

vi(as, θs)

]

where γ = (at, at+1, . . . ) is any arbitrary sequence of
allocations.

The above problem is one of finding an optimal pol-
icy for an MDP for which polynomial time algorithms
exist (See e.g. (Ye, 2005) for a general discussion).
Strategic agents: In the strategic setting the state
θt is not observable by the controller. Instead θi,t is
private information of participant i. In the context of
mechanism design, θi,t is often referred to as the type
of agent i (Harsanyi, 1968). We will use the terms
‘state’ and ‘type’ interchangeably. Task owners and
resources are asked to report their state at the start
of each round. We will use θ̂i,t to refer to the re-

ported value of θi,t, and θ̂t as the reported vector of
all agents. With the aim to ensure truthful reports
(truthful in a sense specified more formally below),
the controller will either pay to or receive from each
agent a suitable amount of money at the end of each
round. We restrict our attention to quasi-linear utili-
ties, i.e., the agents’ utilities can be written as a sum
of value and payment. For the quasi-linear setting,
a mechanism is completely specified by the allocation
and payment rule. Each agent has a payoff for a given
outcome. Hence, the aim of the central planner is to



design assignment and payment rules that guarantee
certain desirable properties described as follows.
Let us denote π as the allocation rule and P =
{pi}i∈N the payment rule for the entire infinite hori-

zon. If the reported type profile at time t is θ̂t,
while the true type profile is θt, we denote π(θ̂t)
as the sequence of allocations (at, at+1, . . . ), at ∈
A, ∀t. Hence, a dynamic mechanism can be repre-
sented by (π,P) =: M. Given M, agent i’s ex-

pected discounted value is given by, V
M
i (θ̂t, θt) =

E
π(θ̂t),θt

[
∑∞

s=t δ
s−tvi(as, θs)], where the first argu-

ment of the value function on the left hand side de-
notes the reported types and the second denotes the
true types. Similarly, total expected payment to agent
i is given by, PM

i (θ̂t) = E
π(θ̂t),θ̂t

[
∑∞

s=t δ
s−tpi(as, θs)] .

Hence the utility of agent i in the quasi-linear setting
is given by,

U
M
i (θ̂t, θt) = V

M
i (θ̂t, θt) + P

M
i (θ̂t)

Where, the arguments of the function on the left hand
side denote the reported and true types respectively.
The notion of truthfulness is defined as follows.

Definition 2 (Within Period Ex-post Incentive Com-
patibility, EPIC) A mechanism M = (π,P) is Within
Period Ex-post Incentive Compatible if for all agents
i ∈ N , for all possible true types θt, for all reported
types θ̂i,t and for all t,

U
M
i ((θi,t, θ−i,t), θt) ≥ U

M
i ((θ̂i,t, θ−i,t), θt)

That is, truthful reporting becomes a Nash equilib-
rium. Another property, also referred to as voluntary
participation is defined as follows.

Definition 3 (Within Period Ex-post Individual Ra-
tionality, EPIR) A mechanism M = (π,P) is Within
Period Ex-post Individually Rational if for all agents
i ∈ N , for all possible true types θt and for all t,

U
M
i (θt, θt) ≥ 0

That is, truthful reporting yields non-negative ex-
pected utility. The above definitions suffice for the
results presented in this paper. For a more detailed
description of mechanism design theory and a discus-
sion of the desirable properties, see, e.g., (Shoham and
Leyton-Brown, 2010, Chap. 10), (Narahari et al., 2009,
Chap. 2).

3 An Exchange Economy Model with

Interdependent Values

We note that the problem of dynamic task allocation
to strategic resources discussed in the last section, falls
in the broader setting of a market with interdependent
values. The values of the task owners (buyers) are non-
negative, while that of the resources (sellers) are non-
positive (essentially they are costs), which constitute

the environment of an exchange economy. We follow
the definitions of the last section and slightly modify
certain notation to address this more general setting
of dynamic mechanism design.
Let at(θ̂t) ∈ A denote the allocation at time t, given

