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Abstract

We consider the problem of self-organisation in dense es®lksensor networks. Wireless sensor
networks can be viewed in terms of deployment of a large numobeodes in an Euclidean space.
After deployment, the nodes are required to build a topolmggommunicate among themselves
and also to dase station In this process they should meet some performance crieiga cov-
erage of the area to be monitored, connectivity of all theesodh the network, the capacity of
the wireless network, etc. Also, once an event is detectéldemetwork, we need to localise the
occurrence of the event with the information reaching theebstation in an energy efficient way
with minimum delay. These performance objectives are theas addressed in self-organisation

of wireless sensor networks (WSN).

In this report, we first introduce the problem of self-orgaation in general and then present a
survey of the existing literature in this area. Later we fahse a very commonly used approxi-
mation of proportionality between th®p-distancéthe minimum number of hops) and Euclidean
distance for three different scenarios in dense networks. goofs bank on a certain geometric
construction and union bound, and provide a sufficient dondi We provide simulation results
that illustrate the theoretical result, and serve to show karge the number of nodes needs to
be before the asymptotics are useful. We propose a lodalsatgorithm that uses this theory
for a fixed anchor and a random node. We also introduce anatgerithm for localisation that
uses the empirical distribution of Euclidean distance gitree hop-distance, which performs bet-
ter than the previous one. Finally, we discuss few more sselated to the non-idealities in real
sensor networks that require more understanding of thénastic geometry of these networks and

theoretical formalisation.
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Chapter 1

Introduction to Self-Organisation in

Wireless Sensor Networks

1.1 Overview

An ad-hoc wireless sensor network is composed of a large punifimodes deployed densely in

close proximity to some phenomenon to be monitored. Eachexe nodes makes observations
via one or more sensors, the overall purpose being to dedugderence about the phenomenon
and to route this information back to a base stdtiofihe network must possess self-organising
capabilities since the positions of individual nodes are predetermined. Cooperation among
nodes is the dominant feature of this type of network, wheoegs of nodes cooperate to process

and disseminate the information gathered in their vicitotyhe user.

Sensor networks are made up of smart sensor nodes catees The core of a mote is a small,
low-cost, low-power microprocessor. The microprocessonitors one or more sensors and con-
nects to the outside world with a radio link. The digital mtlansceiver allows a mote to transmit
reliably to a distance of a few meters. The typical power comstion is about 10 milliamps when

the mote is running, and about 10 microamps in sleep modeh &awsor node is driven by one

1A base station is a node responsible for the fusion of seratar d\ base station is also known as fusion centre,

collector node, or sink.
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or two 1.5 V cells. The microprocessor, sensors, antennaatidries are all packaged in small

containers, typically a few millimetres thick [13].

Sensor networks may consist of many different types of ssrsah as seismic, thermal, electrical,
visual, acoustic, radar and so on. Sensor networks can findi@ variety of applications in a

number of domains. Some common applications of sensor niesveoe:

o Military applications such as battlefield surveillancegiear, biological and chemical (NBC)

attack detection, and reconnaissance.

e Environmental applications such as wild animal trackingaad water pollution level mon-

itoring, forest fire detection and precision agriculture.
e Health applications such as heart rate monitoring, telécnezgland drug administration.

e Commercial applications such as highway traffic analysifding security, structural fault

detection, and power consumption measurement.

1.2 System Model

We will focus on sensor networks fanferencingwhere the sensor network is deployed for the
purpose of deducing the occurrence and the location @vamt An event results in a change in

the level of some form of ambient energy, in the region maeiothat needs to be sensed by the
nodes and used for inferencing, e.g., in border securityiegtons, an event could be an entry or

presence of an enemy or intruder into the region.

Figure 1.1 shows the flow of operations in a Wireless Sensdwdl& (WSN). The stages are

briefly described below.

1. Node deployment: The first step in the formation of a wireless sensor networkade
deployment which addresses the problems of how and wheredties should be placed,

given an operational region, the number of sensor nodes depleyed, and the application.
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Node Deployment

Y

Neighbour Discovery

Connectivity Capacity Routing Localisation

Self-Organisation

Y

Sensor Measurement, In—-Network Computation
and Communication to the Base Station

Y

Inference at the
Base Station

Figure 1.1: Various stages in the formation of a sensor ndtwo

The node deployment can be deterministic, or random, or scongination of the two

depending on the accessibility of the region.

2. Neighbour discovery: Once node deployment is done, every node has to identifeitghn
bours, i.e., nodes with whom it can directly communicatehie &bsence of interference.
The output of the neighbour discovery process can be repieséy the graplir, (over the
nodes), which has a link between each node and each of thevdietl neighbours of the

node.

3. Self-organisation: After the deployment of nodes, the network self-organisdgsch means

that the connectivity between nodes are ensured, nodegindroutes to the base station
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and the locations of the nodes are estimated. So, self-isagéon comprises of the following

aspects.

e Connectivity: This addresses the problem connecting each node with etreymode
via single or multi-hop path. Connectivity ensures at lesst path by which informa-

tion can be transmitted from one node to any other node in¢hsork.

e Capacity: Capacity addresses the question of how much informationbeapropa-
gated through the network, and gives an upper limit on thigsimam possible amount

of information flow.

e Routing: When an event is detected in the network, the informationsézbe sent to
the Base Station in an energy efficient manner with minimulaydé&kouting addresses

these problems in sensor networks.

e Localisation: To estimate the location of a detected event, we need to khewota-
tion of the nodes in the network. The node location in a deaasa@ network is often
estimated using the heuristic of the minimum number of hagw/ben two nodes (we
will call this as the hop-distance) to be proportional to Eheclidean distance. This
report focuses on this issue and provides a theoreticaldtsation for this approxi-

mation.

O Although several algorithms for routing and localisaticses a topology as the starting point,
a topology is not absolutely necessary. We will discuss albdew routing algorithms that are
topology-free. However, topology-free localisation isspible if each node has independent way
of locating itself, e.qg., if each of them are equipped withS&tPansceivers. But for GPS-free
localisation, we need to have a topology. Topology-freer@@ghes are interesting because it

requires less power, as it doesn’t need to maintain the ogyadnd is robust against node failures.

1.3 Organisation of the Report

The rest of the report is organised as follows. In Chapter 2ewew some literature on the various

aspects of self-organisation in wireless sensor netwolksChapter 3, we provide a theory of



1.3. Organisation of the Report 5

distance discretisatignwhich is the use of integral hop-distance as a measure didean distance
(a real number), for two fixed points on an area. We model the@enode locations as a random
deployment of points on a region of Euclidean space, e.g.itssqnare, and the communication
topology as &Geometric Grapi{GG)Y. We show that the approximation of distance discretisation
is valid asymptotically almost surely in this topology ifrtan conditions are satisfied for the
radius () of the GG. In Chapter 4, we show the results on distanceetisation for two random
nodes in the RGG, and in Chapter 5, we prove that given thedisipnceh from a fixed anchor
to a random node, the Euclidean distance lies within— ¢)(h — 1)r, hr], for arbitrarily small

e > 0. We illustrate the theoretical results with simulation®ach chapter. The emphasis of this
report is inlocalisation In Chapter 6, we illustrate a new algorithm called Hop Ceyietded
Distance-based Localisation (HCDL), that uses the nodetfflteory of Chapter 5. Also, we show
a heuristic algorithm in Appendix B, that banks on the enggirdistribution ofﬁ (d andh are
the Euclidean and hop distances respectivelyrandis the critical radius), which performs better
than the previous in the sense of location error. Finallymagter 8, we draw the conclusions from

this work and look at some future works.

2A geometric graptg(V,r) on A C R?, and withn vertices, is a graph with vertex location vecldrc A",
and an undirected edge between all the nodes that are agaahst . If V is random, the GG is called Random

Geometric Graph (RGG) [21].



Chapter 2

Previous Work

In this chapter, we survey some of the existing literatureself-organisation and classify them

according to the flowchart of Figure 1.1.

2.1 Connectivity

One of the most important issues related to any Wireless éadretwork and particularly WSN
(Wireless Sensor Network) is that of connectivity. The tiogg control algorithm must always en-
sure that the resulting network or the sub-networks of thgirmal network are strongly connected,
so that the information can flow from any node to the other ivithe entire network or within the
sub-networks. Any node should have at least a (single oripheibhop) path to any other node or
a certain base station within the network or the sub-netyeanmkl that is why we need a connected

communication topology. This connectivity problem can lassified as,

2.1.1 Power Control Mechanism

The goal of power control mechanisms is to dynamically clesihg@ nodes’ transmitting range in
order to maintain some property, e.g., connectivity, of tcbexmunication graph, while reducing

the energy consumed by node transceivers because theyead the primary sources of energy
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consumption in WSNs. Power control mechanisms are fundtahtnachieving a good network
energy efficiency. Power control is studied in homogeneooslés have the same transmitting

range) and non-homogeneous (nodes have different traimgr&nges) scenarios.

Homogeneous Power Control For homogeneous networks, the connectivity problem has bee
addressed in detail by Gupta and Kumar [9], where it has be@nrsthat ifn nodes are placed in a
disc of unit area iflR? and each node transmits at a power so as to cover an area ef w
then the resulting network is asymptotically conneateg. 1iff ¢(n) — +oo and asymptotically

disconnectedv. p. 1iff ¢(n) — ¢ < oo

In homogeneous networks, the CTR (Critical Transmittingga problem has been investigated
in theoretical ways as well as practical viewpoints. Naregsvamy et al. [19] present a distributed
protocol, called COMPOW that attempts to determine the mum common transmitting range

needed to ensure network connectivity. They show thainggtitie transmitting range to this value
has the beneficial effects of maximising network capacgégucing the contention to access the

wireless channel, and minimising energy consumption.

Connectivity issue has been discussed also by Xue and Kunja6], where the authors prove
that in a network with. randomly placed nodes, each should be connectét ke ) nearest
neighbours. If each node is connected to less th@m log n nearest neighbours, the network is
asymptotically disconnected. p. 1 While if each node is connected to more tHan774 logn
nearest neighbours, the network is asymptotically cormthet p. 1 It appears that the critical

constant may be close to one, but remains an open problem.

In [22], Ramaiyan et al. have demonstrated joint controlafer and hop length for a single cell

scenario. The objective was to maximise the transport ¢gpaicthe network.

Non-homogeneous Power Control Non-homogeneous networks are more challenging because
nodes are allowed to have different transmitting ranges fdioblem of assigning a transmitting
range to nodes in such a way that the resulting communicagtiaph is strongly connected and
the energy cost is minimum is called the Range Assignmenj (Réblem, and it was first studied

by Kirousis et al. [15]. The computational complexity of RAshalso been analysed in [15]. It
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is shown to be NP-hard in the case of 2D and 3D networks. Howtéeeoptimal solution can
be approximated within a factor of 2 using the range assignmenerated in [15]. An important
variant of RA has been recently studied is based on the conEéspmmetry of the communication
graph. Due to the high overhead needed to handle unidiredtimks in routing protocols or MAC
protocols which are naturally designed to work under thersgtnic assumption, Symmetric Range

Assignment (SRA) shows more practical significance.

In practical wireless networks the links are neither honmegeis in all directions nor time invari-
ant. This issue has been addressed in [3], where the autbe@ideas from percolation theory and
compare networks of geometric discs to other simple shapesiding probabilistic connections,
and they find that when transmission range and node densitg@amalised across experiments
SO as to preserve thexpected number of connectigfiENC) enjoyed by each node, the discs are
the hardestshape to connect together. In other words, anisotropi@tiaai patterns and spotty
coverage allow an unbounded connected component to appkaves ENC levels than perfect
circular coverage allows. This indicates that connegtigciaims made in the literature using the

geometric disc abstraction will in general hold also forthere irregular shapes found in practice.

2.1.2 Power Management Mechanism

Power management is concerned of which set of nodes shouldred on/off and when, for the

purpose of constructing energy saving connected topologydlong the network lifetime.

