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Participatory budgeting enables the allocation of public funds by collecting and aggregating individual pref-

erences; it has already had a sizable real-world impact. But making the most of this new paradigm requires a

rethinking of some of the basics of computational social choice, including the very way in which individuals

express their preferences. We analytically compare four preference elicitation methods — knapsack votes,

rankings by value or value for money, and threshold approval votes — through the lens of implicit utilitarian

voting, and find that threshold approval votes are qualitatively superior. This conclusion is supported by

experiments using data from real participatory budgeting elections.

1. Introduction

A central societal question is how to consolidate diverse preferences and opinions into reasonable,

collective decisions. Classical voting theory takes an axiomatic approach which identifies desirable

properties that the aggregation method should satisfy, and studies the (non-)existence and structure

of such rules. A celebrated example of this is Arrow’s impossibility result (Arrow 1951). By contrast,

the field of computational social choice (Brandt et al. 2016) typically attempts to identify an

appealing objective function and design aggregation rules to optimize this objective.

One of the best-studied problems in computational social choice deals with aggregating individual

preferences over alternatives — expressed as rankings — into a collective choice of a subset of alter-

natives (Procaccia et al. 2012, Skowron et al. 2015, Caragiannis et al. 2016). Nascent social choice

applications, though, have given rise to the harder, richer problem of budgeted social choice (Lu

and Boutilier 2011), where alternatives have associated costs, and the selected subset is subject to

a budget constraint.

* This is an extended version of the paper ’Preference Elicitation for Participatory Budgeting’ which appeared in the

proceedings of the 31st Conference of the Association for the Advancement of Artificial Intelligence (AAAI 2017)

(Benadè et al. 2017). This paper contains several new results, specifically, we study the distortion of deterministic

aggregation rules in addition to randomized ones, and propose algorithms for the computation of these rules which

have not appeared in print elsewhere.
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Our interest in budgeted social choice stems from the striking real-world impact of the participa-

tory budgeting paradigm (Cabannes 2004), which allows local governments to allocate public funds

by eliciting and aggregating the preferences of residents over potential projects. Indeed, in just a

few years, the Participatory Budgeting Project (http://www.participatorybudgeting.org) has

helped allocate more than $170 million dollars of public money for more than 500 local projects,

primarily in the US and Canada (including New York City, Chicago, Boston, and San Francisco).

Paraticipatory budgeting has also attracted attention globally. A 2007 study by the World Bank

(Shah 2007) reports instances of participatory budgeting in locations as diverse as Guatemala,

Peru, Romania and South Africa. In Europe, the push for participatory budgeting is arguably led

by Madrid and Paris: both cities have spent more than 100 million Euro on participatory budgets

in 2017 (Legendre et al. 2017, Gutiérrez 2017). Notably, a participatory budgeting application is

also included in the Decide Madrid open-source tool for civic engagement, providing a framework

to simplify the hosting and management of participatory budgeting elections around the world.

In the first formal analysis of this paradigm, Goel et al. (2016) — who have facilitated

several participatory budgeting elections as part of the Stanford Crowdsourced Democracy

Team (http://voxpopuli.stanford.edu) — propose and evaluate two participatory budgeting

approaches. In the first approach, the input format — the way in which each voter’s preferences are

elicited — is knapsack votes: Each voter reports his individual solution to the knapsack problem,

that is, the set of projects that maximizes his overall value (assuming an additive valuation func-

tion), subject to the budget constraint. The second component of the approach is the aggregation

rule; in this case, each voter is seen as approving all the projects in his knapsack, and then projects

are ordered by the number of approval votes and greedily selected for execution, until the budget

runs out. The second approach uses value-for-money comparisons as input format — it asks voters

to compare pairs of projects by the ratio between value and cost. These comparisons are aggregated

using variants of classic voting rules, including the Borda count rule and the Kemeny rule.

In a sense, Goel et al. (2016) take a bottom-up approach: They define novel, intuitive input

formats that encourage voters to take cost — not just value — into account, and justify them

after the fact. By contrast, we wish to take a top-down approach, by specifying an overarching

optimization goal, and using it to compare different methods for participatory budgeting.

1.1. Our Approach and Results

Following Goel et al. (2016), we assume that voters have additive utility functions and vote over

a set of alternatives, each with a known cost. Our goal is to choose a subset of alternatives which

maximize (utilitarian) social welfare subject to a budget constraint.

This reduces to a knapsack problem when we have access to the utility functions; the problem

is challenging precisely because we do not. Rather, we have access to votes, in a certain input
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format, which are consistent with the utility functions. This goal — maximizing social welfare

based on votes that serve as proxies for latent utility functions — has been studied for more than

a decade (Procaccia and Rosenschein 2006, Caragiannis and Procaccia 2011, Boutilier et al. 2015,

Anshelevich et al. 2015, Anshelevich and Sekar 2016, Anshelevich and Postl 2016); it has recently

been termed implicit utilitarian voting (Caragiannis et al. 2016).

Absent complete information about the utility functions, clearly social welfare cannot be perfectly

maximized. Procaccia and Rosenschein (2006) introduced the notion of distortion to quantify how

far a given aggregation rule is from achieving this goal. Roughly speaking, given a vote profile (a

set of n votes) and an outcome, the distortion is the worst-case ratio between the social welfare of

the optimal outcome, and the social welfare of the given outcome, where the worst case is taken

with respect to all utility profiles that are consistent with the given votes.

Previous work on implicit utilitarian voting assumes that each voter expresses his preferences

by ranking the alternatives in order of decreasing utility. By contrast, the main insight underlying

our work is that

... the implicit utilitarian voting framework allows us to decouple the input format and aggre-

gation rule, thereby enabling an analytical comparison of different input formats in terms of

their potential for providing good solutions to the participatory budgeting problem.

This decoupling is achieved by associating each input format with the distortion of the optimal

(randomized) aggregation rule, that is, the rule that minimizes distortion on every vote profile.

Intuitively, the distortion associated with an input format measures how useful the information

contained in the votes is for achieving social welfare maximization (lower distortion is better).

In §3, we apply this approach to compare four input formats. The first is knapsack votes, which

(disappointingly) has distortion linear in the number of alternatives, the same distortion that

one can achieve in the complete absence of information. Next, we analyze two closely related

input formats: rankings by value, and rankings by value for money, which ask voters to rank the

alternatives by their value and by the ratio of their value and cost, respectively. We find that for

both of these input formats the distortion grows no faster than the square root of the number

of alternatives, which matches a lower bound up to logarithmic factors. Finally, we examine a

novel input format, which we call threshold approval votes: each voter is asked to approve each

alternative whose value for him is above a threshold that we choose. We find tight bounds showing

that the distortion of threshold approval votes is essentially logarithmic in the number of items. To

summarize, our theoretical results show striking separations between different input formats, with

threshold approval votes coming out well on top.

It is worth noting that these results may also be interpreted as approximation ratios to the

optimal solution of the classical knapsack problem, where we are given only partial information
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about voter utilities (a vote profile, in some format) and an adversary selects both the vote profile

and a utility profile consistent with the votes, which is used to evaluate our performance.

While our theoretical results in §3 bound the distortion, i.e., the worst-case ratio of the optimal

social welfare to the social welfare achieved over all instances, it may be possible to provide much

stronger performance guarantees on any specific instance. In §4, we design algorithms to compute

the distortion-minimizing subset of alternatives (when considering deterministic aggregation rules),

and distribution over subsets of alternatives (when considering randomized aggregation rules) for

a specific instance. We observe that the running times of these distortion-minimizing rules scale

gracefully to practical sizes.

In §5 we use these algorithms to compare different approaches to participatory budgeting using

the average-case ratio of the optimal social welfare, and the social welfare achieved by our aggrega-

tion rules. Specifically, we experimentally evaluate approaches that use the input formats we study

in conjunction with their respective optimal aggregation rules, which minimize the distortion on

each profile, and compare them to two approaches currently employed in practice. (Note that these

rules are not guaranteed to achieve the optimal performance in our experiments as we measure

performance using the average-case ratio of the optimal to the achieved social welfare rather than

the (worst-case) distortion. Nonetheless, such rules perform extremely well.) We use data from two

real-world participatory budgeting elections held in Boston in 2015 and 2016. The experiments

indicate that the use of aggregation rules that minimize distortion on every input profile signif-

icantly outperforms the currently deployed approaches, and among the input formats we study,

threshold approval votes remain superior, even in practice.

1.2. Related Work

Let us first describe the theoretical results of Goel et al. (2016) in slightly greater detail. Most

relevant to our work is a theorem that asserts that knapsack voting (i.e., knapsack votes as the

input format, coupled with greedy approval-based aggregation) actually maximizes social welfare.