the reported types θ̂t. Though the allocation pol-
icy is given by π, we will show that the allocation
decision can be reduced to per-stage decisions due
to the Markov nature of the type evolution. Once
allocated, the agents perfectly observe their values
Vi(at(θ̂t), θt, ω), i ∈ N , where ω is a random variable
known as the state of the world. The task execution
by resources can be affected by random factors, e.g.,
power cut, machine downtime etc., which are captured
by ω ∈ Ω, assumed to be independent of the types of
agents. Hence the values of the agents also become
random variables. Let vi denote the expectation of Vi

taken over ω for all i ∈ N .
Observation: The instantaneous value can only de-
pend on the types of the agents present at that given
instant of the game. That is, if we remove a task or a
resource i from the system, its types would no longer
affect the values of the remaining tasks or resources.
This fact is crucial while calculating marginal contri-
bution of an agent, when we consider VCG payments
in the dynamic setting. We summarize the assump-
tions as follows.

Assumptions:

• The type profile, θt, evolves as a first order
Markov process. Hence, the transition from θt
to θt+1 given an allocation at is completely cap-
tured by the joint stochastic kernel F (θt+1|at, θt).

• For all t, the types θi,t are independent across
agents i ∈ N . Moreover, the type transitions are
also independent across agents, that is,

F (θt+1|at, θt) =
∏

i∈N

Fi(θi,t+1|at, θi,t)

where Fi’s are corresponding marginals. It is to
be noted that the values of the agents are in-
terdependent in this model as the value function
depends on the complete type vector, while the
types evolve independently.

• An agent deviates from truth only when her payoff
strictly increases by misreporting.

• For each agent, the value function is bounded, and
is zero if she is not allocated, i.e., ∀ i ∈ N, θt ∈ Θ,

– |vi(at, θt)| < ∞, ∀at ∈ A;
– vi({at : i /∈ at}, θt) = 0.

• The distribution of ω, given by Π, is known.

Let pi,t(θ̂t) denote the payment to agent i at time
t (negative payment to an agent means the agent is

paying). The payment vector is denoted by pt(θ̂t).



Once the controller decides the allocation and pay-
ment, each agent i experiences her payoff, denoted by
Ui(at(θ̂t), pt(θ̂t), θt, ω), and computed as the expected
discounted sum of the stage-wise utilities, where the
utility of each stage is the sum of value and payments.
The formal expression is presented in the following sec-
tion.

true types

Agents observe
true values
Agents observeAgents

report types

Agents report

values

Stage 1 Stage 2

Allocation Payment

At time t

θ0,t

θ1,t

θn,t

...
...

V0(at, θt, ω)

V1(at, θt, ω)

Vn(at, θt, ω)

... ...

θ̂0,t

θ̂1,t

θ̂n,t

... ptat

V̂0,t

V̂1,t

...

V̂n,t

Figure 1: Graphical illustration of the proposed dy-
namic mechanism.

A graphical illustration of the model is given in Fig-
ure 1, with the decision of allocation and payment split
into two stages. In the next section, we will explain
the need for such a split.

4 The Generalized Dynamic Pivot

Mechanism

Before presenting the proposed mechanism, let us look
at other possible approaches to solve the problem by
discussing a näıve attempt to decide the allocation and
the payment.
Fixed payment mechanism: A candidate approach
for the above setting is to select a set of agents and
make fixed payment to them. The allocation can be
done using the performance history of the agent. But
one can immediately notice that this fixed payment
mechanism would not be truthful. Since the payment
is fixed once an agent is selected, the agents would
report a type which would maximize their chance of
getting selected. As the allocation is based on the his-
tory of the performance, which is common knowledge,
the agents with better history would exploit the sys-
tem by misreporting their type.
The above candidate mechanism suggests that, to
achieve efficient allocation in a dynamic setting, one
needs to consider the expected future evolution of the
types of the agents, which would reflect in the allo-
cation and payment decisions. In addition, we have
interdependent values among the agents in our set-
ting. The reason the above two approaches do not
work is not an accident. Even in a static setting, if
the allocation and payment are decided simultaneously
interdependent valuations, one cannot guarantee effi-
ciency and incentive compatibility together (Jehiel and
Moldovanu, 2001). This compels us to split the deci-
sions of allocation and payment in two separate stages.
We would mimic the two-stage mechanism of Mezzetti
(2004) for each round of the dynamic setting as follows
(also see Figure 1).