There are several algorithms that discuss about the sle#p-waycling of the sensor nodes so that
the network lifetime is extended. Also care needs to be takdhat the power of the network falls
uniformly over the nodes of the network. Here we survey aipadr example. In [6] Chen et
al. propose SPAN, a power saving topology maintenance ighgofor multi-hop ad hoc wireless
networks which adaptively elects coordinators from all@®tb form a routing backbone and turn

off other nodes’ radio receivers most of the time to conseawer.
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2.2 Capacity

Capacity of Wireless Networks has been discussed by Gupt&amar in [10], where they have
usedThroughput Capacitas the number of successful bits transmitted in the netwoukit time.
Butin networks, a packet is routed to its destination via &irmop path. If the throughput capacity
is considered, the same packet which is getting replicatestveral nodes are counted multiple
times. We should focus on the packet that is transmitted Sonrce to destination and count it
as a successful transmission from source to destinatien the throughput per node should be
divided by the mean number of hops to get a quantity calledthesport Capacitylt implies that

in a wireless network the throughput is not the only paramei®e concerned with, the distance
to which a bit is transmitted is also important. So, mean leogth x throughput capacity=

transport capacity is the quantity to maximise.

In this paper, the authors have taken two types of netwoiiks,thie Arbitrary andRandomNet-
works and models considered wétmtocolandPhysicalmodels. For arbitrary networks the node

locations are unknown, whereas in random networks theyaargam.

e Protocol Model: The transmission from nodeto j in them" sub channel is successful if
| Xr — X, > (1+ A)|X; — X;|, for any simultaneous transmittérs i transmitting in the

same sub channek; denotes the location of the nofle\: a constant.

e Physical Model: Let, { X, k € 7} be the set of simultaneously transmitting nodes at some
time slot over a certain sub channel (We are using notatioméales and their location

interchangeably). The transmission from nade j in that sub channel is successful if

P;
| X=X,

Py
No+ D erpri o=

> [

Where,N,: Noise variancey: Path loss factor;: Threshold

It is assumed that whenever these conditions are satisieabithes put across a fixéd bits over

the wireless channel. For a setting like this, the resulkss@nted in the paper are as follows:
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e Under a Protocol Model of noninterference, the capacity méless networks wit ran-
domly located nodes each capable of transmittingl/abits per second and employing a
common range, and each with randomly chosen and therekatlg far away destination, is
O (%ﬂ) . This is true whether the nodes are located on the surfacéhoée-dimensional
sphere or on a planar disc. Even when the nodes are optimatiggin a disc of unit area,
and the range of each transmission is optimally selectedredess network cannot provide
a throughput of more tha® (%) bits per second to each node for a distance of the order
of 1 m away. In fact, summing over all the bits transported,reiess network on a disc of
unit area in the plane cannot transport a total of more théif\/n) bit-meters per second,
irrespective of how the load is distributed. Under a Phyditadel of noninterference, the
lower bounds are the same as those above for the ProtocollMuelliée the upper bounds

on throughput ar® <%> for Random Networks an@ <ﬂ1)for Arbitrary Networks.

no

e Splitting the channel into several sub channels does naigeghany of these results.

2.3 Routing

Routing can be defined as the algorithm to send a packet framtesdo destination. Routing
may use a topology or can be topology-free. Typically theeeamne or more sink nodes or base
stations which serve as collection points and connect thelegs nodes to a wired infrastructural
network, for example, the Internet. Since the radio rangeeofsor nodes is of the order of a few
meters, the farthest nodes may not be able to reach the soikinca single hop transmission.
Moreover, the nodes may be deployed over uneven terrain ionamform manner (as would
be the case for example when several sensor nodes are @edr@yer a mountainous region).
These factors combined with the resource limitations ogeenodes make the problem of routing
highly nontrivial. The obvious solution to this problem @resort tomulti-hop routing wherein
sensor nodes communicate with the sink node via multiple imough other intermediate nodes.
Each sensor node serves as a router in addition to sensiegvitonment. Conventionéihk state
routing algorithms consume a lot of expensive memory spaceaintaining their tables and are

hence unsuitable for the sensor network scenario.
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The lifetime of a fully active sensor node is of the order oéa fdays. The most energy-intensive
operations for a node are those of radio transmission arepten. To maximise the network
lifetime, therefore, the amount of network traffic shouldrbmimised. One way of accomplishing
this is for certain network nodes to collect raw sensor negslfrom a number of sensor nodes and
combine them into a single composite signal which is thew#&oded towards the sink node. This
process is callediata aggregation Data aggregation can greatly reduce the number of packets

transmitted, which can result in large energy savings.

The routing protocols that have been proposed for senswonies can be broadly classified at
andhierarchicalprotocols. Hierarchical protocols organise the networéleminto several logical
levels. This is typically implemented by a process catikister formation A cluster consists of a
set of geographically proximal sensor nodes; one of the :iedeves as a cluster head. The cluster
heads can be organised into further hierarchical levele Kdy advantage of hierarchical routing
protocols is that the cluster heads can perform efficiematwork data aggregation. Routing pro-
ceeds by forwarding packets up the hierarchy until the sodens reached. Flat routing protocols,
on the other hand, attempt to find good-quality routes fromr@® nodes to sink nodes by some
form of flooding Since flooding is a very costly operation in resource sthmetworks, smart
routing algorithms restrict the flooding to localised reggo Some algorithms use probabilistic

techniques based on certain heuristics to establish phiths.

2.3.1 Routing protocols
Flat Routing Protocols

Flat routing protocols are similar to the conventional mbhtip ad-hoc routing protocols. Each
sensor node determines its next hop neighbour node(s)wafdrdata packets. The nodes are not
organised into hierarchical clusters as is done in the tghieal protocols. The advantage of this

approach is that all the nodes can reach the base statispegtve of their position.

Most of the flat routing protocols that have been proposeddosor networks incorporate distance

vector routing algorithms. In distance vector routing, esdnaintain estimates of their distances
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from the destination nodes. Each node transmits its distastimates to its neighbours. Each
node updates its distance vector so as to minimise the distaneach destination by examining
the cost to that destination reported by each of its neighband then adding its distance to
that neighbour. The problem with the straightforward disgvector algorithm is that it takes a
long time to converge after a topological change. The falhgsubsections describe the routing

protocols that can be classified as flat routing protocols:

TinyOS Beaconing This is a topology-free routing technique. The TinyOS enusebisensor
network platform [11] employs a very simple ad-hoc routingtpcol. The base station periodi-
cally broadcasts a route update beacon message to the kevinerbeacon message is received by
a few nodes that are in the vicinity of the base station. Thheskes mark the base station as their
parent and rebroadcast the beacon to their neighbours. [§batam proceeds recursively with
nodes progressively propagating the beacon to their neigish each node marks the first node
that it hears from as its parent. The beacon is thus floodedi¢fmout the network, setting up a
breadth-first spanning tree rooted at the base station.pFbcess is repeated at periodic intervals

known as epochs.

Each network node periodically reads its sensor data andrirds the data packet to its parent in
the spanning tree. The parent node in turn forwards the paekis parent and so on. This process

is repeated until the data finally reaches the base station.

The attractive feature of TinyOS Beaconing is its simpjicitodes do not have to maintain large
routing tables or other complicated data structures. Eacle meeds to remember only its parent
node in the path to the base station. By combining the beagomith a MAC layer scheduling
scheme such as TDMA, the nodes can conserve power by ked@imgedio off most of the time.
In spite of its attractive features, the beaconing protaedfers from one main disadvantage: it
is not resilient to node failures. If a parent node fails ntlits entire sub-tree is cut off from the
base station during the current epoch. Moreover, the pobtesults in uneven power consumption
across network nodes. The nodes nearer to the base statisurae a lot of power in forwarding
packets from all the nodes in their sub-tree, whereas tli@tetes in the spanning tree do not have

to perform any forwarding at all and consume the least power.
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Directed Diffusion A data-centric communication protocol for sensor netwdris been pro-
posed in [12]. All sensor data are characterised by ateHvalue pairs. A node that requires data
sends outnterestsfor named data; interests are diffused through the netwaslatds the nodes
that are capable of responding. Data are in turn drawn tosvidnel requesting node vgradients
established along the reverse path of interest propagafitis style of data-centric communi-
cation is fundamentally different from the node-centrid¢a-end communication mechanism of
traditional IP networks. An interest for data may containesal fields such as type, interval, du-
ration, time stamp and the coordinates of the target redgitwe. duration refers to the time period
for which data is desired, and the interval refers to the data The sink broadcasts interests to
its neighbours; due to the unreliable nature of broadcastar&s, interests are refreshed period-
ically with updated time-stamp values. The initial intéregecifies a large interval value; when
the path to the event source is established, a higher datsregquested. Each node maintains an
interest cachehat contains several fields. One of the fields is calleplagientthat specifies the
node’s downstream neighbour. The gradients in each nodesactto set up the reverse path for
information flow from the source to the sink. A gradient alpedfies the data rate requested by

the neighbouring node.

Whenever an interest is received, the node looks up itsast@ache. If there is no matching entry
in the cache, a new interest entry is created. If a matchity exists already, its time-stamp is
updated. The node further broadcasts the interest to ighheurs, and thus the interest is flooded
throughout the network, ultimately reaching the source.eWthe source node detects an event,
it searches its interest cache for matching event entriess matching interest entry is found, the
node starts relaying its readings at the highest requestiadrdte among all its outgoing gradients.
Intermediate nodes that receive a data message from thiginbwirs also check their interest
caches for matching entries. If no matching entry is fouhd,data packet is silently discarded.
Otherwise, the node searchesdtsta cacheassociated with the matching interest entry. If there
is no recently seen data item corresponding to the inteaaséw entry is created and the data is
forwarded to the neighbouring nodes; if the data is alreadggnt in the cache, the data packet is

silently dropped. This mechanism helps in preventing thea&dion of loops in data dissemination.
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The sink may finally receive low-rate event data from sevpadhs. Itreinforcesone of its neigh-
bours to draw high-rate events. Reinforcement is done bgisgrout an interest with a higher data
rate (smaller interval). The same procedure is adoptedllii@lpstream nodes to reinforce one
or more paths that deliver high-quality event data. Thisliijm@sults in an empirically low-delay
path between the source and the sink. In case multiple peghse@ated and some paths are found
to perform consistently better, an option is availableégatively reinforcghe other paths. The
reinforcement rules can also be applied by intermediatesatbng previously reinforced paths to

enable local repair of failed or degraded paths.

Rumor Routing Algorithm  Braginsky and Estrin [4] propose an algorithm to route useres

to nodes that have observed certain events. Events are @dsare localised phenomena, occur-
ring in a fixed region of space. Queries can be requests fornmtion or commands to initiate
collection of more data. If the number of observed intergsgvents is high and the number of
gueries for the events is low, it is better to flood tpgeriesthrough the network. On the other
hand, if the number of user queries is very high comparedémtimber of interesting events, it
makes sense to floalent informationThe rumor routing algorithm tries to fit in between query

flooding and event flooding.

Rumor routing aims to create paths leading to events; whesreeguery is issued for an event, it is
sent on a random walk through the network until it intersecis of the event paths. If the random
guery path fails to intersect any event path, the applicatgsubmits the query, or in the worst

case, floods the query throughout the network.

Each node maintainsreighbour tableand arevent table The event table contains a list of events
that the node has observed. The neighbour table can be maithty actively initiating hello

messages or passively eavesdropping on network broadcasts

The algorithm employs a set of long-lived packets cadigentghat traverse the network, record in-
teresting events that they observe and disseminate thi$ ¥ermation to network nodes. Agents
are generated by nodes randomly with a tunable probabidisetl on whether the nodes have ob-
served an event in the recent past. Agents also contain &a#as similar to nodes, which include

the number of hops to each event. When an agent crosses ahabd@as information about some
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event that the agent has not yet seen, it updates its evdatitainclude the event. Agents travel
for a specified number of hops and then die. Nodes can updaitertiuting tables when they

encounter agents that have cheaper paths to certain events.

Highly resilient energy-efficient multipath routing Ganesan et al. [8] present a multipath rout-
ing technique to improve the resilience of a sensor netwariode failure. Constructing k disjoint
paths from the source to the sink ensures that the networktaget disconnected even if k nodes
fail. However, finding completely disjoint paths tends toveey energy-inefficient. To overcome
this problem, an algorithm to construct partially disjop@ths (callecbraided path¥ with some

common nodes between paths is presented.

The algorithm aims to extend the concept of directed diffndb eliminate the energy-intensive
flooding used to discover alternate paths. The basic ideheoalgorithm is to set up multiple

paths along which data is disseminated at low data rateg atitime time when the primary path is
established. If there is any node or link failure on the pryr@ath, nodes can quickly reinforce one
of the alternate paths without resorting to expensive flogdNodes have to fall back on flooding

only if all the multiple paths fail simultaneously.