However, the result strongly relies on their overlap utility model, where the utility of a voter for a

subset of alternatives is (roughly speaking) the size of the intersection between this subset and his

own knapsack vote. In a sense, the viewpoint underlying this model is the opposite of ours, as a

voter’s utility is derived from his vote, instead of the other way around. One criticism of this model

is that even if certain alternatives do not fit into a voter’s individual knapsack solution due to the

budget constraint, the voter could (and usually will) have some utility for them. Goel et al. (2016)

also provide strategyproofness results for knapsack voting, which similarly rely on the overlap

utility model. Finally, they interpret their methods as maximum likelihood estimators (Young 1988,

Conitzer and Sandholm 2005) under certain noise models.
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As our work applies the implicit utilitarian voting approach (Boutilier et al. 2015, Caragiannis

et al. 2016) to a problem in the budgeted social choice framework (Lu and Boutilier 2011), it is

naturally related to both lines of work. Lu and Boutilier (2011) introduce the budgeted social

choice framework, in which the goal is to collectively select a set of alternatives subject to a budget

constraint. Their framework generalizes the participatory budgeting problem studied herein as it

allows the cost of an alternative to also depend on the number of voters who derive utility from the

alternative. However, their results are incomparable to ours because they assume that every voter’s

utility for an alternative is determined solely by the rank of the alternative in the voter’s preference

order — specifically, that the utilities of all voters follow a common underlying positional scoring

rule — which is a common assumption in the literature on resource allocation (Bouveret and Lang

2011, Baumeister et al. 2017). This makes the elicitation problem trivial because eliciting ordinal

preferences (i.e., rankings by value) is assumed to accurately reveal the underlying cardinal utilities.

By contrast, we do not impose such a restriction on the utilities, and compare the rankings-by-value

input format with three other input formats.

Previous work on implicit utilitarian voting focuses exclusively on the rankings-by-value input

format. Boutilier et al. (2015) study the problem of selecting a single winning alternative, and

provide an upper and lower bounds on the distortion achieved by the optimal aggregation rule.

Their setting is a special case of the participatory budgeting problem where the cost of each

alternative equals the entire budget. Consequently, their lower bound applies to our more general

setting, and our upper bound for the rankings-by-value input format generalizes theirs (up to a

logarithmic factor). Caragiannis et al. (2016) extend the results of Boutilier et al. (2015) to the

case where a subset of alternatives of a given size k is to be selected (only for the rankings-by-

value input format); this is again a special case of the participatory budgeting problem where

the cost of each alternative is B/k. However, our results are incomparable to theirs because we

assume additive utility functions — following previous work on participatory budgeting (Goel et al.

2016) — whereas Caragiannis et al. assume that a voter’s utility for a subset of alternatives is his

maximum utility for any alternative in the subset.

The core idea behind implicit utilitarian voting — approximating utilitarian social welfare given

ordinal information — has also been studied in mechanism design. Filos-Ratsikas et al. (2014)

present algorithms for finding matchings in weighted graphs given ordinal comparisons among the

edges by their weight; Krysta et al. (2014) apply this notion to the house allocation problem; and,

Chakrabarty and Swamy (2014) study this notion in a general mechanism design setting, but with

the restriction borrowed from Lu and Boutilier (2011) that the utilities of all agents are determined

by a common positional scoring rule.
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A line of research on resource allocation focuses on maximizing other forms of welfare such as the

egalitarian welfare or the Nash welfare (see, e.g., Moulin 2003). Maximizing the Nash welfare has

the benefit that it is invariant to scaling an agent’s utility function, and thus does not require nor-

malizing the utilities. In addition, it is known to satisfy non-trivial fairness guarantees in domains

that are similar to or generalize participatory budgeting (Conitzer et al. 2017, Fain et al. 2018).

It remains to be seen whether maximizing the Nash welfare subject to votes that only partially

reveal the underlying utilities can preserve such guarantees.

2. The Model

Let [k] = {1, . . . , k} denote the set of k smallest positive integers. Let N = [n] be the set of voters,

and A be the set of m alternatives. The cost of alternative a is denoted ca, and the budget B is

normalized to 1. For S ⊆A, let c(S) =
∑

a∈S ca. Define Fc = {S ⊆A : c(S)6 1 ∧ c(T )> 1, ∀S (

T ⊆A} as the inclusion-maximal budget-feasible subsets of A.

We assume that each voter has a utility function vi : A→ R+ ∪ {0}, where vi(a) is the utility

that voter i has for alternative a, and that these utilities are additive, i.e., the utility of voter i for

a set S ⊆A is defined as vi(S) =
∑

a∈S vi(a). Finally, to ensure fairness among voters, we make the

standard assumption (Caragiannis and Procaccia 2011, Boutilier et al. 2015) that vi(A) = 1 for all

voters i∈N . We call the vector ~v = {v1, . . . , vn} of voter utility functions the utility profile. Given

the utility profile, the (utilitarian) social welfare of an alternative a ∈ A is defined as sw(a,~v) =∑
i∈N vi(a); for a set S ⊆A, let sw(S,~v) =

∑
a∈S sw(a,~v).

The utility function of a voter i is only accessible through his vote ρi, which is induced by vi.

The vector ~ρ = {ρ1, . . . , ρn} is called the input profile. Let ~v B ~ρ denote that utility profile ~v is

consistent with input profile ~ρ. We study four specific formats for input votes. Below, we describe

each input format along with a sample question that may be asked to the voters to elicit votes in

that format. The voters can be induced to think of their utilities for the different alternatives (i.e.,

projects) in a normalized fashion by asking them to (mentally) divide a constant sum of points —

say, 1000 points — among the alternatives based on how much they like each alternative.

• The knapsack vote κi ⊆A of voter i ∈N represents a feasible subset of alternatives with the

highest value for the voter. We have viBκi if and only if c(κi)6 1 and vi(κi)> vi(S) for all S ∈Fc.

If the total budget is $100,000, the voters may be asked: “Select the best set of projects according

to you subject to a total budget of $100,000.”

• The rankings-by-value and the rankings-by-value-for-money input formats ask voter i ∈N to

rank the alternatives by decreasing value for him, and by decreasing ratio of value for him to

cost, respectively. Formally, let L = L(A) denote the set of rankings over the alternatives. For a

ranking σ ∈ L, let σ(a) denote the position of alternative a in σ, and a�σ b denote σ(a)< σ(b),
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i.e., that a is preferred to b under σ. Then, we say that utility function vi is consistent with the

ranking by value (resp. value for money) of voter i ∈ N , denoted σi, if and only if vi(a) > vi(b)

(resp. vi(a)/ca > vi(b)/cb) for all a�σi b. To elicit such votes, the voters may be asked: “If you had

to divide 1000 points among the projects based on how much you like them, rank the projects in

the decreasing order of the number of points they would receive (divided by the cost).”

• For a threshold t, the threshold approval vote τi of voter i∈N consists of the set of alternatives

whose value for him is at least t, i.e., viB τi if and only if τi = {a∈A : vi(a)> t}. To elicit threshold

approval votes with a threshold t = 1/10, the voters may be asked: “If you had to divide 1000

points among the projects based on how much you like them, select all the projects that would

receive at least 100 points.”

In our setting, a (randomized) aggregation rule f for an input format maps each input profile ~ρ

in that format to a distribution over Fc. The rule is deterministic if it returns a particular set in

Fc with probability 1.

In the implicit utilitarianism framework, the ultimate goal is to maximize the (utilitarian) social

welfare. Procaccia and Rosenschein (2006) use the notion of distortion to quantify how far an

aggregation rule f is from achieving this goal. The distortion of f on a vote profile ~ρ is given by

dist(f, ~ρ) = sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(f(~ρ),~v)]
.

The (overall) distortion of a rule f is given by dist(f) = max~ρ dist(f, ~ρ). The optimal (random-

ized) aggregation rule f∗, which we term the distortion-minimizing aggregation rule, selects the

distribution minimizing distortion on each input profile individually, that is,

f∗(~ρ) = arg min
p∈∆(Fc)

sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(p,~v)]
,

where ∆(Fc) is the set of distributions over Fc. Needless to say, f∗ achieves the best possible overall

distortion. Similarly, the deterministic distortion-minimizing aggregation rule f∗det is given by

f∗det(~ρ) = arg min
S∈Fc

sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

sw(S,~v)
.

Finally, we say that the distortion associated with an input format (i.e., elicitation method) is

the overall distortion of the (randomized) distortion-minimizing aggregation rule for that format;

this, in a sense, quantifies the effectiveness of the input format in achieving social welfare maxi-

mization. In a setting where deterministic rules must be used, we say that the distortion associated

with deterministic aggregation of votes in an input format is the overall distortion of the deter-

ministic distortion-minimizing aggregation rule for that format. Observe that we always mention

deterministic aggregation explicitly, and the “distortion associated with an input format” allows

randomized aggregation by default.
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3. Theoretical Results

In §3.1, we present theoretical results for the distortion associated with different input formats when

no constraints are imposed on the aggregation rule, i.e., when randomized aggregation rules are

allowed. Subsequently, in §3.2, we study the distortion associated with deterministic aggregation

under these input formats.

3.1. Randomized Aggregation Rules

We begin by making a simple observation that holds for (randomized) aggregation of votes in any

input format.

Observation 1. The distortion associated with any input format is at most m.

Proof of Observation 1. Consider the rule that selects a single alternative uniformly at random;

this is clearly budget-feasible. Due to the normalization of utility functions, the expected welfare

achieved by this rule is (1/m) ·
∑

i∈N
∑

a∈A vi(a) = n/m. On the other hand, the maximum welfare

that any subset of alternatives can achieve is at most n. Hence, the distortion of this rule, which

does not require any input, is at most m. �

3.1.1. Knapsack Votes. We now present our analysis for knapsack votes — an input format

advocated by Goel et al. (2016).