4.1 Stage A: Type Reporting Stage

At round t, every agent observes her true type θi,t,
i ∈ N . The agents are asked to report their types.
They report θ̂i,t, i ∈ N , which may be different from
their true types due to the agents’ strategic nature.
At the end of this stage allocation decision, at ∈ A is
made.

4.2 Stage B: Value Reporting Stage

The allocated agents now observe their values,
Vi(at, θt, ω), i ∈ N , which is a function of the true
type profile and the state of the world. We assume
that this observation is perfect for the agents. In this
stage, the agents are asked to report their observed val-
ues. They report V̂i,t, i ∈ N . For this stage, we would
also assume that if the agents cannot strictly gain by
misreporting, they report their true observed values.
At the end of this stage, the payment pi,t(θ̂t, V̂t) is
made to the agent i, i ∈ N . Immediately following the
proof of the main result, we discuss why the standard
dynamic pivot mechanism does not ensure IC while a
two stage dynamic pivot mechanism can.

4.3 The Allocation and Payment Rule

Given the above dynamics of the game, the task of the
central planner is to design the allocation and pay-
ment rules. We note that the expected value of agent
i (expected over the state of the world) is given by,

vi(at, θt) =

∫

Ω

Vi(at, θt, ω)dΠ(ω) (1)

where Vi(at, θt, ω) is the realized value of the agent
given the realized state of the world ω. The objective
of the social planner is to maximize social welfare given
the type profile θt, which is defined as,

W (θt)

= max
πt

Eπt,θt

[
∞∑

s=t

δs−t
∑

i∈N

vi(as, θs)

]

= max
at

Eat,θt

[
∑

i∈N

vi(at, θt) + δEθt+1|at,θtW (θt+1)

]

where πt = (at, at+1, . . . ) is the sequence of actions
starting from t. We denote the maximum social wel-
fare excluding agent i by W−i(θt), which is same as
the above equation except the inner sum of the first
equality is over all agents j 6= i. Note that, due to
the infinite time horizon and the stationary transition
model, there exists a stationary policy which maxi-
mizes the social welfare, i.e., ∀ θt ∈ Θt, ∃ a∗(θt) such
that,

a∗(θt) ∈ arg max
at

Eat,θt

[∑

i∈N

vi(at, θt)

+ δEθt+1|at,θtW (θt+1)
]

(2)



In the following, we propose the generalized (two-
stage) dynamic pivot mechanism (GDPM), where we
choose the allocation to be efficient and the payment
in a manner such that it guarantees incentive compat-
ibility and individual rationality.

θi,t θ̂i,t

a∗(θ̂t)

Vi Ui

p∗i

V̂i,t

ω

θi,t+1

i = 0 : n

...

t + 1

t

p∗(θ̂t, V̂t)

i = 0 : n

Figure 2: Multi-agent influence diagram of the pro-
posed mechanism. Note how the two plates ranging
over i = 0 : n encode that the valuation of a single
agent depends on the types of all agents.

Mechanism 1 (GDPM) Given the reported type

profile θ̂t, choose the agents a∗(θ̂t) according to Equa-
tion 2. Transfer to agent i after agents report V̂t, a
payment

p∗i (θ̂t, V̂t) =




∑

j 6=i

V̂j,t



+ δE
θt+1|a∗(θ̂t),θ̂t

W−i(θt+1)

−W−i(θ̂t). (3)

The payment is similar to that of the dynamic pivot
mechanism, with the difference that the first term con-
sists of reported values. It is constructed in a way
such that the expected discounted utility of an agent
at true report becomes her marginal contribution. Due
to space limitation, we skip the detailed discussion of
the choice of such a payment, which is similar to that
in Bergemann and Välimäki (2010). The mechanism
can be graphically represented using a multi-agent in-
fluence diagram (MAID) (Koller and Milch, 2003), as
shown in the Figure 2. We summarize the dynamics
in Mechanism 1. In the following, we present the main
result of the paper.

Theorem 1 GDPM is efficient, within period ex-post
incentive compatible, and within period ex-post indi-
vidually rational.