A mechanism to discover strictly disjoint multipaths is ggated first. Following the directed
diffusion algorithm, the sink reinforces the link with itsast preferred neighbour. At the same
time, it sends an alternate reinforcement message to itsmest preferred neighbour, say A.
A propagates this reinforcement to its most preferred r@gin, say B, in the direction of the
source. If B already happens to lie on the primary path betvibe source and the sink, it sends
a negative reinforcememhessage back to A; A then tries its next most preferred neighbnd
so on. Otherwise B continues to propagate the alternatéoreament to its neighbours. This

procedure can be extended to discover k disjoint multipbéteeen the source and the sink.

The problem of finding braided multipaths can be defined asfgnthe best path from the source
to the sink that does not contain one of the nodes on the pyipath. This results in finding
an alternate path that is expected to be physically closea@timary path, and hence dissipates
energy proportional to the primary path. Braided paths arestructed using a procedure similar

to that of the disjoint multipaths. Each node on the primathsends reinforcement messages to
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its first and second most preferred neighbours, thus trgrigute around its immediate neighbour
on the primary path. A node not on the primary path that rexea/reinforcement message from a
primary node propagates the message to its most preferrghbmair. If this neighbour happens to
lie on the primary path, then the reinforcemenhct propagated any further (since a braided path

has already been found).

Constructing strictly disjoint multipaths ensures thay aamber of failures on the primary path
does not affect any of the alternate paths. In contrastdrcéise of the braided multipaths, failure
of a certain set of nodes on the primary path can disrupt alhthltipaths. However, the advantage
of braided multipaths stems from the fact that the total neinabdistinctalternate paths through a
braid is much higher than the number of nodes along the pyipaith, thus greatly increasing the
resilience of the braid. It will be interesting to study theension of the braided multipath algo-
rithm to multiple sources and sinks with respect to compexesilience to isolated and patterned

failures, and maintenance overhead.

ASCENT The ASCENT (Adaptive Self-Configuring sEnsor Networks Tiogees) system [5]
builds on the observation that only a subset of the nodegimby required to establish connec-
tivity in a dense sensor network. Each node determines itsexdivity and decides whether or not

to participate in the routing mechanism.

Nodes in ASCENT can be in one of four statextive, passive, tesir sleep Active and test
nodes are involved in the forwarding of data and routing c@nmhessages. Sleeping nodes keep
their radios turned off to save power, whereas passive nodlgslisten to the network traffic in
promiscuous mode. Initially nodes start in the test statelvis used to determine if the addition
of a new node is likely to improve the connectivity of the netlt WWhen a node enters the test
state, it initialises a timéf; and transmitsieighbour announcementessages to other nodes. The
node upgrades itself to the active state as soon as the tkpees. Before the timer goes off,
however, if the number of active neighbours is above a aettaieshold or the data loss rate is
higher than before, the node falls back to the passive stapassive timefl), is started when the
node enters the passive state. As soon as this timer exgiieespde turns its radio off and enters

the sleep state. Before this timer goes off, however, if thelper of active neighbours is less
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than a threshold, or the node hears a help message (desbalwed) from an active neighbour, it
transitions back to the test state. Nodes in the sleep ste wp and move to the passive state

after a timeout intervall.

The source transmits packets towards the sink via the aotdes. Since there are only a few
active nodes to start with, many losses are encountered.pfbmpts the active nodes to broadcast
helpmessages, asking for more active nodes to join the networkef the nodes in the passive
state react to the help messages and become active nodegrdtess continues until a sufficient

number of active nodes is available for reliable data traasion.

GRAdient Broadcast (GRAB) Routing Ye et al. [28] propose a routing algorithm named GRA-
dient Broadcast (GRAB), which is an example of a topologgefrouting technique. GRAB ad-
dresses the problem of robust data forwarding to a dataatwifgunit (called the sink) using unre-
liable sensor nodes with error-prone wireless channels.riibdel for the sensor network consists
of large number of small, stationary sensor nodes deployedafield. The user collects sensing
data via a stationary sink that communicates with the ndéwlBach event is detected by multiple
nearby sensor nodes and one of them generates reports as@. $oue to the limited radio range,
reports are forwarded over many hops before reaching the Biades can tune their transmitting
powers to control how far the transmission may reach. Suetepadjustments save energy and
reduce collisions whenever possible. This forwarding teghe is called ‘mesh forwarding’ and
it is claimed that GRAB exploits the large scale property eisor networks and achieves robust
data delivery through controlled mesh forwarding. The atgm is topology-free, hence requires
no energy cost to maintain the topology. Also, since theeaitiscovered after the occurrence of

the event, it is robust against node failures.

Energy Efficient Routing Schurgers et al. [23] propose a set of techniques to improge t
routing in sensor networks. They argue that uniform utii@aof resources such as power can be
obtained by shaping the traffic flow. For instance, the r@upaths for several data streams are
likely to share many common nodes. These common nodes btfaster owing to the heavy load

and thereby limit the system lifetime. A traffic flow that spds the energy utilisation over all the
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nodes uniformly is highly desirable to maximise the lifeéiiof the network.

All previously discussed protocols do not diminish the totwork energy uniformly. This is the

difference of this protocol with the rest.

Three techniques for spreading the network traffic unifgrare proposed. In the first scheme, a
stochastic modek used by any node to select the next hop. The randomly cHodentend to
distribute the traffic load across the network. In @mergy-based schenenode that has depleted
its energy reserves below a certain threshold discourageghinouring nodes from forwarding
packets to it. This is done by appropriate advertisementsetghbours. In thestream-based
schemea node on the path of one data stream tries to divert traffim fother streams away from

it.

Summary of Flat Routing Protocols The preceding sections have described several flat routing
protocols for sensor networks. Since the routing algorghrave to operate based only on local
knowledge, some form of distance vector routing is adoptddwever, as discussed previously,

distance vector routing protocols converge very slowly.

Hierarchical and cluster-based Routing Protocols

Hierarchical routing protocols organise the network intougps callectlusters Each cluster selects
a node that serves as thleister-head The cluster-head is responsible for collecting the sedata
from all the cluster members, aggregating them and tratisigia summary to the base station.
This results in eliminating a large number of redundant ragss from the nodes, thereby reducing
the overall power consumption in the network. It also avomdsy MAC layer collisions that waste

the available bandwidth. This enables the sensor netwmskate to a large number of nodes.

The disadvantage of cluster-based algorithms is that the si@tion should be reachable from all
the cluster-heads. This drains the power reserves of tlstertheads quickly, thereby disconnect-
ing the corresponding clusters from the network. Itis poigsio avoid this problem by periodically

rotating the cluster heads among the nodes to ensure unéoenyy consumption.



2.3. Routing 19

LEACH Heinzelman et al. [2] describe LEACH (Low Energy Adaptivei§tering Hierarchy),

a cluster-based routing protocol. LEACH aims to uniformigtdbute the energy consumed by
sensor nodes across the network to extend system lifetirnis. i3 accomplished by periodically
rotating the cluster head nodes. The cluster heads cdilecdnsor readings from the other nodes
in the cluster, perform local compression or aggregatiothendata to reduce global communica-
tion and transmit a summary of the readings back to a centis# Btation. Thus the cluster heads
are the most critical nodes in the network since the entustelr would be disconnected if the
corresponding cluster-head were to run out of energy. A &nmehtal assumption of the LEACH

algorithm is that nodes can adjust their transmission poavgansmit signals to varying distances.

The LEACH algorithm runs in rounds, with each round begignivith a setup phasén which
the cluster-heads are selected and the clusters are foamédhesteady-state phasen which the
sensor data transfer takes place. Each node determinesetfywhether to serve as a cluster head
or not during the current round, based on its remaining gnk¢el and a predetermined desired
percentage of cluster-heads in the network. The algoritherantees that each node will become
a cluster-head eventually, after some fixed number of roufidiss contributes towards uniform

energy dissipation of the nodes.

Once a node decides to act as a cluster-head for the curtamd rd broadcasts amdvertisement
messagéo the rest of the nodes. Each of the non-cluster-head ndfilet@ themselves with the
cluster-head from which they receive the advertisemensagswith the highest signal strength,
with ties being broken randomly. The cluster-head is infedrabout this affiliation by a message
from each of the affiliating nodes. This process organisestitire network into clusters, with a

single cluster-head for each cluster.

After a cluster-head receives affiliation messages fronthal nodes in its cluster, it creates a
TDMA schedule and broadcasts it to the nodes. The TDMA sdeedivides time into a set of
slots, the number of slots being equal to the number of nadteeicluster. Each node is assigned
a unique time slot during which it can transmit its readingghe cluster-head. The advantage
of this approach is that a node can turn off its radio trangseaduring all of the other time slots,
leading to large energy savings. When the cluster-headvescéhe sensor readings from all of

its cluster nodes, it compresses and aggregates them irimposite signal and transmits it to
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the base station. This transmission potentially requirgls Bnergy since the cluster-head may be
very distant from the base station. An additional disadagetof this scheme is that if there is
any physical obstruction (such as a tree, a hill or a buildbejween the cluster-head and the base

station, the entire cluster is cut off from the base station.

Summary of Hierarchical and cluster-based Routing Protocts Hierarchical routing proto-

cols greatly increase the scalability of a sensor netwotke dverall energy consumption of the
nodes is reduced, leading to prolonged network lifetimee ®hganisation of the network into
clusters lends itself to efficient data aggregation whickumm results in better utilisation of the
channel bandwidth. Cluster-based routing holds great @®for many-to-one and one-to-many

communication paradigms that are prevalent in sensor mkswvo

2.4 Localisation

Given an event has occurred in the region where sensor nodegeployed, to know the exact

location of the event is the goal bbcalisation In situations where the entire or part of the terrain
is inaccessible, e.g. in battlefields, the nodes are deglwya random manner over the area and
the nodes have no information about its location. To es#rtta location of the sensor nodes, we

need localisation algorithms.

One approach for localisation can be to equip all the nod#s@iliobal Positioning System (GPS)
receivers. GPS gives near accurate estimate of locatios.approach requires the GPS satellites
and GPS enabled receivers. A typical GPS receiver calauitagosition using the signals from
four or more GPS satellites. Four satellites are needee $imecprocess needs a very accurate local
time, more accurate than any normal clock can provide, sodteiver internally solves for time
as well as position. In other words, the receiver uses folasueements to solve for 4 variables,
namely, X, y, z and t (for these 3 co-ordinates we need 4 ga®ll These values are then turned
into more user-friendly forms, such as latitude/longitadldocation on a map, then displayed to

the user.
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Each GPS satellite has an atomic clock, and continuallygirais messages containing the current
time at the start of the message, parameters to calculaledison of the satellite (the ephemeris),
and the general system health (the almanac). The signeds$ &tea known speed, the speed of light,
through outer space, and slightly slower through the atinesgp The receiver uses the arrival time
to compute the distance to each satellite, from which it deit@es the position of the receiver

using geometry and trigonometry.

Although four satellites are required for normal operatitawer may be needed in some special
cases. For example, if one variable is already known (formgta, a sea-going ship knows its
altitude is 0), a receiver can determine its position usinly three satellites. Also, in practice, re-
ceivers use additional clues (doppler shift of satelliggais, last known position, dead reckoning,

inertial navigation, and so on) to give degraded answerswdger than four satellites are visible.

GPS receivers are composed of an antenna, tuned to the fa@gadransmitted by the satellites,
receiver-processors, and a highly-stable clock (ofterystat oscillator). They may also include a
display for providing location and speed information to tiser. A receiver is often described by
its number of channels: this signifies how many satelliteamt monitor simultaneously. Originally
limited to four or five, this has progressively increasedrdiie years so that, as of 2006, receivers

typically have between twelve and twenty channels.

The advantage of using GPS is its accuracy. AutonomousaiviEPS receivers are typically
accurate to about 15 meters. But the complexity of computiedocation of the receiver makes it

energy intensive and each of the nodes more expensive.

Since the GPS-based approach is expensive, we will looka¢ sdgorithms that do not use GPS in
all the nodes. However in these methods, the beacon nodeklistave their location information
beforehand, and thus they may be equipped with GPS receivere we are going to discuss
two such methods of localisation, namé&W hop based localisatioandHop Count Ratio based
Localisation(HCRL).

Depending upon the sensor nodes’ radiation pattern, whaohbe either isotropic or anisotropic,

the localisation algorithms can be classified as the folhguwi
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2.4.1 Localisation in isotropic atmosphere

DV Hop based localisation In [20], Niculescu and Nath have proposed an algorithm nab\éd
hop where each node exchanges information containing tfagitm of, and the hop-counts to, the
anchor nodes. After the information exchanges betweenanmobdes are complete, an average
distance per hop is calculated. Now, to locate a certain nibgenumber of hops from at least
3 beacons are computed and multiplied with the averagendistper hop to get an approximate
distance from each of the beacons. Usingngulationmethod, the location of the node can be

determined.