Theorem 2. For n>m, the distortion associated with knapsack votes is Ω(m).

Proof of Theorem 2. Consider the case where every alternative has cost 1 (i.e., equal to the

budget). Consider the input profile ~κ, in which voters are partitioned into m subsets {Na}a∈A of

roughly equal size; specifically, let na = |Na| and enforce bn/mc 6 na 6 dn/me for all a ∈ A. For

every a∈A and i∈Na, let κi = {a}.
Consider a randomized aggregation rule f . There must exist an alternative a∗ ∈ A such that

Pr[f(~κ) = {a∗}] 6 1/m. Now, construct a utility profile ~v such that i) for all i ∈ Na∗ , we have

vi(a
∗) = 1, and vi(a) = 0 for a ∈A \ {a∗}; and ii) for all a ∈A \ {a∗} and i ∈Na, we have vi(a) =

vi(a
∗) = 1/2, and vi(b) = 0 for b∈A \ {a,a∗}.

Note that ~v is consistent with the input profile ~κ, i.e., ~vB~κ. Moreover, it holds that sw(a∗,~v)>

n/2, whereas sw(a,~v)6 na 6 n/m+ 1 for a∈A \ {a∗}. It follows that

dist(f)> dist(f,~κ)>
n/2

1
m
·n+ m−1

m
· ( n
m

+ 1)
>
m

6
,

as desired. �

In light of Observation 1, this result indicates that the distortion associated with knapsack

votes is asymptotically indistinguishable from the distortion one can achieve with absolutely no

information about voter preferences, suggesting that knapsack votes may not be an appropriate

input format if the goal is to maximize social welfare. Our aim now is to find input formats that

achieve better results when viewed through the implicit utilitarianism lens.
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3.1.2. Rankings by Value and by Value for Money. Goel et al. (2016) also advocate

the use of comparisons between alternatives based on value for money, which, like knapsack votes,

encourage voters to consider the trade-off between value and cost. We study rankings by value

for money as an input format; observe that such rankings convey more information than specific

pairwise comparisons.

In addition, we also study rankings by value, which are prevalent in the existing literature

on implicit utilitarian voting (Procaccia and Rosenschein 2006, Caragiannis and Procaccia 2011,

Boutilier et al. 2015, Anshelevich et al. 2015, Anshelevich and Sekar 2016, Anshelevich and Postl

2016). Rankings by value convey more information than k-approval votes, in which each voter

submits the set of top k alternatives by their value — this is the input format of choice for most

real-world participatory budgeting elections (Goel et al. 2016).

Boutilier et al. (2015) prove a lower bound of Ω(
√
m) on distortion in the special case of our

setting where all alternatives have cost 1, the input format is rankings by value, and n >
√
m.

This result carries over to our more general setting, not only with rankings by value, but also with

rankings by value for money, as both input formats coincide in case of equal costs. Our goal is to

establish an almost matching upper bound.

We start from a mechanism of Boutilier et al. (2015) that has distortion O(
√
m logm) in their

setting. It carefully balances between high-value and low-value alternatives (where value is approx-

imately inferred from the positions of the alternatives in the input rankings). In our more general

participatory budgeting problem, it is crucial to also take into account the costs, and find the

perfect balance between selecting many low-cost alternatives and fewer high-cost ones. We modify

the mechanism of Boutilier et al. precisely to achieve this goal. Specifically, we partition the alter-

natives into O(logm) buckets based on their costs, and differentiate between alternatives within a

bucket based on their (inferred) value. Our mechanism for rankings by value for money requires

more careful treatment as values are obfuscated in value-for-money comparisons.

At first glance our setting seems much more difficult, distortion-wise, than the simple setting

of Boutilier et al. (2015). But ultimately we obtain only a slightly weaker upper bound on the

distortion associated with both rankings by value and by value for money. In other words, to our

surprise, incorporating costs and a budget constraint comes at almost no cost (no pun intended)

to social welfare maximization.

Theorem 3. The distortion associated with rankings by value and rankings by value for money

is O(
√
m logm).

Proof of Theorem 3. We first present the proof for rankings by value for money as it is trickier,

and later describe how an almost identical proof works for rankings by value.
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Let us begin by introducing additional notation. For a ranking σ and an alternative a ∈A, let

σ(a) denote the position of a in σ. For a preference profile ~σ with n votes, let the harmonic score

of a in ~σ be defined as sc(a,~σ) =
∑n

j=1 1/σj(a). Finally, given a set of alternatives S ⊆A, let σ|S
(resp. ~σ|S) denote the ranking (resp. preference profile) obtained by restricting σ (resp. ~σ) to the

alternatives in S.

For ease of exposition assume m is a power of 2. Let ~σ denote the input profile consisting of

voter preferences in the form of rankings by value for money. Let ~v denote the underlying utility

profile consistent with ~σ. Let S∗ = arg maxS∈Fc sw(S,~v) be the budget-feasible set of alternatives

maximizing the social welfare.

Define `0 = 0 and u0 = 1/m. For i ∈ [logm], define `i = 2i−1/m and ui = 2i/m. Let us partition

the alternatives into logm+ 1 buckets based on their costs: S0 = {a∈A : ca 6 u0} and Si = {a∈A :

`i < ca 6 ui} for i∈ [logm]. Note that for i∈ {0}∪ [logm], selecting at most 1/ui alternatives from

Si is guaranteed to be budget-feasible.

Next, let us further partition the buckets into two parts: for i ∈ {0} ∪ [logm], let S+
i consist

of the
√
m · (1/ui) alternatives from Si with the largest harmonic scores in the reduced profile

~σ|Si , and S−i = Si \ S+
i . If |Si|6

√
m · (1/ui), we let S+

i = Si and S−i = ∅. Note that S+
0 = S0. Let

S+ =∪logm
i=0 S+

i and S− =A \S+.

We are now ready to define our randomized aggregation rule, which randomizes over two separate

mechanisms.

• Mechanism A: Select a bucket Si uniformly at random, and select a (1/ui)-size subset of S+
i

uniformly at random.

• Mechanism B: Select a single alternative uniformly at random.

Our aggregation rule executes each mechanism with an equal probability 1/2. We now show that

this rule achieves distortion that is O(
√
m logm).

First, note that mechanism A selects each bucket Si with probability 1/(logm+ 1), and when

Si is selected, it selects each alternative in S+
i with probability at least 1/

√
m. (This is because

the mechanism selects 1/ui alternatives at random from S+
i , which has at most

√
m · (1/ui) alter-

natives.) Hence, the mechanism selects each alternative in S+ (and therefore, each alternative in

S∗ ∩S+) with probability at least 1/(
√
m(logm+ 1)). In other words, the expected social welfare

achieved under mechanism A is O(
√
m logm) approximation of sw(S∗ ∩S+,~v).

Finally, to complete the proof, we show that the expected welfare achieved under mechanism B

is an O(
√
m logm) approximation of sw(S∗∩S−,~v). Let us first bound sw(S∗∩S−,~v). Recall that

S−0 = ∅. Hence,

sw(S∗ ∩S−,~v) =

logm∑
i=1

sw(S∗ ∩S−i ,~v).
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Fix i∈ [logm] and a∈ S−i . One can easily check that∑
b∈Si

sc(b,~σ|Si) = n ·H|Si| 6 n ·Hm,

where Hk is the kth harmonic number. Because S+
i consists of the

√
m/ui alternatives in Si with

the largest harmonic scores, we have

sc(a,~σ|Si)6
n ·Hm√
m · (1/ui)

=
n · (1 + logm)√

m ·m/2i
. (1)

Next, we connect this bound on the harmonic score of a to a bound on its social welfare. For

simplicity, let us denote ~γ , ~σ|Si . Due to our definition of the partitions, we have

ca 6 2 · cb,∀b∈ Si. (2)

Further, fix a voter j ∈ [n]. For each alternative b such that b �γj a, we also have vj(b)/cb >

vj(a)/ca. Substituting Equation (2), we get

vj(a)6 2vj(b),∀j ∈ [n], b∈ Si s.t. b�γj a. (3)

Taking a sum over all b∈ Si with b�γj a, and using the fact that the values of each voter j sum to

1, we get vj(a)6 2/γj(a) for j ∈ [n], and taking a further sum over j ∈ [n], we get

sw(a,~v)6 2 · sc(a,~σ|Si). (4)

Combining this with Equation (1), we get

sw(a,~v)6
2 ·n · (1 + logm)√

m ·m/2i
,∀a∈ S−i .

Note that S∗ can contain at most 2/ui =m/2i−1 alternatives from Si while respecting the budget

constraint. Hence,

sw(S∗ ∩S−,~v) =

logm∑
i=1

sw(S∗ ∩S−i ,~v)6
(m/2i−1) · 2 ·n · (1 + logm)√

m ·m/2i
= 4 ·n · (1 + logm)/

√
m. (5)

Because the utilities sum to 1 for each voter, the expected social welfare achieved under mech-

anism B is (1/m) ·
∑

i∈N
∑

a∈A vi(a) = n/m, which is an O(
√
m logm) approximation of sw(S∗ ∩

S−,~v) due to Equation (5).

This completes the proof of O(
√
m logm) distortion associated with rankings by value for money.