Mechanism 1 GDPM
for all time instants t do
Stage A:
for agents i = 0, 1, . . . , n do
agent i observes θi,t;

agent i reports θ̂i,t;
end for
compute allocation a∗(θ̂t) according to Eq. 2;
state of the world ω realizes;
Stage B:
for agents i = 0, 1, . . . , n do
agent i observes Vi(a

∗(θ̂t), θt, ω);
agent i reports V̂i,t;

end for
compute payment to agent i, p∗i (θ̂t, V̂t), Eq. 3;
types evolve θt → θt+1 according to a first-order
Markov process;

end for

Proof: Clearly, given true reported types, the allo-
cation is efficient by design. To show that this mech-
anism is indeed truthful, we need to prove that it is
within period ex-post incentive compatible (EPIC). To
prove EPIC, we need to consider only unilateral devia-
tions, see Definition 2. Let us assume, all agents except
agent i report their true types. Hence, θ̂t = (θ̂i,t, θ−i,t).
So, the discounted utility to agent i at t given the re-
alized state of the world ω is,

Ui((a
∗(θ̂t), p

∗(θ̂t, V̂t)), θt, ω)

= Vi(a
∗(θ̂t), θt, ω) + p∗i (θ̂t, V̂t)

︸ ︷︷ ︸

present stage utility

+

δE
θt+1|a∗(θ̂t),θt

[W (θt+1)−W−i(θt+1)]
︸ ︷︷ ︸

discounted future marginal utility

= Vi(a
∗(θ̂t), θt, ω) +

∑

j 6=i

V̂j,t

+δE
θt+1|a∗(θ̂t),θ̂t

W−i(θt+1)−W−i(θ̂t)

+δE
θt+1|a∗(θ̂t),θt

[W (θt+1)−W−i(θt+1)] (cf. Eq. 3)

We notice that agent i’s payoff does not depend on her
value report V̂i,t. Hence, agent i has no incentive to
misreport her observed valuation, and this applies to
all agents. Therefore, by assumption (see Section 3),
agents report their values truthfully, and we get,

V̂i,t = Vi(a
∗(θ̂t), θt, ω) ∀ i ∈ N (4)

Hence,

Ui(a
∗(θ̂t), p

∗
i (θ̂t, V̂t), θt, ω)

= Vi(a
∗(θ̂t), θt, ω) +

∑

j 6=i

Vj(a
∗(θ̂t), θt, ω) +

δE
θt+1|a∗(θ̂t),θ̂t

W−i(θt+1)−W−i(θ̂t) +

δE
θt+1|a∗(θ̂t),θt

[W (θt+1)−W−i(θt+1)] (5)



Now, we note that,

E
θt+1|a∗(θ̂t),θ̂t

W−i(θt+1) = E
θt+1|a∗(θ̂t),θt

W−i(θt+1)

(6)
This is because when i is removed from the system
(while computingW−i(θt+1)), the values of none of the
other agents will depend on the type θi,t+1 (see obser-
vation in Section 3). And due to the independence of

type transitions, i’s reported type θ̂i,t can only influ-
ence θi,t+1. Hence, the reported value of agent i at t,

i.e., θ̂i,t cannot affect W−i(θt+1). Similar arguments
show that,

W−i(θ̂t) = W−i(θt) (7)

Hence, Equation 5 reduces to,

Ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt, ω)

= Vi(a
∗(θ̂t), θt, ω) +

∑

j 6=i

Vj(a
∗(θ̂t), θt, ω) +

(
(
(
(
(
(
(

(
(
((

δE
θt+1|a∗(θ̂t),θt

W−i(θt+1)−W−i(θt) +

δE
θt+1|a∗(θ̂t),θt

[W (θt+1)−
�
�
�
�
�

W−i(θt+1)]

(from Equations 6 and 7)

=
∑

i∈N

Vi(a
∗(θ̂t), θt, ω) + δE

θt+1|a∗(θ̂t),θt
W (θt+1)

−W−i(θt) (8)

The utility of agent i given by Equation 8 depends on
a specific realization of the state of the world ω. It
is clear that, this utility of agent i is indeed random.
Hence, the correct quantity to consider would be the
utility expected over the state of the world, i.e.,

ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt)

=

∫

Ω

Ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt, ω)dΠ(ω) (9)

Hence, the expected discounted utility to agent i at t
is given by (using Equations 8 and 9),

ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt)

=

∫

Ω

Ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt, ω)dΠ(ω)