HCRL In [27], Yang et al. propose an algorithm namiddp Count Ratio based Localisation
(HCRL), where unlike the above algorithm, the average distgoer hop is not evaluated. Rather,
the ratio of thehop distanceghop distance is defined as the minimum number of hops betam@en
two nodes) from a node to a pair of beacons are computed. $indtaequire the knowledge of the
actual average distance per hop, only assumes that the s@mce and the Euclidean distances
are proportional. However, the minimum number of beaconthis case is 4, since we are not

using the actual distance but the ratio of the distances.

Observation: In both the approaches, the assumption made is that thed€aaldistance between
two nodes in a dense network is proportional to the hop digtarThis is because, in a dense
enough network, there are plenty of nodes and the minimunphatpbetween any two nodes are
likely to be on a straight line connecting the nodes. In tHWang three chapters, we are going

to provide a theoretical formalisation of this approxinoati

Proximity Distance Map (PDM) This approach was proposed by Lim and Hou [17]. The rela-
tion between the Euclidean distance and hop-distance ractesised as a linear transformation. If
D is the matrix of the pairwise distances between the beagwh& athe hop-distance matrix, then
the following relation is assumef = T H, whereT is the linear transformation from to D.
GivenD andH, T is then obtained a&§ = DHT(HH™)~. Now, for any node with a hop-tuple

h the Euclidean distance vector is estimated as 7"h and this ED vector is used to localise each

node via triangulation. This method has been tested foo#moigic networks and is found to work
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well.

The relation between the number of hops and the Euclidesanndtis traversed has been studied an-
alytically in previous literature. Vural and Ekici [24] hawderived the distribution of the maximum
Euclidean distance traveled along a RGG with radiug one dimension. They have studied the
distribution of the maximum Euclidean distance traveleshglthe line by a path of a given number
of hops, and have obtained approximations to the mean arahearof these distributions. A sim-
ilar analysis has been performed in Dulmetral. [7], where two dimensional node deployments

have been considered in some detail.

The work presented in this report is different from the typewse. Here our focus is on finding the
bound on Euclidean distance (ED) given hop-distance (HO\ace-versa. In Chapter 3, we took
any two points on a two-dimensional plane and found a bounith@idD. In Chapter 4, we took
any two nodes at a certain HD away and found the bound on theeBkelen them. In Chapter 5,
we took a fixed point and a node placed randomly at a certain wWayand found the bound
on the ED between them. Hence, the results presented ingastrare different in addressing
the question of proportionality between the ED and HD, aneégia design rule for HD-based

localisation algorithm presented in Chapter 6.

2.4.2 Localisation in anisotropic atmosphere

In real networks, the radiation pattern of antennas andati®propagation are anisotropic. Also
the deployment of the nodes may not be homogeneous. Theseleualities forces the above-
mentioned algorithms to perform worse. Following are twera that address some of these

issues.

Concave Environment The concave environment is defined as a certain kind of nodege
ment where the nodes have a positive probability of fallingyan an area, whose shape is non-
convex. Using a setup of this kind, in [25], the authors haneppsed a new algorithm named
i-Multihop, that tries to estimate the location of a node using the nicgtanformation got from a

graph with nodes deployed in a non-convex region. The distarformation can be imprecise due
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to the concavity and so they formulate an optimisation grobto solve for the location of a node
given the distance estimates. Through simulation they Bage/n the algorithm to perform better

than the DV-Hop based approach in a non-convex setting.

Deployment with holes  Since sensor networks are used for monitoring some process area,

it can haveholes The holes are defined as regions where the node densityds krea network
with holes, it is difficult to use the hop-distance as a measfiEuclidean distance directly. This
issue has been addressed in the paper by Li and Liu [16], vitheyepropose a new algorithm
called REndered Path (REP). This algorithm tries to figuretbe true ED between two nodes
from the path information and the shape of the holes. ThenagBan there is that the number
of holes and their boundary information is known. Also thegwane that outside the holes the
node density is homogeneous and the ED-HD proportionaliglid there. When a hole comes in
between the node and an anchor, the shortest path takesax@uthe edge of the hole, and using

several geometric propositions, they prove that the true&®be figured out in such a setup.



Chapter 3

Distance Discretisation between Two Fixed

Points

3.1 Distance Discretisation: A Brief Introduction

We consider a dense wireless sensor network comprisingga farmber of nodes;, distributed
uniformly over a region in Euclidean space, e.g., the uniiasq. If the communication range of
every node is, then the communication topology becomes a geometric giagpheach node is
connected to every other node that is at a distanee If the node deployment is random in some
sense, e.g., uniform i.i.d. deployment, then the netwopgology becomes a random geometric
graph (RGG) (see, e.g., [21]). Given a dense deployment d@ésicand a topology over them, a
frequently used approximation is to take the minimum nundfdrops between nodes (i.e., the
hop distanckas a measure of the Euclidean distance between thendidBynce discretisatign
we mean the use of the integral valued hop-distances as aireezEf£uclidean distances, which
are real numbers. Niculescu and Nath [20], Naggadl. [18] and Yanget al. [27] have used this
approximation to develop techniques for GPS-free locatisan dense wireless sensor networks.
Yanget al,, in particular, make a key assumption that the ratio of thelil@an distance between a

node and two anchor nodes is well approximated by the ratibeo€orresponding hop distances.

In the following section, we give a motivation for studyimgetGeometric Graph with random node

25
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placements and study the ED-HD relationships in a Randonm@&#&@ Graph in the sections to

follow.

3.2 Motivation for random node placement

A natural question that arises when we use random node pkddor the sensor network, is the
part played by randomness in bringing out the ED from the Hidrmation. The answer is that,
if we use an arbitrary placement of nodes, the HD does notagiyeuseful information about the
ED. This has been shown in the following section, where weavsthat we can always come up
with an arbitrary node placement for which if the HD 2, r < ED < HD x r, wherer is the
radius of the geometric graph on which we measure the hopghSdact motivates us to use the
random placement of nodes, and we will prove that, in suchupselD gives useful information

about the ED, thus making the Random Geometric Graphs stiegeto study.

3.3 HD-ED Relationship in Arbitrary Geometric Graphs

In this section, we evaluate the performance of distangegroportionality in ararbitrary geo-
metric graph (by arbitrary we mean the node locations arggrar) with radiusr, and show that

this approximation is coarse. The setting and few notatewass follows.
Setting:
e n nodes are deployed on a unit 2-dimensional adeen an arbitrary fashion. The node

locations are denoted by the vector= [vy,vs,- - ,v,] € A", whereu; is the location of

thei* node.

e We form the geometric grapi(v, r) by connecting the nodes that are within the radia$

each other, whereis the radius for the arbitrary geometric graph.

We defineanchorsas nodes whose locations are known apriori, e.g., in Figureag have shown

4 anchorsy, b,, by andb,, with their position fixed at the 4 corners of the unit squdre
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by = (0,1) Area to monitor, A bs = (1,1) Area to monitor, A
° ° _ These paths are ong(v,r) ‘
o sample deploymentv o °
ONeighb(f)urso in the ° o ° o .
o Geometric Graph

(v,7) ° ° ¢

b1 = (0,0) by = (1,0) b sample deploymentv

I*" anchor location

Node locations can be arbitrary or random Anchor can be anywhere in.A, this is an example

Figure 3.1: An example deployment with the 4Figure 3.2: Graphical illustration ab, (v, h;)

anchors. andD,(v, ).
Notation:
e N =[n] ={1,2,---,n}, the index set of the nodes, i.e., node N has a location; on
A.

e b, = Location of the** anchor node, =1,--- , L, e.g., in Figure 3.1 = 4.

e H,,(v) = Minimum number of hops of nodefrom anchorb; on the graptG (v, r) for the

deploymenty.

e D,,(v) = Euclidean distance of noddrom anchorb, for the deployment.

D v, h max Dy ;
l( ) {ieN:H, ;(v)=h} l’( )
Dy(v.h)= _ min  Dy(v)

{iEN:Hl_’i (V)Zhl }

A graphical illustration of the above two quantities is giva Figure 3.2.

o N; ={keN :|jv—uwll <rk#j},j€ N. This is the neighbour set of nogen
G(v,r).
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a ajas >r

Figure 3.3: Condition for sequential neighbours in arlojtrgeometric graph.

With this setting, given the hop distangeon G(v, r) between a node and an anchor, we wish to
obtain constraints on the Euclidean distance of the nodwe &ochor;,. We define a sequence of

nodes{ay, as, - ,ax}, where alla; € N,i=1,--- | K, assequential neighbouriff

{&i,baiﬂ} fori = 2, .- ,K—l

Nai = {ai—l—l} fori =1

{&1;1} fori = K

We can observe ifa;, as, a3} have the following propertiesya; = r, azaz = r andayaz > r,*
they will be sequential neighbours @f(v,r) (See Figure 3.3). Then, by using cosine law in
Aajasas, We getajaz = \/7“2 + 12 —2rrcosy = r\/m > r, fory > z Now, to find
a bound on ED for HDy;, we construct a regular polygon with + 1 sides, all with lengthr, as

shown in Figure 3.4. We know that the total interior angl¢fis+ 1 — 2)m = (h; — 1)7. Hence

each angle ié’xl‘Tll)”. We see that(,h};‘fl”r > I iff by > 2. So, for all hop distancels > 3, each of
the internal angles will be- 2. Now we pick two adjacent nodesandd as shown in Figure 3.4.
We want the hop distance between them tdihaeve delete the edgel and increase all the other
angles by a very small amoutit hence we get the node sequence as shown in Figure 3.5. This

sequence of nodes will be sequential neighbours iff the Bivdens andd, i.e. r;, becomes> r.

'Define,ajar = [|va; — vay||



3.3. HD-ED Relationship in Arbitrary Geometric Graphs 29

all other angles
increase by

d this edge is deleted

h;+1¢d

all internal angles =~ hi+19

r= R4 008 >0
VS

A regular f; + 1 sided polygon hop distance betweens and d = h;

Figure 3.4: Construction to find the lower

Fi .5: Achi ility of the | :
bound on Euclidean distance. igure 3.5: Achievability of the lower bound

Now the following lemma says that for a certain choiceipf; > r with the nodes on the path

from s to d being sequential neighbours.

Lemma 1l Forhl>2and0<6<ﬁ,r1>r

Proof: In Appendix A.

Hences andd cease to be neighbours and the nodes in the pathditoni still follow the properties

of being sequential neighbours. Assuming other nodes todye than- from all the nodes of this
set ofh; + 1 nodes, the hop distance betweesndd becomes:;, however the Euclidean distance
between them is just more thanfor h; > 3. Forh; = 2, a construction similar to Figure 3.3 can
be done to show that the distance betweea a; andd = as is just a little more tham. Hence

for any arbitrary geometric graph in 2-dimensions, givea hiop distance between a node and an
anchor beingy;, > 2, the Euclidean distance can be arbitrarily close but moaa th which is

a trivial lower bound. The upper bound on ED remalis as usual, which can be achieved by
placing the nodes on a straight linalistance from each other to form a set/gf+ 1 sequential

neighbours. Hence, we have proved the following lemma.

Lemma 2 For arbitrary v andh; > 2, r < D,(v,h;) < D;(v,h) < hyr and both bounds are

sharp.
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Hence the hop distance in an arbitrary geometric graph omaepiioes not provide useful infor-

mation about the Euclidean distance between the nodes.

However, the situation changes when the distribution ofesdibs positive density over all points
on A, e.g., the node distribution is Uniform i.i.d. or Randonaideattice. As we will find out
in the following sections, in a random geometric graph witbudficient number of nodes, the

hop-distance serves as a good measure of the Euclideanatdista

3.4 ED-HD proportionality in Random Geometric Graph (RGG)

In this chapter, we formalise the notion of proportionabigtween the hop distance (HD) between
any two points (not necessarily nodes) on a unit adeand the Euclidean distance (ED) between
them. The nodes are distributed in a uniform i.i.d. fashieerda4, i.e., the location of each node is
uniformly distributed over4, independent of the locations of the other nodes (a formi@hitien
is given later). On such a deployment of nodes, we consid@eRtBG with radiug(n) = c\/%,
c > %r which ensures connectedness of the RGG with probabilipyagehing 1, as — oo
(Gupta and Kumar [9]). The notion of hop distance betweeniagbarbitrary pointsh; andb,
separated by Euclidean distanteés illustrated in Figure 3.6. A node that falls within a rasliof
r(n) from pointb;, i = 1,2, is connected td,, and this is counted as one hop. For a connected
RGG, there is at least one path between these two nodes, and tve get a path between the
pointsb; andb,. Connectivity of the RGG is ensured by the choicepf) and existence of at
least one node within a radiugn) of b; is ensured by Lemma 3. The minimum number of hops
for all such possible paths is called the hop-distance betweandb,. In this setting, we show
that the hop distance is nearly proportional to the Euchdgigtance in the following sense. For
eache,0 < e < 1, if r(n) = c(e) /™2, for an appropriate choice ofe), the probability that the

d d

hop distance lies in the interv%l—

r(n)? (1=€)r(n)

) goes tol asn — oo.