The proof for rankings by value is almost identical. In fact, one can make two simplifications.

First, the factor of 2 from Equation (3), and therefore from Equation (4) disappears because the

rankings already dictate comparison by value. This leads to an improvement in Equation (5) by a

factor of 2.

Second, Equation (3) not only holds for b ∈ Si such that b�γj a, but holds more generally for

b ∈A such that b�σj a. Hence, there is no longer a need to compute the harmonic scores on the

restricted profile ~σ|Si ; one can simply work with the original input profile ~σ. �
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3.1.3. Threshold Approval Votes. Approval voting — where voters can choose to approve

any subset of alternatives, and a most widely approved alternative wins — is well studied in social

choice theory (Brams and Fishburn 2007). In our utilitarian setting we reinterpret this input format

as threshold approval votes, where the principal sets a threshold t, and each voter i ∈N approves

every alternative a for which vi(a)> t.

We first investigate deterministic threshold approval votes, in which the threshold is selected

deterministically, but find that it does not help us (significantly) improve over the distortion we

can already obtain using rankings by value or by value for money. Specifically, for a fixed threshold,

we are always able to construct cases in which alternatives have significantly different welfares, but

either no alternative is approved or an extremely large set of alternatives are approved, providing

the rule little information to distinguish between the alternatives, and yielding high distortion.

Theorem 4. The distortion associated with deterministic threshold approval votes is Ω(
√
m).

Proof of Theorem 4. Imagine the case where ca = 1 for all alternatives a ∈A. Recall that the

budget is 1. Let f denote a randomized aggregation rule. (While we study deterministic and

randomized threshold selection, we still allow randomized aggregation rules. Section 3.2 studies

the case where the aggregation rule has to be deterministic.) It must return a single alternative,

possibly chosen in a randomized fashion. We construct our adversarial input profile based on

whether t6 1/
√
m. Let A= {a1, . . . , am}.

Suppose t6 1/
√
m. Fix a set of alternatives S ⊆A such that |S|=

√
m/2 + 1 (assume for ease

of exposition
√
m is an even integer). Construct the input profile ~τ such that τi = S for all i ∈N .

Now, there must exist a∗ ∈ S such that Pr[f(~τ) = {a∗}]6 1/(
√
m/2 + 1). Construct the underlying

utility profile ~v such that for each voter i ∈N , vi(a
∗) = 1/2, vi(a) = 1/

√
m for a ∈ S \ {a∗}, and

vi(a) = 0 for a ∈ A \ S. Note that this is consistent with the input profile given that t 6 1/
√
m.

Further, sw(a∗,~v) = n/2 whereas sw(a,~v)6 n/
√
m for all a∈A \ {a∗}. Hence,

E[sw(f(~τ),~v)]6
1√

m/2 + 1
· n

2
+

√
m/2√

m/2 + 1
· n√

m
=O

(
n√
m

)
.

Because the optimal social welfare is Θ(n), we have that dist(f) = Ω(
√
m), as required.

Now suppose that t > 1/
√
m. Construct an input profile ~τ in which τi = ∅ for every voter i∈N .

In this case, there exists an alternative a∗ ∈ A such that Pr[f(~τ) = a∗] 6 1/m. Let us construct

the underlying utility profile ~v as follows. For every voter i ∈N , let vi(a
∗) = 1/

√
m, and vi(a) =

(1− 1/
√
m)/m for all a ∈ A \ {a∗}. Note that this is consistent with the input profile given that

t > 1/
√
m. Clearly, the optimal social welfare is achieved by sw(a∗,~v) = n/

√
m. In contrast, we

have

E[sw(f(~τ),~v)]6
1

m
· n√

m
+

(
1− 1√

m

)
· 1− 1/

√
m

m
=O

( n
m

)
.

Hence, we again have dist(f) = Ω(
√
m), as desired. �
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For specific ranges of the threshold, it is possible to derive stronger lower bounds. However, the

Ω(
√
m) lower bound of Theorem 4 is sufficient to establish a clear asymptotic separation between

the power of deterministic and randomized threshold approval votes.

Under randomized threshold approval votes, we can select the threshold in a randomized fashion.

Technically, this is a distribution over input formats, one for each value of the threshold. Before

we define the (overall) distortion of a rule that randomizes over input formats, let us recall the

definition of the overall distortion of a rule for a fixed input format:

dist(f) = max
~ρ

sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(f(~ρ),~v)]
= sup

~v

maxT∈Fc sw(T,~v)

E[sw(f(~ρ),~v)]
.

Here, ~ρ(~v) denotes the input profile induced by utility profile ~v. In the case of randomized threshold

approval votes, rule f specifies a distribution D over the threshold t, as well as the aggregation of

input profile ~ρ(~v, t) induced by utility profile ~v and a given choice of threshold t. We define the the

(overall) distortion of rule f as

dist(f) = sup~v Et∼D
maxT∈Fc sw(T,~v)

E[sw(f(~ρ(~v, t)),~v)]
.

Interestingly, observe that due to the expectation over threshold t, which affects the induced input

profile ~ρ(~v, t), we can no longer decompose the maximum over ~v into a maximum over ~ρ followed

by a maximum over ~v such that ~vB ~ρ, in contrast to the case of a fixed input format.

This flexibility of randomizing the threshold value allows us to dramatically reduce the distortion.

Theorem 5. The distortion associated with randomized threshold approval votes is O(log2m).

Proof of Theorem 5. For ease of exposition, assume m is a power of 2. Let I0 = [0,1/m2], and

Ij = (2j−1/m2,2j/m2], `j = 2j−1/m2, and uj = 2j/m2 for j = 1, . . . ,2 logm.

Let ~v denote a utility profile that is consistent with the input profile. For a ∈ A and j ∈
{0, . . . ,2 logm}, define naj = |{i∈N : vi(a)∈ Ij}| to be the number of voters whose utility for a falls

in the interval Ij. We now bound the social welfare of a in terms of the numbers naj . Specifically,

sw(a,~v) =
∑
i∈N

vi(a)6
2 logm∑
j=0

∑
i∈N

I{vi(a)∈ Ij} ·uj =

2 logm∑
j=0

naj ·uj,

where I indicates the indicator variable. A similar argument also yields a lower bound, and after

substituting `0 = 0, u0 = 1/m2, and na0 6 n, we get

2 logm∑
j=1

naj · `j 6 sw(a,~v)6
n

m2
+

2 logm∑
j=1

naj ·uj. (6)

Next, divide the alternatives into 1 + 2 logm buckets based on their costs, with bucket Sj =

{a∈A : ca ∈ Ij}. Note that selecting at most 1/uj alternatives from Sj is guaranteed to satisfy the

budget constraint.
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Let S∗ = arg maxS∈Fc sw(S,~v) be the feasible set of alternatives maximizing the social welfare.

For j, k ∈ {0, . . . ,2 logm}, let n∗j,k =
∑

a∈S∗∩Sk
naj . Using Equation (6), we have

2 logm∑
j=1

n∗j,k · `j 6 sw(S∗ ∩Sk,~v)6 |S∗ ∩Sk| ·
n

m2
+

2 logm∑
j=1

n∗j,k ·uj. (7)

We now construct three different mechanisms; our final mechanism will randomize between them.

Mechanism A: Pick a pair (j, k) uniformly at random from the set T = {(j, k) : j, k ∈ [2 logm]}.

Then, set the threshold to `j, and using the resulting input profile, greedily select the 1/uk alter-

natives from Sk with the largest number of approval votes (or select Sk if |Sk|6 1/uk). Let Bj,k

denote the set of selected alternatives for the pair (j, k). Because we have j > 0 and k > 0,

sw(Bj,k,~v)>
∑
a∈Bj,k

(
2 logm∑
p=j

nap

)
· `j >

1

4
·

(
2 logm∑
p=j

n∗p,k

)
·uj >

1

4
·n∗j,k ·uj, (8)

where, in the first transition, we bound the welfare from below by only considering utilities that are

at least `j, and the second transition holds because uj = 2`j, |S∗∩Sk|6 2|Bj,k|, and Bj,k consists of

greedily-selected alternatives with the highest number of approval votes. Thus, the expected social

welfare achieved by mechanism A is

1

(2 logm)2

2 logm∑
j=1

2 logm∑
k=1

sw(Bj,k,~v)>
1

4 · (2 logm)2

2 logm∑
j=1

2 logm∑
k=1

n∗j,k ·uj

>
1

16 log2m

(
sw(S∗ \S0,~v)− |S∗ \S0| ·

n

m2

)
>

1

16 log2m

(
sw(S∗ \S0,~v)− n

m

)
,

where the first transition follows from Equation (8), and the second transition follows from Equa-

tion (7).

Mechanism B: Select all the alternatives in S0. Because each alternative in S0 has cost at most

1/m2, this is clearly budget-feasible. The social welfare achieved by this mechanism is sw(S0,~v)>

sw(S∗ ∩S0,~v).

Mechanism C: Select a single alternative uniformly at random from A. This is also budget-feasible,

and due to normalization of values, its expected social welfare is n/m.

Our final mechanism executes mechanism A with probability 16 log2m/(2+16 log2m), and mech-

anisms B and C with probability 1/(2 + 16 log2m) each. It is easy to see that its expected social

welfare is at least sw(S∗,~v)/(2 + 16 log2m). Hence, its distortion is O(log2m). �

We also show that at least logarithmic distortion is inevitable even when using randomized

threshold approval votes.
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Theorem 6. The distortion associated with randomized threshold approval votes is

Ω(logm/ log logm).