=
∑

i∈N

∫

Ω

Vi(a
∗(θ̂t), θt, ω)dΠ(ω) +

δE
θt+1|a∗(θ̂t),θt

W (θt+1)−W−i(θt)

=
∑

i∈N

vi(a
∗(θ̂t), θt) + δE

θt+1|a∗(θ̂t),θt
W (θt+1)

−W−i(θt), (from Eq. 1)

≤
∑

i∈N

vi(a
∗(θt), θt) + δEθt+1|a∗(θt),θtW (θt+1)

−W−i(θt), (by definition of a∗(θt), Eq. 2)

= ui(a
∗(θt), (p

∗
i (θt, Vt)), θt),

where Vt = (Vi(a
∗(θt), θt, ω))i∈N

This proves within period ex-post IC. We notice that
in this equilibrium, i.e., the ex-post Nash equilibrium,
the utility of agent i is given by,

ui(a
∗(θt), (p

∗
i (θt, Vt)), θt)

=
∑

i∈N

vi(a
∗(θt), θt) + δEθt+1|a∗(θt),θtW (θt+1)

−W−i(θt)

= W (θt)−W−i(θt)

≥ 0

This proves within period ex-post IR.
Discussion: It is interesting to note that, if we tried
to use the dynamic pivot mechanism (DPM), (Berge-
mann and Välimäki, 2010), unmodified in this set-
ting, the true type profile θt in the summation of
Eq. 5 would have been replaced by θ̂t, since this
comes from the payment term (Eq. 3). The proof
for the DPM relies on the private value assumption
(see para 3 of Section 2) such that, when reasoning
about the valuations for the other agents j 6= i, we
have Vj(a

∗(θ̂t), θ̂i,t, θ−i,t, ω) = Vj(a
∗(θ̂t), θj,t, ω). But

in our dependent value setting, we cannot replace θ̂t
in Vj(a

∗(θ̂t), θ̂t, ω) by θt for j 6= i, and hence the proof
of IC in DPM does not work. We have to invoke the
second stage of value reporting and also use Eq. 4.
Complexity: The non-strategic version of the re-
source to task assignment problem was that of solv-
ing an MDP, whose complexity was polynomial in the
size of state-space (Ye, 2005). Interestingly, for the
proposed mechanism, the allocation and payment de-
cisions are also solutions of MDPs (Equations 2, 3),
and we need to solve |N |+ 1 of them. Hence the pro-
posed GDPM has polynomial time complexity in the
number of agents and state-space, which is the same
as that of DPM.

5 Simulation Results

In this section, we demonstrate the properties sat-
isfied by GDPM through simple illustrative experi-
ments, and compare the results with a näıve fixed pay-
ment mechanism (CONST). In addition to the already
proven properties of GDPM, we also explore two more
properties here. We call a mechanism payment consis-
tenct (PC) if the buyer pays and seller receive payment
in each round, and budget balanced (BB) if the sum of
the monetary transfers to all the agents is non-positive
(no deficit). For brevity, we choose a relatively small
example, but analyze it in detail.
Experimental Setup: Let us analyze the example of
Section 1, where we consider three agents: a project
coordinator (task owner/buyer) and two production
teams (sellers). Let us assume that the difficulty of
the task, and the efficiency of each team can take three
possible values: high (H), medium (M), and low (L),



which are private information (types) of the agents. To
define value functions, we associate a real number to
each of these types, given by 1 (high), 0.75 (medium),
and 0.5 (low). Let us call the task owner agent 0 and
the two production teams agents 1 and 2. Denote the
types of the agents at time t by θ0,t, θ1,t, and θ2,t
respectively. We consider the following value structure
(the vi’s, expected over the state of the world)

v0(at, θt) =




k1
θ0,t

∑

i∈at,i6=0

θi,t − k2



10∈at
;

vj(at, θt) = −k3θ
2
j,t1j∈at

, j = 1, 2; ki > 0, i = 1, 2, 3.