In Section 3.5, we establish the result for tiizeed pointsb; andb, separated by a distandeon
A. A construction ensures a path ﬂ% hops w.h.p%; hence the hop distance is no more

2w.h.p. (with high probability) means that the probabilifytiee said event- 1 asn — oo
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r(n)

Graphical illustration of hop—distance
between two given points on the unit area

this is counted as one
r(n) hop .
node location

this path is on the geometric graph

the minimum number of hops in all such possible paths
node location connecting the two points is called the hop—distance

Figure 3.6: lllustration ohop distanceStarting with each poirit;, we first seek a node within the
radiusr(n) of b;.

than this quantity w.h.p.. The lower boun%—), follows trivially by the triangle inequality. This
gives us Theorem 1. In Section 3.6, we generalise the restabbld simultaneously foall pairs

of points (b, b,) separated by the distandgTheorem 2). Finally in Section 3.7 we show that,
the constructions made to prove Theorem 2 extend to yieldEme 3, which is the generalisation
of this result for any pair of points ol. We note here that Khudet al. [14] have shown that
the hop distance lies w.h.p. in the inter\{z#’;), a%) for a fixed number, > 1, and hence their
result does not provide a means to control the accuracy @&gpeoximation between hop distance
and Euclidean distance. Here we show that the constaan be made arbitrarily close to 1 by

appropriate choice of

3.5 Proportionality for Two Fixed Points Separated by a Dis-

tanced
Setting:

e n nodes are deployed on a unit ardain the uniform i.i.d® fashion. The random node

3Py (z’th node falls in4; C A) = ‘\étlll , V¢, independent of all nodes+ i, where|A| is the area of the regioA.

Deployment of this kind is called uniform i.i.d. deployment
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[
| 1
Y

stips - An example of aN(n) hop path 7

Figure 3.7: The construction of a path taking the line jogin andb, as the axis. We are looking
at the distance traveled along this path\ign) hops.

locations are denoted by the random vectore A", with a particular realisation being

denoted by. We denote byP"(.) the probability measure aA” so obtained.

e We form the RGGG (v, r(n)) by connecting the nodes that are within the radi(s) of

each other, where(n), the radius of the geometric graph is chosen so that the metwo
remains asymptotically connected. We take) = c, /IHT”, c> ﬁ a constant; this ensures

asymptotic connectivity (see [9]).

Notation:

e Fix two pointsb, andb, in A such thab,b, = d, whereb, b, denotes the Euclidean distance

between the points andb,.

¢ If a node exists within a radius of(n) from each of the points;, then we obtain a path
between these nodes in the R@Gv, r(n)) (see Figure 3.6). The hop count of such a path
is the number of hops traversed on the RGG, plus 2A(et r(n)) denote the set of all such

paths betweeh, andb, for the deployment,. Then we define the hop distance betwéen

andbs, for the node deployment, by

min{hop count for paths i (v, r(n))}
Hble (V> =
n+ 2, if P(v,r(n))is empty
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The following lemma assures that there exists at least ode within a radius of (n) for any given
pointsb; andb,, w.h.p.. Define,B; = {v : 3 at least one node within a radius«f:) from b;},

i=1,2.
Lemma 3 lim,, .., P" (BN By) =1

Proof: P" (BN By) = 1 —P"(BfUDBS), andP™ (B{U BS) < P*(Bf) + P*(BS5) = (1 —

1
7T7“2(n))n + (1 _ 71—7"2(’)7,))” S 26—n7rr2(n) mo 0 Sincer(n) =c lnTn -

This Lemma tells us that the sB(v, r(n)) will be non-empty w.h.p.. Givea 0 < ¢ < 1, we will

write c(e) to denote the dependencebn ¢, and then we will writer(n, ¢) = c(e){/22. Now

define the event);, = {v : W“e) < Hppy (V) < %} The following theorem states that if
c(€) is chosen appropriately thé#t (E,) — 1 asn — oo, i.e., w.h.p.,H,,;,(v) is proportional to
d (= biby), where the proportionality constant?'tgre), but for an error that can be made arbitrarily

small by choosing to be small.

Theorem 1 For fixedb, andb, s.t.bib, = d, forall e, 1 > ¢ > 0, if ¢2(e) > 2q\/11_7, wherep and

q are any two constants satisfyifig-¢ < p < 1 and0 < g < p—(1—e¢), thenlim,,_, P" (E;) = 1.

Discussion: We see that as is made small (in order to achieve greater accuracy in thpqro
tionality between hop distance aal p becomes closer to 1, andcloser to 0, thus increasing
c(e), and hence making(n, ¢) larger than the critical radius for connectedness, ie5". Now,

if it is desired that-(n, e) < ., for some givernr,.., thenn can be appropriately chosen to
achieve this. Ifn is so chosen (and is large enough for the asymptotics to ‘ikigkhen we can
expect to get proportionality of hop distance ahih the sense of the theorem, and also a distance
discretisation accuracy of,... We see that, due to th¢¢) factor, we may need to be larger than

if the only objective was that of connectedness of the RGG.

Proof: The proof proceeds via a few lemmas. First, we define sometijearihat will be needed

in the lemmas and then state and prove the lemmas. The thealeiwilow thereafter.
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We are given ar > 0. We take ar¥’ < € and defineN(n) = [mw So,

d d
=t =" < T &

The construction in Figure 3.7 is done taking the straigie jpining points; andb, as the axis.

b, is at the centre of the left side of the rectangle ands at a distance along the horizontal

axis of the rectangle. The rectangular box up to Mg)"" strip, hereafter referred to ashdade

and denoted by3(by, b2), has been drawn along that axis and has shaded strips of yvi¢ih.

The maximum distance between any two points in consecutizdes] strips is(n) as shown in

the figure. We will show thab, is reachable (by reachable we mean that there exists a path as
shown in Figure 3.6 by which we can reathfrom b;) from b; in N(n) hops w.h.p.. If there
exists at least one node in all th&n) consecutive shaded strips starting fromwe can connect
these consecutive nodes each with one hop and consequehtiy\yn) hop path as shown in

Figure 3.7. Define,

o (b1, B(by,b2), N(n),v) : a path obtained by hopping over the nodes of Af(e:) consec-
utive shaded strips in the blad¥b,, b,) starting from point, for a sample deployment,

see Figure 3.7. For brevity of notation, we will uséo denote such a path.

e D(m(by, B(b1,b2), N(n),v)): Euclidean distance traveled along the axis of the blz(@de, b-)
by the pathr (b, B(by, b2), N(n), v), as shown in Figure 3.7. To make the notation simple,

we will use D(r) to denote this distance.

e A; = {v:Jatleast one node in th& strip of the bladeB(b;, b,)}

In each hop at least a distance(pf— ¢)r(n) is traveled along the blade. If there exists at least
one node in each of th&(n) consecutive shaded strips starting frém a distance of at least

N(n)(p — q)r(n) is traveled alond3(by, b2) in N(n) hops. Hence,

A
C {v:3Japathr(bs, B(by,b2), N(n),v) s.t. N(n)(p — q)r(n) < D(m(by, B(bi, b2), N(n),v))}
(3.2)
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Which implies,

P*{v : Japathr (b, B(by,bs), N(n),v) S.t.
N(n)(p —q)r(n) < D(n(b1, B(b1,b2), N(n),v))}
> P (nYP{a)})
= 1P (UXP{ag})

N(n)

ZMZWN (3.3)

Where the first inequality follows from Equation 3.2, the elify is due to De-Morgan’s Theorem

and the second inequality follows from the Union Bound. Wi maw prove the following lemma:

Lemma 4 lim,, .. SV P (A¢) = 0, if and only ife? >

2¢4/1-p2

Proof: Using the fact that node deployment is uniform i.i.d. ovex timit area of4,

N(n)
> P4
=1

(1 —=€)r(n)
< d +1 efnu(n)t(n)
A\ =€)r(n)

1_.2 1—p2
_ d / nz ¢ i S nc%ﬂ“ﬁ"
(1 — € )C vVinn
d n17262q v —c?2gr/1—p2Inn

- (1—¢€)e Inn ety (34)

r(n) = ¢y/™", c a constant, and by constructian(n) = /1 — p*r(n), t(n) = qr(n). Here the
first inequality follows from (3.1). In the second inequgliive have used the fadt— z < e™*.
The second term in the above equation goes to zero as co. To drive the first term to zero,

1
2q¢/1-p2’

lemma. m

it is necessary and sufficient to take- 2c2g\/1 — p2? < 0, i.e. 2 > which proves the
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Thus, under the hypothesis of Lemma 4, R.H.S. of Equatiog8e3 tol. Now we takep — g =
1—¢€¢ > 1—¢ asée < e for the givene > 0, this is possible sincé > p > ¢ > 0, by the

construction. Which is same as-¢ < p < 1 and0 < ¢ < p— (1 —¢). Then we have, using (3.1),

N(n)(p —q)r(n) = N(n)(L = €)r(n) = d

So, whenv € ﬂfi(ln){Ai}, by such a choice af, ¢, we travel at least a distance @&from b; along

the blade inV(n) hops. Since all the points within the blade up to fig:)™" strip are reachable,
by is also reachable froy in N (n) hops, see Figure 3.8. Hence the hop distance betiesmnd

b, can be no more thai (n).

N {4

C {v: Japathrs.t. D(7) > N(n)(p — q)r(n)}

= {v: Japathrs.t. D(w) > N(n)(p — ¢)r(n) > d}
= {v: byisreachable frond; in N(n) hops

C {v:Hpp(v) < N(n)} (3.5)
= Pp" <ﬂﬁ\;(1”){Ai}> < P{v: Hyu,(v) < N(n)} (3.6)

The second equality holds from the fact that existence df sygathr will guarantee reachability
of b, from b; in N(n) hops, see Figure 3.8. So, from this result together with Lanwe get the
following lemma:

Lemmab If 2 > —F thenlim,, . P"{v : Hy,(v) < N(n)} = 1.

2q+/1—p? '

In Lemma 4 we got a bound onthat depends on the given So, ¢ and consequently(n)
becomes function of. We invoke that dependence by changintp c(e) andr(n) to r(n,e€).
Where,r(n,e) = c(e)y/™2. So, from this point onwards, we will usén, ¢) instead ofr(n) to

denote that all the subsequent results are true-fore), wherec(e) satisfiesc?(e) > 5 11 =,
q -p

wherep andgq are any two constants satisfying-e¢ <p < land0 < ¢ <p— (1 —¢).
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= all points on this arc are reachable N(n)™ strip
t(n) = qr(n) from by in N(n) hops

the distance of this point from b, is more than
d by the choice ofp and ¢

Figure 3.8: All the points in the arc shown are also reachfbla b, in N(n) hops.

We also know thaty v € A", H,,;,(v) > —2, by triangle inequality. Then putting together this

r(n,e)’

and Lemma 5, we get,

r(n,e) (1 —=€)r(n,e)
= P 4y (v) < d +1p %1
—
M r(n,e) = 0 M (1 —€)r(n,e)
Now, taking the upper bound df,,,,(v) in the above expression,
d +1
(]' - 6’)7‘(71, 6)
d 1—e¢ (1 = ¢e)r(n,e)
T U= | 1=¢ T 4
=:1-4, ASe’'<e
d (1 —e)r(n,e)
= 1-4
1= r(m e [ M
d
< > N, 7
S Uoormg = (3.7)

3an N such that/ n > Ny, § — 1229 > (. Hence we have,

d d
lim P" : < H — Y =1
i {V e S b@(v’<<1—e>r<n,e>}
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2122
a part of the blade
o © “l 0\74/?4\;2 o o

hop distance is< [(p_ql);(nﬂ +1

Figure 3.9: Corollary for all pairs of pointg andz, € B(by, bs)

Hence the theorem. m

Extension: We see from Equation 3.5, that by ensuring the existenceletat one node in each
of the N(n) strips, not only we have a path &f(n) hops betweeh; andb,, but also have for all

pairs of pointsz; andz, € B(by, by) (see Figure 3.9), with the Euclidean distance between them

being denoted by; %, the hop-distance will be Lp_ﬁn e)w +1= {%W +1,i.e.