Proof of Theorem 6. Imagine the case where ca = 1 for all a ∈A. Recall that the budget is 1.

Let f denote a rule that elicits randomized threshold approval votes and aggregates them to return

a distribution over A (as only a single project can be executed at a time). Note that f is not simply

the aggregation rule, but the elicitation method and the aggregation rule combined.

Divide the interval (1/m,1] into dlogm/ log (2 logm)e sub-intervals: For j ∈

[dlogm/ log (2 logm)e], let

Ij =

(
(2 logm)j−1

m
,min

{
(2 logm)j

m
,1

}]
,

note that the minimum in the upper bound only affects the last interval. Let uj and `j denote the

upper and lower end points of Ij and observe that uj 6 2 logm · `j for all j ∈ [dlogm/ log (2 logm)e].

Let t denote the threshold picked by f (in a randomized fashion). There must exist k ∈

[dlogm/ log (2 logm)e] such that Pr[t ∈ Ik]6 log (2 logm)/ logm. Fix a subset S ⊆A of size logm,

and let V = uk/2 + (logm− 1) · `k. Construct a (partial) utility profile ~v such that for each voter

i ∈N , vi(a) ∈ Ik for a ∈ S,
∑

a∈S vi(a) = V , and vi(a) = (1− V )/(m− logm) for a ∈ A \ S. First,

this is feasible because

V =
uk
2

+ (logm− 1) · `k 6
1

2
+

logm− 1

2 logm
6 1.

Second, this partial description completely dictates the induced input profile when t /∈ Ik. Because

f can only distinguish between alternatives in S when t ∈ Ik, there must exist a∗ ∈ S such that

Pr[f returns a∗|t /∈ Ik]6 1/ logm. Suppose the underlying utility profile ~v satisfies, for each voter

i∈N , vi(a
∗) = uk/2 and vi(a) = `k for a∈ S \{a∗}. Observe that this is consistent with the partial

description provided before.

In this case, the optimal social welfare is given by sw(a∗,~v) = n · uk/2, whereas sw(a,~v)6 n · `k
for all a∈A\{a∗}. The latter holds because `k > (1−V )/(m− logm). The expected social welfare

achieved by f under ~v is at most

Pr[t∈ Ik] ·
n ·uk

2
+ Pr[t /∈ Ik]

(
1

logm
· n ·uk

2
+

logm− 1

logm
·n · `k

)
6

log (2 logm) + 2

logm
· n ·uk

2
,

where the final transition holds because uk 6 2 logm · `k. Thus, the distortion achieved by f is

Ω(logm/ log logm), as desired. �

Our proof of Theorem 6 establishes a lower bound of Ω(logm/ log logm) on the distortion asso-

ciated with randomized threshold approval votes by only using the special case of the participatory

budgeting problem in which ca = 1 for each a∈A, i.e., exactly one alternative needs to be selected.
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This is exactly the setting studied by Boutilier et al. (2015). On the other hand, Theorem 5 estab-

lishes a slightly weaker upper bound of O(log2m) for the general participatory budgeting problem.

For the restricted setting of Boutlier et al. (2015), one can improve the general O(log2m) upper

bound to O(logm), thus leaving a very narrow gap from the Ω(logm/ log logm) lower bound. This

proof is similar to the proof of Theorem 5, whose O(log2m) bound is the result of a randomization

over O(logm) partitions of the alternatives based on their cost and O(logm) possible values of

the threshold. When costs are identical there is no need to partition based on cost, reducing the

partitions by a logarithmic factor. We defer the proof to the appendix.

Theorem 7. If ca = 1 for all a∈A, the distortion associated with randomized threshold approval

votes is O(logm).

3.2. Deterministic Aggregation Rules

We next study the distortion that can be achieved under different input formats if we are forced

to use a deterministic aggregation rule. Recall that the distortion associated with deterministic

aggregation of votes under an input format is the least distortion a deterministic aggregation rule

for that format can achieve. Specifically, we study the distortion associated with deterministic

aggregation of knapsack votes, rankings by value and value for money, and deterministic thresh-

old approval votes. We omit randomized threshold approval votes as the inherent randomization

involved in elicitation makes the use of deterministic aggregation rules hard to justify.

We find that rankings by value achieve Θ(m2) distortion, which is significantly better than

the distortion of knapsack votes (exponential in m) and that of rankings by value for money

(unbounded). This separation between rankings by value and value for money in this setting stands

in stark contrast to the setting with randomized aggregation rules, where both input formats admit

similar distortion. One important fact, however, does not change with the use of deterministic

aggregation rules: using threshold approval votes still performs at least as well as using any of the

other input formats considered here. Specifically, we show that setting the threshold to be t= 1/m

results in O(m2) distortion. The choice of the threshold is crucial as, for example, setting a slightly

higher threshold t > 1/(m− 1) results in unbounded distortion.

3.2.1. Knapsack Votes. Our first result is an exponential lower bound on the distortion

associated with knapsack votes when the aggregation rule is deterministic. While our construction

requires the number of voters to be extremely large compared to the number of alternatives, we

remark that this is precisely the case in real participatory budgeting elections, in which a large

number of citizens vote over much fewer projects.

Theorem 8. For sufficiently large n, the distortion associated with deterministic aggregation of

knapsack votes is Ω(2m/
√
m).
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Proof of Theorem 8. Imagine a case where every alternative has cost 2/m (recall that the bud-

get is 1). It follows that no more than bm/2c alternatives may be selected while respecting the

budget constraints. Let S1, . . . , S( m
bm/2c)

denote the
(

m
bm/2c

)
subsets of A of size bm/2c.

Assume n>
(

m
bm/2c

)
and partition the voters into

(
m
bm/2c

)
sets N1, . . . ,N( m

bm/2c)
, each consisting of

roughly n/
(

m
bm/2c

)
voters; specifically, ensure that bn/

(
m
bm/2c

)
c6 ni 6 dn/

(
m
bm/2c

)
e, where ni = |Ni|,

for all i∈ [
(

m
bm/2c

)
]. Construct an input profile of knapsack votes ~κ, where κi = Sk for all k ∈ [

(
m
bm/2c

)
]

and i∈Nk.

Let f denote a deterministic aggregation rule. We can safely assume that |f(~κ)| = bm/2c as

otherwise we can add alternatives to f(~κ), which can only improve the distortion. Let f(~κ) = Sk∗ .

Construct a utility profile ~v consistent with the input profile ~κ as follows. Fix b ∈ Sk∗ , and for

all i ∈Nk∗ , let vi(b) = 1 and vi(a) = 0 for all a ∈A \ {b}. Note that these valuations are consistent

with the votes of voters in Nk∗ .

Next, fix a∗ ∈A \ Sk∗ . Our goal is to make a∗ an attractive alternative that f(~κ) missed. Note

that a∗ appears in about half of the bm/2c-sized subsets of A. For all k ∈ [
(

m
bm/2c

)
] such that a∗ ∈ Sk,

and all voters i ∈ Nk, let vi(a
∗) = 1 and vi(a) = 0 for all a ∈ A \ {a∗}. This ensures sw(a∗,~v) >

n · bm/2c
m
> n/3 (for m> 2).

For k ∈ [
(

m
bm/2c

)
]\{k∗} such that a∗ /∈ Sk, and all voters i∈Nk, let vi(a

′) = 1 for some a′ ∈ Sk \Sk∗ ,

and vi(a) = 0 for all a∈A \ {a′}.

Observe that all voters who do not belong to Nk∗ assign zero utility to all the alternatives in

Sk∗ , yielding sw(f(~κ),~v)6 nk∗ 6 n/
(

m
bm/2c

)
+ 1. By assumption, n>

(
m
bm/2c

)
, so we have

dist(f,~v)>
n/3

n/
(

m
bm/2c

)
+ 1

=
1

6
·
(

m

bm/2c

)
= Ω

(
2m√
m

)
,

as required. �

We next show that an almost matching upper bound can be achieved by the natural “plurality

knapsack” rule that selects the subset of alternatives submitted by the largest number of voters.

Theorem 9. The distortion associated with deterministic aggregation of knapsack votes is O(m ·

2m).

Proof of Theorem 9. Let ~v denote the underlying utility profile, and let S∗ ⊆ A be the set of

alternatives reported by the largest number of voters. Due to the pigeonhole principle, it must be

reported by at least n/2m voters. Further, each voter i who reports S∗ must have vi(S
∗) > 1/m

because there must exist a∈A such that vi(a)> 1/m, and vi(S
∗)> vi(a).

Hence, we have sw(S∗,~v)> (n/2m) · 1/m, whereas the maximum welfare any set of alternatives

can achieve is at most n. Hence, the distortion of the proposed rule is at most m · 2m. �
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3.2.2. Rankings by Value and by Value for Money. While rankings by value and by

value for money have similar distortion in case of randomized aggregation rules, deterministic

aggregation rules lead to a clear separation between the distortion of the two input formats.

We first show that deterministic aggregation of rankings by value for money cannot offer bounded

distortion. Our counterexample exploits the uncertainty in values induced when alternatives have

vastly different costs.