The value of the center is directly proportional to the
sum total efficiency of the selected employees and in-
versely proportional to the difficulty of the task. For
each production team, the value is negative (repre-
senting cost). It is proportional to the square of the
efficiency level, representing a law of diminishing re-
turns. Though the results in this paper do not place
any restriction on the value structure, we have chosen
a form that is consistent with the example. Note that
the value of the center depends on the types of all the
agents, giving rise to interdependent values. Also, be-
cause of the presence of both buyers and sellers, the
market setting here is that of an exchange economy.
Type transitions are independent and follow a first or-
der Markov chain. We choose a transition probability
matrix that reflects that efficiency is likely to be re-
duced after a high workload round, improved after a
low workload round (e.g. when a production team is
not assigned).
A Näıve Mechanism (CONST): We consider an-
other mechanism, where the allocation decision is the
same as that of GDPM, that is, given by Equation 2
but the payment is a fixed constant p if the team is
selected, and the task owner is charged an amount p
times the number of teams selected. This mechanism
satisfies, by construction, PC and BB properties. We
call this mechanism CONST.
The experimental results for an infinite horizon with
discount factor δ = 0.7 are summarized in Figures 3, 4,
and 5. There are 3 agents each with 3 possible types:
the 33 = 27 possible type profiles are represented along
the x-axis of the plots. The ordering is as represented
in the bottom plot of Figure 3. This plot also shows the
(stationary) allocation rule assuming truthful reports:
a ◦ denotes the respective agent would be selected, a
× it would not.
The top plot in Figure 3 shows the utility (defined in
Eq. 9) to the task owner. The middle plot the utility
to production team 1 (note that the production teams
are symmetric, so we need to study only one). Since we
are interested in ex-post equilibriums, we show utilities
in the setting where all other agents report truthfully,
and consider the impact of misreporting by the agent
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Figure 3: Utility of task owner and production team
1 under GDPM as function of true type profiles. The
ordering of the 33 = 27 type profiles is represented in
the bottom plot.
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Figure 4: Utility of task owner and team 1 under
CONST as function of true type profiles (same order
as in Fig 3.

under study. Circles represent true reports, plus signs
denote the utilities from a misreport. We see in Fig-
ure 3 that indeed, as it should by the ex-post IR and IC
results from Section 4, utilities for truthful reports lie
at or above the utility for misreports and are positive.
Figure 4, which shows the analogue plots of Figure 3
for CONST, show that the näıve method is not ex-post
IC (for both task owner and production teams there
are misreports that yield higher utility than a truthful
report).
Figure 5 investigates the other two properties, PC and
BB, for GDPM. We observe that neither are satisfied
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Figure 5: Payment consistency and budget properties
of GDPM. The x-axis follows same true profile order
as in Fig 3

EFF EPIC EPIR PC BB
GDPM X X X × ×
CONST × × × X X

Table 1: Simulation summary

for GDPM. We summarize the results in Table 5. Not
surprisingly, GDPM satisfies three very desirable prop-
erties. However, there are a few cases where it ceases
to satisfy PC and BB. On the other hand, CONST,
which satisfies the last two properties by construction,
fails to satisfy the others. It seems that satisfying all of
these properties together may be impossible in a gen-
eral dependent valued exchange economy, a result sim-
ilar to the Myerson-Satterthwaite theorem. However,
it is promising to derive bounds on payment inconsis-
tency and budget deficit for a truthful mechanism such
as GDPM, which we leave as potential future work.

6 Conclusions and Future Work

In this paper, we have formulated the dynamic re-
source to task allocation problem as a dynamic mech-
anism design problem and analyzed its characteristics.
Our contributions are as follows.

• We have proposed a dynamic mechanism, that is
efficient, truthful and individually rational in a
dependent-valued exchange economy.

• The mechanism comes at the similar computa-
tional cost as that of its non-strategic counterpart.

• We have illustrated and explored the properties
exhibited by our mechanism through simulations,
and observed that the proposed mechanism does
not satisfy EFF, EPIC, EPIR, PC, and BB at
the same time. A precise characterization of the
(im)possibilities for the model we studied would
be desirable.

Other directions for future work would be to design
mechanisms having additional desirable properties in
this setting. If the impossibility result is true, then
the bounds on the payment inconsistency and budget
imbalance need to be explored. We can weaken the no-
tion of truthfulness to get a better handle on the other
properties. In contrast to the interdependent values,
the case of dependent types and type transitions are
also interesting models of further study.
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