{mzj\i(ln)Al} Q {V : vzl,Zg c B(bl,bg),H2132(V) S [u_i}—%—‘ + 1} (38)

Now as in Equation 3.7, we can show the following,

(1 —¢e)r(n,e) \1—¢ Z122

2122
—_— > N, 3.9
A= artmg =N (3:9)

The triangle inequality holds for all deploymewnt henceﬁ <H, . (v),Vv e A" So, we can

state the above result in the following corollary,

Corollary1 Forall ¢, 1 > ¢ > 0, if () > 5 1 -, wherep and ¢ are any two constants
/1o

satisfyingl —e <p<land0<qg<p—(1—¢),

—
>

D =
33

2122

lim P" {V V21, 29 € B(by, bs),

n—oo

< H,.,(v) < m} =1

r(n, )
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3.6 Generalisation for all Pairs of Points at a Distancel apart

on a Unit Square

Now we generalise the result so that it holds simultaneofaiyall pairs of pointsh, b, in a

r{n)

V2
shown in Figure 3.10, so that the diagonal of each squarelgtri). From the centre of each

unit squareA, with b;b, = d. For that we split the areal into small squarelets of si as
squarelet, we construct a circle of radilis- @ and segment the entire circle by blades, as shown
in Figure 3.10. We start with one blade. It will cover sometjor of the circumference of the

circle of radiusd + ’"(’;). We construct the next blade so that it covers the adjacemiopoof

the circumference that has not been covered by the previade bWe go on constructing these
blades until the entire the circle is covered. In each bladeanstruct strips in the same way we
did previously. The only difference of these blades witht ihaFigure 3.7 is that here we have a
strip right in the beginning of the blade, which was not tharéhe previous construction. So, there

are N (n) + 1 strips now in each blade.

Now we choose itd, any two point$; andb, at a distancd. Pointb; will fallin some squarelet. If
we ensure that each shaded strip of each blade drawn fronetiie®f each squarelet is nonempty,
we can travel in one hop frol to any node in the first strip (since it is withitin) from all points

in the squarelet, under the condition as explained in Figuté) of the blade that containhg and
travel along that blade to reaéh, as shown in Figure 3.10. The radius of the circle drawn from
the centre of each squareletiis- @ since nah, that is at a distancéfrom anyb, in the squarelet
can be beyond this range, and by ensuring the existence eéstt & node in each strip of each

blade, all points inside and on this circle is reachabl&/iim) hops (As the radius of the circle has

r(n

d4 ")

, we need to redefin®’ (n) = [m—‘) Henceb, is reachable frond; in

increased tal + ’”(2")

N(n) + 1 hops and the hop distance betwég@andb, can be no more thaiv(n) + 1.

Some notations are in order,
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» r(n)
N 2
v
N ;

>\ r(n) : squarelet A

: o

o

o

o o o
r(n) unit square

N2 __«—— blade that contains b,

totally N(n)+1 hops
from b, toreach b,

this circle is split by the
blades
blades

centre of k—th
squarelet

j—th blade

r(n)
d+ 3

k-th squarelet
i—th strip

r(n)

3%

r(n)
d+ 5

there is a strip in the beginning of the blade here

An example blade

Figure 3.10: Construction for all paits andb,. There is a circle of radiug centred at the centre
of each squarelet and each such circle is covered by blades.
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this distance can be more than
r(n) if the restriction is not followed

the first strip of the blade

this distance should not be
larger than UW)
7T~ blade
r(n) " a squarelet

a node can fall at this point

This condition is necessary so that all points in the squarelet
is one hop away from any node in the first strip of all blades

Figure 3.11: Detailed view of a squarelet and the first strip.

a(n) Arc length = a(n)
r(n) N(n) hops \
N — —
am) WS Vs,
:pr(nT d+ 1 " ;' Blade

Figure 3.12: Let the angle subtended by the artg &ie o (n)

e By : j'" blade drawn from the centre of thé" squarelet of the unit square.

e J(n) : Number of blades that cover the circle of radilis- @ drawn from the centre of

each squarelet.

r(n)
e N(n)= [‘”72} , € < ¢, the number of strips in each blade is noWn) + 1.

(1—¢)r(n)

e K (n): Number of squarelets in the unit square.

e a(n) is the length of the arc of radiusthat lies within a blade, drawn takirtg as centre, as

shown in Figure 3.12.

e «(n) : angle subtended hy(n) atb;, see Figure 3.12.
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o 7;(b1, By, N(n),v) : apath obtained by hopping over the nodes ofil@) consecutive
shaded strips in the blads), ; starting from the node in the first strip that connects péijnt

for a sample deployment. For brevity of notation, we will use;, ; to denote the same.

o D(m (b1, Bi;, N(n),v)) : Euclidean distance traveled along the axis of the bladeby
the pathry, ; (b1, Bk ;, N(n), v). To make the notation simple, we will ué, ;) to denote

the same.
o A ;.= {v:3Jatleastone node in th& strip of B; ;}
hd F(dv V) - Sup{(blbg)eAQ:W:d} Hblb2 (V)

e H(d,v)= inf{(ble)eA%@:d} Hy,p, (V)

Now, we choose — ¢ = 1 — € as before.

{hjiAk i}
C {v: Japathr , by € By S.t. D(my ;) > N(n)(p — q)r(n)}
= {v: Japathm , by € By S.t. D(m;) > N(n)(p — q)r(n) > d}

C {v:Hy,(v) < N(n)+ 1,V (by,by) s.t.biby = d}
H(d e 1]+1 3.10
= {V. ( ,V)< (m"— ) + } ( . )

To ensure that all nodes falling in the first strips of the bgertaining to a squarelet is within
a distance of-(n) from any point on the squarelet, we need to ensure the didtjoadrom the

centre of the squarelet to the edge of the strip as shown iar&ig.11 is< ’”(2”), which gives

p > 2q, i.e. no two strips in a blade should overlap. If it is not sti¢id, there can be one event for
which the distance between the node falling in the first stnd some point on the squarelet can

be more tham(n), as shown in Figure 3.11.

By similar arguments as in Equation 3.7, it can be shown #hat/\V, s.t. the upper bound of
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H(d,v) in Equation 3.10 can be made , Vn > N.. We have,

(1- e)r(

=
-

(n) J(n) N(n)+1
]P (mkngka) >1 Pn

= ka
1 =1

(3.11)

i
—
.
I

The upper limit of; is now N (n) + 1, because of the extra strip in the beginning of the blade. Now
usinga(n) as shown in Figure 3.12, we get(n) = [%W Further, recalling the definition of

a(n),

a(n) (d+ %”)> = a(n) = u(n) = a(n) = %
- r(n)
= J(n) = ’7042(772)-‘ = r\/fdi;:(nﬂ 242

2
Also, K(n) = [%W . We carry out the calculation to find the condition@io drive the rightmost

quantity in Equation 3.11 to zero without the ceiling #m) and K’ (n), since the condition on

is the same even with the ceiling. Let us focus on the follgwarm,

v\ 2n(d+ ) [ a4 ] “
< (T(?ﬂ) V1—=pr(n) [(1=€¢)r(n) ! 2_ )
- (V2 Con(d+ 1) [ a4 2| emaV/1pPetnn
- \r() ) /1—pr(n) _(1 —e)r(n) .

Am d 1 :| |:( d + 1 + 2:| 6*4\/@6211111
1—

1—p? {7"3(77/) " 2r2(n) e)r(n)  2(1—¢)

4 @ paViore d 1 ni—ay/1-pe
= d| ——— +2 -
1= p? (1—-€¢)c*  (lnn)? + <2(1—6’) + <2(1—e/) + )) 63(111”)% T

1 1 pi-ay/1-pc 213
Rl (L) B A .
2 (2(1—6/)+ ) lnn (3.13)

To drive this quantity to zero as — oo, it is necessary and sufficient to take >
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know, for all (by, by) € A2 s.t.b1by = dandV¥ v € A", Hy,,(v) > -%. Hence H(d,v) >

= r(n) r(n)’

r(n)

Vv € A*. We also haveyn > N, (thl) +1< d___  So, definingE; =

(1—=€¢")r(n) (1=e)r(n)
{V 4 < H(d,v) < H(d,v) <

Cr(ne) —

W‘fme)} the theorem can be stated as,

Theorem 2 Foralle, 1 > € > 0, if ¢*(¢) > \/3_2 wherep andq are any two constants satisfying
—-p

q
l—e<p<land0d<qg<p—(1—e)andp > 2¢, on a unitsquare, thehm,, ., P" (E3) = 1.

3.7 Generalisation for all Pairs of Points on a Unit Square

Theorem 2 takes account of any two points.drat a fixed distance. We can generalise this
result for all distances. d using the same line of arguments as in Corollary 1. If we piok @@air

of pointsz; andz; in A, such thatiz; < d, we will encounter a situation similar as depicted in
Figure 3.10, the points; andb, being replaced by, andz,, d replaced byz;z; and the radius

of the circle byz;z; + @ Ensuring the existence of at least a node in each of thesstfithe

blades in the original circle of radius+ T(Q”), also ensures a path from to z; with hop-distance

ziza+ ziza+ o ,
being< (LLQ‘;T@I)W + 1) +1= qﬁw + 1) + 1. The last 1 comes from the first hop

from z; to the node in the first strip of the blade that containsFollowing the algebra similar to

Equation 3.7, it can be shown théﬁ%] + 1) +1< % for alln > N.. So we have,

1Mk j,iArji}t

N r(n)
__ Z1%22 + =5~
Q {V . Vzl,ZQ € .A, 2129 S d, HZlZQ(V) < ({m“ + 1) + 1} (314)
Now we taked to be equal to the diameter of the atdgwe define diameter as the maximum of
the minimum distance between any two points.nhere it turns out to be the diagonal of the
squareA). Then any pair of points; andz, on .4 will have the property;z; < d. So, we can

state Theorem 2 in more general setting as,
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Theorem 3 Foralle, 1 > € > 0, if (¢) > \/f_g wherep andq are any two constants satisfying
q P

l—e<p<landd<qg<p—(1—c¢€) andp > 2q, 0on a unitsquare,

Z12
2 < szg(") <

l1mIP’{V.V21,Z2€A=T(n,€)— (1—6)7‘(7%6)} :

n—oo

3.8 lllustration of Theorem 1 through Simulations

In this section we illustrate the result in Theorem 1 via dation. This also provides some insight
into how largen might need to be for the asymptotics to be useful. We intredhe quantity
n:=p—q=1—¢ >1—¢ and thus write:(n) rather thar:(e¢). We can choosé€ to be very
close toe, and approximate ~ 1 — . So,n gives the accuracy in the proportionality between

hop distance/) and Euclidean distancd); By Theorem 1, for two fixed points andbs, the%

r(n)? nr(n)
,Where0 < n <p <1

ratio will be within (nr(n), r(n)] with high probability (since: being in the interval[i d )

1

2(p—n)4/ 1-p?

implies that¢ ratio will be within (nr(n), r(n))), if () >

andn ~ 1 —e.

For a givere, 1 is fixed, and we choose such that,

/02
p = argmax(p —n)y/1 - p* = UREA (3.15)
p>n

4
Which minimises:(n). The minimume(n) is denoted by:,.;,(n) and we get,

8

(vVn?+ 8 — 377)\/8 —2n? = 2n\/n? + 8

We use this:,,;,(n) in the simulations and the corresponding RGG radius is medeto as(n, 1)
and the RGG a§(V,r(n,n)).

(3.16)

We take,n = 0.8, which givesc,.;,(n) = 3.23. With A being the unit squarf, 1}, we chose
two fixed pointsh; = (0.1,0.1) andb, = (0.9,0.9), henced = b;b, = 1.1314. Our simulation
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Histogram for two fixed points b1 and b2

0.7 T T
| n=028
0.6 1400 nodes
r(1400) = 0.2325

- Nn*r(1400) = 0.186
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=
>
2
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E 0.4
(a)
© 03
=
3
w 0.2

0.1
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d/h ratio ——————- >

Figure 3.13: Histogram of ratio for 1400 nodes (100 runs)

deploysn nodes in the uniform i.i.d. fashiom (varies as shown in Table 3.1), and builds the RGG
with radiusr(n,n). We then obtain the hop distande) petweerb, andb, on this RGG. This is
repeated 100 times for eaeh and the histogram of th% ratio, is plotted, taking 200 bins in the

interval[0, 1]. An example histogram for 1400 nodes is shown in Figure 3.13.