Theorem 10. The distortion associated with deterministic aggregation of rankings by value for

money is unbounded.

Proof of Theorem 10. Fix a, b∈A. Let ca = ε > 0, and ck = 1 for all k ∈A\{a}. Recall that the

budget is 1. Hence, every deterministic aggregation rule must select a single alternative.

Construct an input profile ~σ in which each input ranking has alternatives a and b in positions 1

and 2, respectively. Let f be a deterministic aggregation rule.

If f(~σ) ∈ A \ {a}, the utility profile ~v in which every voter has utility 1 for a, and 0 for every

alternative in A \ {a} ensures dist(f)> dist(f,~v) =∞.

If f(~σ) = a, the utility profile ~v in which every voter has utility ε for a, 1− ε for b, and 0 for

every alternative in A \ {a, b} ensures that dist(f)> dist(f,~v) = (1− ε)/ε.
Hence, in either case, dist(f) > (1− ε)/ε. Because ε can be arbitrarily small, the distortion is

unbounded. �

We now turn our attention to rankings by value. Caragiannis et al. (2016) study deterministic

aggregation of rankings by value in the special case of our setting where the cost of each alternative

equals the entire budget, and establish a lower bound of Ω(m2) on the distortion, which carries

over to our more general setting.

Theorem 11 (Caragiannis et al. (2016)). For n > m − 1, the distortion associated with

deterministic aggregation of rankings by value is Ω(m2).

Caragiannis et al. (2016) also show that selecting the plurality winner — the alternative that

is ranked first by the largest number of voters — results in distortion at most m2. We show that

this holds true even in our more general setting, giving us an asymptotically tight bound on the

distortion.

Theorem 12. The distortion associated with deterministic aggregation of rankings by value is

O(m2).

Proof of Theorem 12. Due to the pigeonhole principle, the plurality winner, say a∈A, must be

ranked first by at least n/m voters, each of which must have utility at least 1/m for a. Hence, the

social welfare of a is at least n/m2, while the maximum social welfare that any set of alternatives

can achieve is at most n, yielding a distortion of at most m2. �
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3.2.3. Threshold Approval Votes. We now turn our attention to threshold approval votes.

As mentioned earlier, our use of deterministic aggregation rules makes randomized threshold selec-

tion less motivated; we thus focus on deterministic threshold approval votes.

First, we show that for some choices of the threshold, the distortion can be unbounded.

Theorem 13. For a fixed threshold t > 1/(m− 1), the distortion associated with deterministic

aggregation of deterministic threshold approval votes is unbounded.

Proof of Theorem 13. Suppose ca = 1 for each a∈A. Recall that the budget is 1. Let f denote

a deterministic aggregation rule for threshold approval votes. Suppose the rule receives an input

profile ~τ in which no voter approves any alternative. Without loss of generality, let f(~τ) = a∗.

We construct an underlying utility profile such that for each voter i ∈N , vi(a) = 1/(m− 1) for

a∈A \ {a∗}, and vi(a
∗) = 0. Note that this is consistent with ~τ . Now, the optimal social welfare is

n · 1/(m− 1), whereas the welfare achieved by f is zero, yielding an unbounded distortion. �

We next show that slightly reducing the threshold to 1/m reduces the distortion to O(m2), which

is at least as good as the distortion associated with any other input format.

Theorem 14. For the fixed threshold t= 1/m, the distortion associated with deterministic aggre-

gation of deterministic threshold approval votes is O(m2).

Proof of Theorem 14. Let ~τ denote an input profile, and ~v the underlying utility profile. Let

S∗ ∈ Fc denote the feasible set of alternatives with the highest number of total approvals. The

set S ∈Fc is returned by the following algorithm: label the alternatives in order of the number of

approvals received to cost, where a1 has the greatest ratio. Return whichever of {a1, . . . , ak−1} and

{ak} has more approvals, with k chosen so that {a1, . . . , ak−1} ∈ Fc and {a1, . . . , ak} 6∈ Fc. Let P ∗

and P denote the total number of approvals received by alternatives in S∗ and S, respectively.

Consider a knapsack problem where the value of an alternative is the number of approvals it

receives under ~τ . Then, P ∗ is the optimal knapsack solution, whereas P is the solution quality

achieved by the greedy algorithm. Using the fact that this algorithm achieves a 2-approximation

of the (unbounded) knapsack problem (Dantzig 1957), we have

P > (1/2) ·P ∗.

We can now establish an upper bound on the distortion of our rule. Let T be the feasible set of

alternatives maximizing the social welfare. Then, T achieves at most P ∗ total approvals under ~τ .

Each approval of an alternative in T by a voter can contribute at most 1 to the welfare of T , and

each non-approval of an alternative in T by a voter can contribute at most 1/m to the welfare of

T . Hence, we have

sw(T,~v)6 P ∗ · 1 + (n ·m−P ∗) · (1/m).
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Using a similar line of argument, we also have

sw(S,~v)> P · (1/m).

Hence, the distortion of f is at most

P ∗+ (n ·m−P ∗)/m
P/m

6 2 · 1 + (n ·m/P ∗− 1)/m

1/m
= 2 ·

(
m+

n ·m
n/m

− 1

)
=O(m2),

where the first transition follows from P > P ∗/2. For the second transition, note that with the

threshold being 1/m, each voter must approve at least 1 alternative. Hence, there must exist an

alternative with at least n/m approvals, implying that P ∗ > n/m. �

4. Computing Worst-Case Optimal Aggregation Rules

Our theoretical results focus on the best worst-case (over all input profiles) distortion we can

achieve using different input formats. However, specific input profiles may admit distortion much

better than this worst case bound. In practice, we are more interested in the deterministic or

randomized aggregation rule that, on each input profile, returns the feasible set of alternatives or

a distribution thereover which minimizes distortion, thus achieving the optimal distortion on each

input profile individually. The optimal deterministic aggregation rule is given by

f∗(~ρ) = arg min
S∈Fc

max
~vB~ρ

maxT∈Fc sw(T,~v)

sw(S,~v)
, ∀~ρ,

and the optimal randomized aggregation rule is given by

f̄∗(~ρ) = arg min
p∈∆(Fc)

max
~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(p,~v)]
, ∀~ρ,

where ∆(X) denotes the set of distributions over the elements of X.

While these profile-wise optimal aggregation rules dominate all other aggregation rules, they may

be computationally difficult to implement, because they optimize a non-linear objective function

(a ratio) over a complicated space.

We design practical generic algorithms for computing the deterministic and randomized profile-

wise optimal aggregation rules for the input formats we study. The deterministic rule reformulates

this problem as a linear-fractional program, which is recast to a linear program with the Charnes-

Cooper transformation (Charnes and Cooper 1962). The procedure for the randomized aggregation

rule is two-stage algorithm in the spirit of the cutting-set approach of Mutapcic and Boyd (2009).

More details can be found in Appendix B.

We evaluate the practicality of this approach by comparing the running times of computing

deterministic voting rules, averaged over 10 trials, on data from participatory budgeting elections

held in Boston in 2016. Voters were asked to choose from 10 alternatives; 4,430 votes were cast.



Benadè et al.: Preference Elicitation For Participatory Budgeting
Full version under submission 21

Figure 1 Average running time of the deterministic voting rules on the Boston 2016 dataset.
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Our discussions with officials from several cities have revealed a hesitance to use randomized

voting rules, so we are particularly interested in the performance of the determinstic rules. (Our

computational results in the following section also show that deterministic worst case rules typically

perform better in terms of average welfare ratio than randomized rules.)

Figure 1 summarizes the average time to compute the deterministic worst-case optimal set of

alternatives on a log-log scale. The experiments were run on an 8-core Intel(R) Xeon(R) CPU with

2.27GHz processor speed and 50GB memory. We observe that the running time scales gracefully

with the number of agents. When sampling 500 voters, rules such as Det Th Ap and Det Val take

less than 5 minutes, indicating the practicability of these methods for the participatory budgeting

elections at the scale of those in Boston, MA (Goel et al. 2016). We also note that, due to the once-

off nature of participatory budgeting elections, it is conceivable to use an aggregation algorithm

which takes several days or even weeks to compute the optimal set of alternatives.

5. Empirical Results

Our theoretical results in §3 characterize how well we can optimize distortion on an observed input

profile. Recall that distortion is the worst-case ratio of the optimal social welfare to the social

welfare achieved, where the worst case is taken over all utility profiles consistent with the observed

input profile. In practice we care about this ratio according to the actual underlying utility profile.

Thus, a distortion-minimizing aggregation rule is not guaranteed to be optimal in practice. This is

why an empirical study is called for.

In this section, we compare the performance of different approaches to participatory budgeting,

where the performance is measured by the average-case ratio of the optimal and achieved social
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welfare, and the average is taken over utility profiles drawn to be consistent with input profiles

from two real-world participatory budgeting elections.

Datasets: We use data from participatory budgeting elections held in 2015 and 2016 in Boston,

Massachusetts. Both elections offered voters 10 alternatives. The 2015 dataset contains 2600 4-

approval votes (voters were asked to approve their four most preferred alternatives) and the 2016

dataset contains 4430 knapsack votes.