We see that th% ratio falls in the bin centred at 0.190, in 59% of the deploptseand in the
bin centred at 0.225, in 41% of the deployments. The frequehoccurrences (or the empirical

probability mass) of the corresponding hop distances foheaare summarised in Table 3.1.

From Table 3.1 we see that for small H,,,(V) falls outside the rang%m;‘fn), m> with
some positive probability. This happens for= 200, 400, 500, 800. But asn grows, Hy,;, (V)
falls within the predicted interval with probability 1. Fail » > 900, this was observed in this
particular experiment. We may infer that, for all > 900, we can approximate hop distance
betweerh, andb, to be proportional to Euclidean distance between them withceuracy factor
0.8. Of course, this value ot depends on the value gfand the locations of the poinks andb,,

e.g., ifp is chosen to be close fQi.e., giving much accurate proportionality between ED Bl
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n |r(n,n)| ok [How, |Probability mass. o
100|0.69351.6314 2 1 2.0393
200(0.52602.1510 3 1 2.6887
300(0.44562.5390 3 1 3.1734
40010.39552.8607 3 0.87 3.5758

4 0.13
500(0.36033.1402 4 1 3.9257
600(0.333713.3905 4 1 4.2390
700(0.31263.6193 4 1 4.5238
800(0.29543.8300 4 0.87 4.7879
5 0.13
900|0.28104.0277 5 1 5.0352
1000 0.26864.2122 5 1 5.2672
1100 0.25794.3886 5 1 5.4869
1200 0.24844.5547 5 1 5.694Q0
1300 0.24004.7141 5 1 5.8927
1400 0.23254.8683 5 0.41 6.0860
6 0.59
1500 0.22565.0150 6 1 6.2681
1600 0.21945.1567 6 1 6.4467
1700 0.21385.2943 6 1 6.6164
1800 0.20855.4264 6 1 6.7830
1900 0.20375.5542 6 1 6.9411
2000/0.19925.6797 6 1 7.1023
21000.19505.8021 6 1 7.2526
22000.191115.9204 6 0.03 7.3996
7 0.97

Table 3.1: Simulation Results
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Comparison of histograms of GCrit and G(V,r(n))
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Figure 3.14: Comparing the histograms (100 runsj @tio onG(V,r(n)) andg,,;;(V) for 1000
nodes

we will need larger values of.

Comparison with other Geometric Graphs: For a given node deploymentdefiner,,.;,(v) as the
least value of that makes thg (v, r) connected. We deno&&v, r...;(v)) by G...;(v). Figure 3.14
compares the! histogram for the proposed RGGV, r(n, n)) with that for G,,,(V), for n =
1000. We observe the variability i for G(V,r(n,n)) to be small and lies in the theoretical
interval (nr(n, n), r(n,n)] given by Theorem 1. Whereas, thdistogram foig...;;,(V) has positive
mass over an interval of 0.03 to 0.065 (see the enlarged &8db) ford = 1.1314.

WhengG(V,r(n,n)) is usedyr(n,n) < 4 < r(n,n) w.h.p.. Consider two pairs of pointa, , a.)
and (by, by) With @yay = dy, Hy 0, (V) = hy @andbib, = dy, Hy,,,,(V) = h, respectively. The-

orem 1 implies that for(n,n) chosen appropriately™ <ﬂ§:1 {T(fjn) <h; < m» 21

(as the probability of both the events 1 individually asn — oc). Thus forn large enough,

dy /ds
h1 /ha

< L w.h.p.. Hence, for = 0.8,0.8 < % <

nr(n,n) < Z— <r(n,m);i=1,2.S0,n <

1.25 w.h.p., i.e., ifh; /hy IS used as an approximation d@/d,, then the ratio of these quantities
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Histogram for GCrit
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Figure 3.15: Histogram o% ratio ongG...;;(V) for 1000 nodes (100 runs): poinisandb,

will lie in the interval (0.8, 1.25) w.h.p. if r(n, n) is chosen according to Theorem 1. Such a ques-
tion is of interest in the context of the GPS-free localisatpproach presented in [27]. We know,
proportionality betweed andh implies that the ratio ofl; /d; to hy /hy should be as close to unity
as possible. This can be achieved by choosimapser to unity. Of course, the value oafwill

accordingly need to be larger for the asymptotics to work.

On the other hand, consider the same ratiodoy; (V). Simulation withG.,.,., (V') yielded,0.03 <
% < 0.065 w.h.p. forb; = (0.1,0.1) andb, = (0.9,0.9) (see Figure 3.15). Similarly foi; =
(0.1,0.9) andas = (0.9,0.1), we have0.03 < z—ll < 0.07 w.h.p. (see Figure 3.16). Hence, for
Gerit(V), 0.46 < % < 2.33, which is substantially inaccurate compared;{d/, (1000, 0.8)).

These simulations show that if the proportionality betwé&grtlidean and hop-distance is con-
cermedG(V,r(n,n)) is better tharG,.,.;(V).
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Histogram for GCrit
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Figure 3.16: Histogram o% ratio ongG,..;;(V) for 1000 nodes (100 runs): poinis andas



Chapter 4

Distance Discretisation between Two

Random Nodes

In this chapter, we look into the relationship of Euclideawl &op-distance between the nodes of
a random geometric graph. The proof techniques and thercatisins are similar to what we got
for the case of point to point (Chapter 3) distance disaéitte. As shown in Theorem 4, we can
show that the Euclidean distance lies withih— €)hr(n), hr(n)] for this setup too, given that the

hop-distancé: between any pair of nodes is large enough.

Setting: We take a unit square arel n nodes are deployed Uniform i.i.d. on it, the node location
random vector is denoted By € A", with a certain realisation being = [v1, va, -+ ,v,] € A",
whereu; is the location of the’® node. The associated probability law is givenIby(.). After
deployment, the nodes form a geometric graph with radjug, »(n) = © (\/%) We will call

this geometric grap¥(v,r(n)). Here we try to find a bound on the Euclidean distance between

any pair of nodes og(v, r(n)) having hop distancé between them.
Notation:
e N =[n] ={1,2,---,n}, the index set of the nodes, i.e., node N has a location; on
A.
e D,,(v): The Euclidean distance o# between two nodesandb, a, b € N, for the sample

51



Chapter 4. Distance Discretisation between Two Random Node 52

deploymentv.

e H,,(v): The hop distance og(v,r(n)) between two nodes andb, a,b € N, for the
sample deployment.
D(v,h) = max Dyp(v
( ) {(a,b)eN2:H, ,(v)=h} ’b( )
D(v,h) = min Dyp(v
_( ) {(a,b)eN2:H, ,(v)=h} ’b( )
Here, we will taker(n) = ¢,/ Now we have the construction as shown in Figure 4.1. We
have split the unit squard into squarelets with diagonaln). We construct a circle of radius
hr(n) + @ centred at the centre of each squarelet. Then split it wighblades so that it covers

the entire circumference of the circle. Let us define theofeihg.
e K (n): Number of squarelets that splt.
e J(n): Number of blades to cover the part of circle withih
e A, ={v:3atleast one node in th& strip of ;' blade centred at the" squarele}

If for a deploymentv, there exists at least one node in each of/the 1 strips for each of the

J(n) blades centred at the centre of each of K@) squarelets, we hav@(v,h) > (p — q)(h —

Dr(n) — ’"(2"), since all nodes that fall within this distance can be redéhec 4 — 1 hops for that

v. Hence,

K(n J(n h—
{mkz(l) mjil) ﬂi:llAl}ij}

g {V : (p - q)(h - 1)7‘(71) - @ S Q(Va h) S E("? h) S hr(n)} (41)

Sincel > p > ¢ > 0, we can choosg — ¢ = 1 — ¢, for any givenl > ¢ > 0. For such a choice of
p andg, the event

K(n J(n h—
{mk;:(1) ﬂjil) mi:llAiJ,k}

C {v: ((1 —)(h—1)— —) r(n) < D(v,h) < D(v,h) < hr(n)}
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AN
r(n)
v2y
N ‘
PN r(n § squarelet A
: o
o
o
o o o
r(n) unit square
V2
e blade that contains b,

in total h hops
from b; to reach by

this circle is split by the
blades
blades

centre of k" b1

squarelet

hr(n) + @

j™ plade

k" squarelet

ith strip

centre of k"
squarelet T }/
7
h—2 h—1
(h—=2)(p = q)r(n)

all the nodes falling here will have hop distance
< h —1 from b;. So, the distance fromb;
to by can be no smaller than(h — 2)(p — ¢)r(n) — “2”)

there is a strip in the beginning of the blade here
An example blade

Figure 4.1: Construction using the blades cutting the arfasence of the circle of radius-(n) +
@ and the squarelet splitting the regigh
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Figure 4.2: Construction to find(n).

P <ﬂkK(n) m;’i’? ﬂ?;lAi,j,k)

< Pfvs (1= (-1 = 5 ) 0 < DO S D) S hrl)} @2

Now, we need to find the values dfn) and K (n). To find J(n), we need to define the following.

e a(n) is the length of the arc of radius-(n) + @ that lies within a blade, drawn takirigas

centre § is the centre of thé' squarelet), as shown in Figure 4.2.

e «(n): angle subtended hy(n) atk, see Figure 4.2.

Now we have,J(n) = {%W We also have from Figure 4.<,hr(n) + @) a(n) = a(n) >

u(n) = +/1 —p*r(n). Hencep(n) > hr%pQ. So,J(n) < Pir/(?rpi)-‘ = [7;(/21}”;2)-‘.

j
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2
We can find outk'(n) = [ ‘/ﬂ . Now let us compute,

r(n

N

P" (ﬂK(n) ﬂ;-]iri) ﬂ?:_llAi,j,k;> = 1-P" <UkK=(?) UL']—l - IAZCJ k)

v
T
g
g
™
E
B

> 1—(h— 1)022 1:n {”(21’1 _+ pﬂ o-mu(m)t(n)

o [r2h+ )| 1 o
— 1-(h-1= 2ay/1=p
h-1) { TPQLMR

=1t (4.3)

For brevity, we have carried out the calculation above withbe ceiling oni’(n), since the result

remains unaltered even with the ceiling. So, we get from Eqona 4.2 and 4.3,

Py : ((1 —h—1)— %) r(n) < D(v,h) < D(v,h) < hr(n)}

> P (mfﬁf) N7 Ak 1A”k,>

- =1
> 1—(h— 1)32 P@l“ ﬂ 11 pl-ctavi-r® (4.4)
C A/ 1 — p nn

Let us define the followingE,(n) = {v : (1 —€)(h—1) — 1) r(n) < D(v,h) < D(v,h) <
hr(n)}. Then Equation 4.4 implies, as— oo, P"(Ej(n)) =1 — O ( n_ \/—2)

Inn
2 1
ct >
ay/1-p?’

keepc as small as possible (this is needed because it will keep(theto be the smallest, which

So, we want,

for P"(E,(n)) == 1. We have already chosen-¢=1—-e¢=qg=p—(1—¢). To

is the radius of the geometric graph) we negd1 — p? as large as possible. So, we choose,

(1—€))y/1 - 6+V (1=c)*+8 , andg _3(1_6)+4V (=cf*+8 By this choice,

p = arg maxp
p, ¢ andc becomes function of. We will denote them by (), ¢(e) andc(e) respectively. The
radius of the geometric graph(n, e) = c(e)1/ ™" in turn also becomes a function af Define,

Ep(nye) ={v: (1—-€(h—1)—3)r(ne) < D(v,h) < D(v,h) < hr(n,e)}. Hence, for a
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givenl > ¢ > 0, writing g(¢) = q(€)/1 — p?(¢), we get the following theorem.

. 1—e
Theorem 4 For1 > € > 0, if ¢?(¢) > ﬁ whereg(e) = q(e)\/1 — p?(e), andp(e) = ——

—3(1—e)+4/(1-€)2+8
Q(E) = 4 1

lnn

nl-¢*(©g(e)
P (Ep(ne)=1-0 [ 1"

Thus, lim P*(Ep(n,e)) =1

n—o0o

(1—€)2+8
4 )

A plot of ¢g(¢) versus is given in Figure 5.4, which shows that for smaklewe need larger values

of c(e) andr(n, €).