For each dataset, we conduct three independent trials. In each trial, we create r sub-profiles,

each consisting of n voters drawn at random from the population. For each sub-profile, we draw k

random utility profiles ~v consistent with the sub-profile, and use these to analyze the performance

of different approaches. We use the real costs of the projects throughout. The choices of parameters

(r,n, k) for the three trials are (5,10,10), (8,7,10), and (10,5,10). We choose this experimen-

tal design to yield sufficiently many samples to verify statistical significance of the results while

completing in a reasonable amount of time.

Approaches: We use the utility profile ~v drawn to create an input profile in four input formats

we study. For each format, we use the deterministic as well as randomized distortion-minimizing

aggregation rule. The non-trivial algorithms we devise for these rules are presented in §4. These

eight approaches are referred to using the type of aggregation rule used (“Det” or “Ran”), and the

type of input format (“Knap”, “Val”, “VFM”, or “Th Ap”).

Unlike the other input formats, threshold approval votes are technically a family of input formats,

one for each value of the threshold. While randomizing over the threshold is required to minimize

the distortion (the worst-case ratio of the optimal and achieved social welfare), as is our goal in the

theoretical results of §3, minimizing the expected ratio of the two can be achieved by a deterministic

threshold. In our experiments, we learn the optimal threshold value based on a holdout set that

is not subsequently used. This learning approach is practical as it only uses observed input votes

rather than underlying actual utilities. This choice likely gives threshold approval votes an edge —

but arguably it is an advantage this input format would also enjoy in practice.

In addition to our eight approaches, we also test two approaches used in real-world elections (Goel

et al. 2016): greedy 4-approval (“Gr 4-Ap”), and greedy knapsack (“Gr Knap”). The former elicits

4-approval votes, and greedily selects the most widely-approved alternatives until the budget is

depleted. The latter is almost identical, except for interpreting a knapsack vote as an approval for

each alternative in the knapsack.

As the performance measure for the ten approaches, we use the average ratio of the optimal and

the achieved social welfare according to the actual utility profile used to induce the input profiles

— termed average welfare ratio — where the average is taken across the entire experiment.
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Figure 2 Average welfare ratio of different approaches to participatory budgeting based on data from Boston

2015 and 2016 elections (lower is better).
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Results: Figure 2 shows the average welfare ratio of the different approaches with 95% confidence

intervals, sorted from best to worst. The differences in performance between all pairs of rules —

except between Det Knap and Ran Val, and between Ran VFM and Gr Knap — are statistically

significant (Johnson 2013) at a 95% confidence level.

A few comments are in order. First, deterministic distortion-minimizing aggregation rules gener-

ally outperform their randomized counterparts. This is not entirely unexpected. While randomized

rules do achieve better distortion, there always exists a deterministic rule minimizing the aver-

age welfare ratio objective; although, it is not necessarily the deterministic distortion-minimizing

aggregation rule.

Second, approaches based on deterministic rules are able to limit the loss in social welfare due to

incomplete information about voters’ utility functions to only 2%–3%. Among these approaches,

the one using threshold approval votes incurs the minimum loss.

Third, knapsack votes consistently lead to higher distortion than alternative input formats. This,

together with the poor theoretical guarantees for knapsack votes, suggests that it may not be

worthwhile to ask voters to solve their personal NP-hard knapsack problems before casting vote.

6. Discussion

Our results indicate that threshold approval votes should receive serious consideration as the input

format of choice for participatory budgeting. But there is one important issue we have not studied:

the cognitive load imposed on voters by different input formats. (If it were not for this issue, we

would just elicit the full utility functions — the whole point is to reduce cognitive load.) While

determining threshold approval votes, as discussed in §2, seems reasonable enough (and probably
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easier than casting knapsack votes), human subject experiments are needed to rigorously determine

whether threshold approval, and other input formats, require an acceptable cognitive effort.

Whatever the best approach to participatory budgeting is, now is the time to identify it, before

various heuristics become hopelessly ingrained. We believe that this is a grand challenge for com-

putational social choice, especially at a point in the field’s evolution where it is gaining real-world

relevance by helping people make decisions in practice.
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Appendix A: Proofs Omitted From §3

Theorem 7 If ca = 1 for all a ∈A, the distortion associated with randomized threshold approval votes is

O(logm).

Proof of Theorem 7. This proof is along the lines of the more general proof of Theorem 5, whose

O(log2m) bound is the result of a randomization over O(logm) partitions of the alternatives based on their

cost and O(logm) possible values of the threshold. In our special case, with the alternatives having an equal

cost, there is no longer a need to partition them based on their cost, which leads to an improvement in the

bound by a factor of logm.

Formally, for j ∈ [logm], let `j = 2j−1/m and uj = 2 · `j . Consider the rule which chooses j ∈ [logm]

uniformly at random, elicits approval votes with threshold t= `j , and returns an alternative with the greatest

number of approval votes. We show that the distortion of this rule is O(logm).

Let ~v denote the underlying utility profile, and a∗ = arg maxa∈A sw(a,~v) be the welfare-maximizing alter-

native. If there exists j ∈ [logm] such that our rule returns a∗ when it sets the threshold t = `j (which

happens with probability 1/ logm), we immediately obtain O(logm) distortion. Let us assume that our rule

never returns a∗. For a∈A and j ∈ [logm], let naj denote the number of approval votes a receives when the

threshold t= `j , and let aj ∈A be the alternative returned by our rule when t= `j . Because our rule returns

an alternative with the greatest number of approval votes, we have

∀j ∈ [logm],

logm∑
k=j

n
aj
k >

logm∑
k=j

na
∗

k > n
a∗

j . (9)

Now, the expected social welfare achieved by our rule is at least

logm∑
j=1

Pr[t= `j ] · sw(aj ,~v)>
1

logm

logm∑
j=1

`j

(
logm∑
k=j

n
aj
k

)
>

1

2 logm

logm∑
j=1

uj ·na
∗

j >
1

2 logm
· sw(a∗,~v),

where the first transition follows from Equation (9), and the second transition holds because `j = uj/2.

Hence, the distortion of our rule is O(logm), as desired. �

Appendix B: Algorithmic Details Omitted From §4

Throughout this section, we assume that it is practically feasible to explicitly enumerate the collection of

inclusion-maximal feasible sets of alternatives Fc. This assumption is justified given that real-world partici-

patory budgeting problems typically involve up to 20 alternatives (Goel et al. 2016).

B.1. Deterministic Rules

Let V (~ρ) = {~v : ~vB~ρ} denote the set of utility profiles consistent with input profile ~ρ. Hence, we are interested

in computing

arg min
S∈Fc

max
~v∈V (~ρ)

maxT∈Fc
sw(T,~v)

sw(S,~v)
= arg min

S∈Fc

max
T∈Fc

{
max
~v∈V (~ρ)

sw(T,~v)

sw(S,~v)

}
.

An algorithm is self-evident: compute d(~ρ,S,T ) = max~v∈V (~ρ) sw(T,~v)/sw(S,~v) for every pair S,T ∈ Fc, and

return arg minS∈Fc
maxT∈Fc

d(~ρ,S,T ).

For the input methods we study in this paper, we can describe the set of consistent utility profiles V (~ρ)

using linear constraints. Observe that V (~ρ) = V (ρ1)×· · ·×V (ρn), where V (ρi) = {v> 0 : vBρi} is the set of
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m-dimensional utility functions consistent with voter i’s input ρi. It is therefore sufficient to describe each

V (ρi) using linear constraints.

For a ranking by value σi, we use:

V (σi) =

{
vi ∈Rm+ :

∑
a∈A

vi(a) = 1 ∧
(
vi(σ

−1
i (k))> vi(σ

−1
i (k+ 1)), ∀k ∈ [m− 1]

)}
.

For a ranking by value for money σi, we use:

V (σi) =

{
vi ∈Rm+ :

∑
a∈A

vi(a) = 1 ∧

(
vi(σ

−1
i (k))

cσ−1
i

(k)

>
vi(σ

−1
i (k+ 1))

cσ−1
i

(k+1)

,∀k ∈ [m− 1]

)}
.

For a knapsack vote κi, we use:

V (κi) =

{
vi ∈Rm+ :

∑
a∈A

vi(a) = 1 ∧

(∑
a∈κi

vi(a)>
∑
a∈S

vi(a), ∀S ∈Fc

)}
.

For a threshold approval vote τi elicited using threshold t, we use:

V (τi) =

{
vi ∈Rm+ :

∑
a∈A

vi(a) = 1 ∧
(
vi(a)> t, ∀a∈ τi

)
∧
(
vi(a)6 t, ∀a∈A \ τi

)}
.

Note that the polytope for knapsack votes has exponentially many constraints, while the other polytopes

have polynomially many constraints. When necessary, heuristics may be devised to approximate V (κi),

however, in our experiments with real data we only encountered instances with m6 20, where it was possible

to enumerate the constraints in V (κi).

This polytope V (ρi) is the only part of our generic algorithm that is dependent on the input format.

Generically, let A(~ρ) ~v6 b(~ρ) be the set of linear constraints describing V (~ρ).

Our next goal is to use this characterization of V (~ρ) to compute d(~ρ,S,T ) for specific S,T ∈ Fc. Recall

that sw(S,~v) =
∑

a∈A x
S(a)

∑
i∈[n] vi(a), where xS is the characteristic vector for the set of alternatives S,

and that d(~ρ,S,T ) = max{ sw(T,~v)

sw(S,~v)
:A(~ρ) ~v6 b(~ρ)}. This is a standard linear-fractional program, which can be

converted to a linear program LP (~ρ,S,T ) using the famous Charnes-Cooper transformation (Charnes and

Cooper 1962). We omit these standard transformations in the interest of space.

The complete algorithm for resolving the deterministic optimal aggregation rule on an input profile ~ρ is

given as Algorithm 1.

B.2. Randomized Rules

Using a similar line of argument as before, observe that the optimal randomized aggregation rule returns the

following distribution p over feasible sets of alternatives:

arg min
p∈∆(Fc)

max
T∈Fc

max
~v∈V (~ρ)

sw(T,~v)∑
S∈Fc

p(S) · sw(S,~v)
.

We introduce an additional continuous variable z representing the optimal distortion, and reformulate the

problem as

min
p,z

z

s.t. sw(T,~v)− z ·
∑
S∈Fc

p(S) · sw(S,~v)6 0, ∀T ∈Fc,~v ∈ V (~ρ) (10)

p∈∆(Fc).
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Algorithm 1: Computing the worst-case optimal deterministic rule

Data: Input profile ~ρ

Result: A set S ∈Fc yielding the least distortion

1 dist[S] = 0, ∀S ∈Fc
2 for S ∈Fc do
3 for T ∈Fc, T 6= S do
4 dist[S] = max(dist[S], LP (~ρ,S,T ))

5 return arg minS∈Fc dist[S]

At this point, it is possible to handle the constraints in (10) by formulating the problem in terms of the

vertices of the polytope V (~ρ). Instead, we couple binary search with a constraint-generation approach.

Our algorithm performs a binary search on z, the optimal distortion. For a fixed value of z, say z̃, an

iterative two-stage procedure determines whether there exists a distribution p whose distortion on the input

profile ~ρ is at most z̃. If such a distribution p exists, then z̃ serves as an upper bound on the smallest

distortion; otherwise, it serves as a lower bound. After adjusting the bounds on the optimal distortion, the

value of z̃ is updated as in traditional binary search.

We now describe the iterative two-stage procedure that ascertains the existence of a distribution p with dis-

tortion at most z̃. This procedure alternately finds a distribution satisfying a limited subset of the constraints

in (10), then attempts to add omitted constraints from (10) which are violated by the current distribution.

At iteration t, a set of constraints defined by Ct−1 have been added and we check the feasibility of

sw(T,~v)− z̃ ·
∑

S∈Fc
pt(S) · sw(S,~v)6 0, ∀(~v,T )∈ Ct−1

pt ∈∆(Fc)

}
CF(z̃,Ct−1).

If no feasible distribution pt exists, z̃ is the new lower bound on the optimal distortion, and we proceed to

the next step in our binary search over z. If a feasible pt exists, we check whether it violates any constraint

from (10) by solving the following linear program (which serves as an oracle) for every T ∈Fc:

max sw(T,~v)− z ·
∑
S∈Fc

pt(S) · sw(S,~v)

s.t. ~v ∈ V (~ρ)

LP(T, z, pt, ~ρ).

If the objective value of LP(T, z, pt, ~ρ) exceeds 0, a violated constraint is found and (~v∗, T ) is added to Ct−1 to

form Ct, where ~v∗ is the optimal solution to LP(T, z, pt, ~ρ). The algorithm then returns to solving CF(z̃,Ct). If

no violated constraints are found, the current distribution pt indeed has distortion at most z̃, and establishes

an upper bound on the optimal distortion.

This complete procedure is summarized in Algorithm 2. A finite number of violated constraints can be

added for each z̃, so we may conclude that Algorithm 2 will terminate.

Appendix C: Empirical Results Omitted From §5

We provide a more detailed representation of the results summarized in §5, and investigate the usefulness of

learning the optimal threshold for threshold approval voting from holdout data.
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Algorithm 2: Computing the optimal randomized aggregation rule

Data: Input profile ~ρ, tolerance TOL, Fc
Result: A probability distribution in ∆(Fc), the optimal distortion

1 z− = 1, z+ = 100, z̃ = (z−+ z+)/2

2 while z−− z+ >TOL do
3 C0 = ∅, t= 0

4 robustFeasibleFlag ← false

5 while robustFeasibleFlag is false do
6 robustFeasibleFlag ← true

7 t← t+ 1

8 if CF(z̃,Ct−1) is feasible then
9 pt← optimal solution of CF(z̃,Ct−1)

10 for T ∈Fc do
11 Ct = Ct−1

12 if optimum of LP(T, z, pt, ~ρ) exceeds 0 then
13 ~v∗← optimal solution of LP(T, z, pt, ~ρ)

14 Ct←Ct ∪ (~v∗, T )

15 robustFeasibleFlag ← false

16 if robustFeasibleFlag then
17 z+ = z̃

18 else
19 z− = z̃

20 z̃ = (z+ + z−)/2

21 return pt, z+

C.1. Additional Empirical Results

Figure 2 in §5 presented the average welfare ratio of ten different approaches to participatory budgeting,

where the average was taken over repeated independent trials in each of two datasets. The results for the

Boston 2015 and 2016 datasets are presented separately in Figure 3.

Many of the trends highlighted in §5 are reflected across both datasets. First, approaches based on deter-

ministic distortion-minimizing aggregation rules, excluding the one using knapsack votes, still outperform

their randomized counterparts. Further, among these approaches, the one using threshold approval votes is

the most consistent, achieving the lowest average welfare ratio for the Boston 2015 dataset and the second

lowest for the Boston 2016 dataset. Second, the approaches currently used in real-world elections (“Gr Knap”

and “Gr 4-Ap”) perform worse than most other approaches, and have high variance in their performance.

The main difference between the datasets is that, somewhat surprisingly, Greedy Knapsack performs

significantly better on knapsack votes induced from random utility profiles drawn to be consistent with real
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Figure 3 Average welfare ratios on the Boston datasets from 2015 (containing 4-approval votes, left) and 2016

(containing knapsack votes, right).
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4-approval votes, than it does on real knapsack votes. This may in part be due to the fact that the families of

utility profiles consistent with 4-approval (Boston 2015) and knapsack (Boston 2016) votes, are very different.

C.2. Is It Useful to Learn the Threshold?

In our experiments, when using threshold approval votes, we use the threshold that achieves the best per-

formance on a holdout/training set, to evaluate the performance of threshold approval votes on the test

set.

After sampling a random utility profile consistent with an input vote in the training set, we generate

threshold approval votes for all the thresholds in [0,1] at intervals of 0.05, and compute the average distortion

(per threshold) across multiple samples. (This step will not be required in practice once sufficiently many

real votes are elicited).

We select the threshold value that achieves the least average distortion. Importantly, note that we use

distortion — which is only a function of the input profile — rather than the average distortion to select the

optimal threshold value. Hence, this method is robust, and does not use any knowledge of the distribution

of utility profiles that we later use in evaluating performance.

This optimal threshold value when evaluating the performance (average distortion) of threshold approval

votes, in conjunction with both the deterministic and the randomized distortion-minimizing aggregation

rules.

While threshold approval votes with deterministic aggregation rule achieves excellent performance with

this method of threshold selection, it is not immediately clear whether the threshold selection was useful.

Indeed, learning a threshold is only useful if the optimal threshold value remains reasonably consistent across

the instances. We now investigate the usefulness of threshold selection in multiple ways.

First, Figure 4 shows the average distortion achieved by different values of the threshold on the training

instances, when used in conjunction with the deterministic and the randomized distortion-minimizing aggre-

gation rules. Recall that the final threshold value we select is the one that minimizes this measure. For every

threshold value on the x-axis, the error bars indicate the range that contains the distortion on 95% of the
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Figure 4 (Left) Average distortion achieved by different threshold values in threshold approval votes; (Right)

Empirical distribution of the optimal threshold under deterministic and randomized aggregation.
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training instances. We do not plot threshold values above 0.4 as the distortion is non-decreasing beyond this

point.

We observe that the thresholds values that lead to the smallest average distortion are exactly those

with the smallest variation across instances. Interestingly, the average distortion of different values of the

threshold is wildly different under the deterministic aggregation rule, but rather similar under the randomized

aggregation rule. This effect perhaps manifests itself in the improved performance of threshold approval votes

with deterministic aggregation than with randomized aggregation in all of our experiments; see Figures 2

and 3.

Next, we measure the usefulness of training the threshold value in a different way. In Figure 4 (right)

we plot the empirical distribution of the optimal threshold value, i.e., for each threshold value, we plot the

percentage of training instances in which that value led to the smallest distortion. For both deterministic and

randomized aggregation rules, the distribution of the optimal threshold value is (quite strongly) centered at

0.1. In fact, the optimal threshold value was in [0.075,0.15] in more than 80% of the training instances.

The consistency with which a single threshold value (0.1) remains the optimal value suggests that learning

this value from the holdout set is very likely to be valuable.

Finally, we note that the datasets we used contain votes over 10 alternatives. That is, m= 10. Interestingly,

this makes the empirically optimal threshold value 1/m, which is precisely the value for which we achieve

the best performance in the worst case in our theoretical results (see Theorem 14).
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