Chapter 5

Distance Discretisation between A Fixed

Point and A Random Node

In this chapter, we will focus on the relationship of Euchdeand Hop distance between a node,
whose location is random, to a fixed point, e.g., an anchomr large sensor field, the anchors
(also calledbeacon} are usually placed at fixed locations, e.g. at the 4 corneesumit square,
and the nodes are deployed in some random fashion over tlaeesgA high probability bound
on the Euclidean distance given a hop distance will help terd@ning a region where a certain
node is expected to lie, and it will be helpful for finding obétlocation of the node. We used this
Euclidean distance information yielded by the hop distdogeopose an algorithm for localisation

in the next chapter.

In Section 3.3, we find bounds on Euclidean distance for anghap distance oarbitrary geo-

metric graphs in 2 dimensions, and show that for 2-D, the hsadce (HD) is not a good measure
of Euclidean distance (ED). However, when the node deploynsespatially homogeneous and
random, thus yielding an RGG, HD does become proportion&@Roin an approximate sense.
This has been explored in the sections to follow. For the R@@ges are distributed in a uniform
i.i.d. fashion overd c R?, i.e., the location of each node is uniformly distributediod, inde-

pendent of the locations of the other nodes. On such a deglolyaf nodes, we consider the RGG

with radiusr(n) = cy/®22, ¢ > ﬁ which ensures connectedness of the RGG with probability

57
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approaching 1, a8 — oo (by Gupta and Kumar [9]). We find in Section 5.1 that given a kiD
from an anchor node (location fixed) on this RGG, the ERetween the anchor and the node lies
within an interval (1 —€)(h — 1)r(n), hr(n)] w.h.p, for e > 0, with the convergence rate dictated
by thee chosen. We note that this result is different from the appnations of [20] or [27] where

d is assumed to be exactly proportionaltoRather, nodes having hop distaricégom the anchor
lies within an interval described by the two bounds mentibaleove. In Section 5.2, we show that
the rate of convergence can be improved if the radidses not vary witln. Of course, we need
to choosen large enough so that the radius for connectivity accordin@}is smaller than. We

extend both the results for the caseafidomised lattice deploymeérih Section 5.3.

Our results are via bounds and provide a sufficient condibothe rate of convergence. However
in Section 5.4, we have considered Poisson deployment im&stsion for which these conditions
are necessary and sufficient for the construction congidefenally in Section 5.5, we provide

simulation results to illustrate the theorems.

5.1 HD-ED Relationship in Random Geometric Graphs

In this section we will provide theoretical results condegndistance-hop proportionality in an

RGG. The setting and few notations are as follows. The gp#ind the notations are as follows.

Setting:

e n nodes are deployed on a unit atdan the uniform i.i.d. fashion. The node locations are
random, and are denoted by the random ve¥®ios A", with a particular realisation being
denoted bw = [vy,v9, -+ ,v,] € A", whereu; is the location of the'" node. We denote

by P"(.) the probability measure ad™ so obtained.

e We form the RGGG (v, r(n)) by connecting the nodes that are within the radiis) of

each other, where(n), the radius of the geometric graph is chosen so that the metwo

tw.h.p. (with high probability) means that the probabilifitioe said event- 1 asn — oo
2A randomised lattice deployment is obtained as follows. @te&aA is partitioned inta equal area “cells”, e.g.,

squares, and one node is placed at a uniformly distributedina location in each cell.
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remains asymptotically connected. We take) = cy/22, ¢ > a constant; this ensures

\/_’
asymptotic connectivity (see [9]).

Notation:

e N =[n] ={1,2,---,n}, the index set of the nodes, i.e., node N has a location; on
A.

e b, = Location of the!” anchornode, =1, --- , L.

e H,,(v) = Minimum number of hops of nodefrom anchorb, on the graptG (v, r(n)) for a

sample deployment.

e D,,(v) = Euclidean distance of nodérom anchorb, for the deployment.

Di(v,h) = max Dy (v
( 2 {i€N:Hy ;(v)=h;} l’( )

D,(v,h) = min Dy (v
Dy 2 {i€N:Hy ;(v)=h;} l’( )

Graphical illustration of the above two quantities is semiio Figure 3.2, withr replaced by

r(n).

In Section 5.1.1, we analyse the distribution of distanoefone anchor node and in Section 5.1.2,

we generalise it for, anchors.

The choice of the radius(n) = c\/E c> = —, does not only guarantee asymptotic connectivity
among the nodes, but also ensures connectmty of the notlesalivthe anchors. The following
lemma states that there will be at least a node within a distem) of each ancha¥,, [ = 1,--- | L
w.h.p. and so the nodes are connected to all the anchors imsa detwork. Definef3, = {v : 3 at

least one node within a radius ofn) fromb,},1=1,--- | L.
Lemma 6 lim, ... P" (N}, B;) = 1

Proof: P* (N}, B)) = 1 — P (UL, Bf) > 1 — S PYBi} = 1 - Y1 ,(1— mri(n))"
1 — Le™ ™™ "% 1 sincer(n) = ¢/ andl — x < e ™™, n

v
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5.1.1 Distance distribution from a fixed anchorb;: Uniform i.i.d. deploy-

ment

We make the construction as shown in Figure 5.1. Ftprfwithout loss of generality, we can
choosel = 1), we draw a circle of radiug,r(n) centred ath,, this is the maximum distance
reachable ik, hops, by triangle inequality, since each hop can be of maxirangthr(n). All
the nodeqi € N : H,;(v) = h} lie within this disk. So,D;(v, h;) < hyr(n) for all v. To obtain

a lower bound oD, (v, k;), we construct blades as shown in Figure 5.1. We start withotare.

It will cover some portion of the circumference of the cir@déradius h;r(n); see Figure 5.1.
Construct the next blade so that it covers the adjacentgyodf the circumference that has not
been covered by the previous blade. We go on constructirsg thieades until the entire portion of

the circle lying inside the unit squasé is covered (see Figure 5.1). Let us define,

e J(n): Number of blades required to cover the part of the circléimitA.

. Bg. : j'" blade drawn from the poirt§ as shown in Figure 5.1, < j < J(n).

On each of these blades, we constiycstrips, shown shaded in Figure 5:@5) being the width
of the blade and(n) the width of the strip. We define the following event.

o Al ={v:3Jatleast one node in thé&" strip of 5.}

Ifav e A

in V1l <i<h-11<j < J(n) ie, there exists at least one node in each of

the h; — 1 strips (see Figure 5.2) for all the bIadB%:, then for thatv, all nodes at a distance
< (p—q)(hy — 1)r(n) from b, are reachable in at mokt — 1 hops, hence will have a hop distance
< h—1< h. So, we haveD,(v,h;) > (p — q)(hy — 1)r(n), for such a deployment; see
Figure 5.2. Hence,

J(n h)—
(A At Al

IA
]

C {v:(p—q)(h—1)r(n) <D/(v,I) (v, ) < lyr(n)} (5.1)
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blade Bj-

O

J(n) blades

h; strips in each blade

Figure 5.1: Construction using the blades cutting the aiawence of the circle of radiugr(n).

Sincel > p > ¢ > 0, we can choosg — ¢ to be equal td — ¢, for the givene > 0. So the lower

bound in Equation 5.1 becomég,— ¢)(h; — 1)r(n) = (1 — €)(h, — 1)r(n).

To find the value of/(n), we need to define the following.

e a(n) is the length of the arc of radiugr(n) that lies within a blade, drawn taking as

centre, as shown in Figure 5.3.

e «(n): angle subtended hy(n) atb, , see Figure 5.3.

Now from Figure 5.1, we have](n) = {QQ’EMW. We also have from Figure 5.3;r(n)a(n) =

o) 2 () = T3 (n). Hencen(n) = Y12, S0.1(n) = [ 2]
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o o
u(n) = /1= pr(n) 2" 25 TN

1 b; 1 2 e hi—1 k
Blade Bé

(» — @) (h = 1)r(n)

all nodes that fall here will have hop distance< h; — 1 from b,

Figure 5.2: The construction withy hops.

Now we compute,

n J(n) ~h
P <m(1 zlllAl )

J

= 1-P (U Ut AL
J(n) hy—
s S e
=1 =1
> 1 (1) | | (1= u(n)(n))”
— (b — — —u(n)t(n
> 1 o ST
> 1—(y—1) _Th e—u(n)t(n)
24/1 — p?
= 1—(h—1) _ T e—nay/1-p*r?(n)
24/1 — p?
o (5.2)

The first inequality comes from the union bound, the secoeduality, from the upper bound on
J(n). The third inequality uses the result- z < e~*. We see that if the node distribution was
non-homogeneous with positive density over all pointslirthe term(1 — u(n)t(n))™ could have
been replaced byl — f,,.i,u(n)t(n))", wheref,,;, is the minimum density oved and asf,;, > 0,

the same convergence result would have been true even fenamoogeneous node placements.
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Figure 5.3: Construction to find(n).

Let us define Ey,(n) = {v : (1 —€)(hy — D)r(n) < D,(v,h;)) < Dy(v,l) < lyr(n)}. So, we

have, for the giver > 0, and using Equations 5.1 and 5.2,

1 > P"(En(n))
> P () it AL)
> 1—(m—1) T | nay/iRe (5.3)
2¢/1 —p?
which implies,
h frg
0<1—P"Ep(n) < (h—1) {#w ¢TIV (5.4)

—D

And asn — oo,

1 — P"(Ey, (n))
_ O (e nTPm)

1
- O —— .
(nq\/ 1_7’202) (5 5)

This result is true for any andq. But we can choose these constants so that the convergence

— 0 of the bound in Equation 5.5 is the most rapid, iyggndq are chosen so as to maximise
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g(epsilon) vs epsilon plot
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epsilon

Figure 5.4:g(¢€) vse plot.

q+/1 — p?, thus making the upper bound to reduce at the fastest ramzhEgivene >0,p—q=
1—e=¢q=p—(1—¢€). We can show thap = argmax,(p— (1 —€))y/1 —p - 6+” (1<) +8
— _3(1_€)+4V (=98 Then writing,g(e) = q(e)y/1 — p2(¢), we obtain the following theorem,

Theorem 5 For a givenl > e > 0, andr(n) = ¢y /22, ¢ > 4=, P"(E),(n)) =1 -0 (;2)

ng(e)c
whereg(e) = a(c) /T~ 77(d),
1—e+4/(1—€)248 —3(1—€)++/(1—€)2+8
p(€>: (1—¢) 'q(€>: (1=€)+4/(1=¢) .

4 4

Remark: A plot of g(¢) vse is given in Figure 5.4. We see th@te) | 0 ase | 0. Hence Theorem 5
says thatim,,_,., P"(E,(n)) = 1, foranyl > ¢ > 0, so we can expect a node having a HD of
h; from anchor, to be within a distanc&1 — €)(h; — 1)r(n), hyr(n)] from b, in a dense network.
We notice that the width of this band of uncertainty is royghin), which is the unit of distance
measurement of(v, r(n)). The theorem also says that the rate of convergence is gevésnthe

e chosen, i.e., the smaller thethe slower the rate of convergence.
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5.1.2 Distance distribution from fixed anchorsy;,l = 1,---, L: Uniform

I.i.d. deployment

For L anchors, the question arises whether the hop-distancestfre . anchors ardeasibleor
not, e.g., if we denote a disk with centieand radius-, by C'(a,r) = {z € A : ||z — d|| < 1},
then a necessary condition forfeasibleh vector b = [hy, -+, hy, -+, hy] € NE is the hop
distance vector) is that” ,C (b, hyr(n)) # ¢ (there will be other feasibility conditions also). We
denote the set of afeasibleh vectors byH(n) (note thatfeasibleh vector depends on). We
see thath € H(n), N, Ep, (n) 2 N, ﬂjﬁ? N5t AL, which implies that (analysing similar to

Equation 5.2),

P (0B () > P (k)% nltal)

> 1= (h—1) {72 T wnqﬂ

=1 1—p?

= P" (Niz By, (n)) =1- 0 (n—q 1—1’202)

Hence we get the following theorem,

Theorem 6 For a givenl > e > 0, andr(n) = ¢y /%%, ¢ > 2=, Vh = [hy,-++ by, hy] €
H(n),
n 1
P (mlelEhl(n)) =1-0 (W)

whereg(e) = q(€)/1 — p*(e),

1—e+4/(1—€)248 —3(1—€)++/(1—€)2+8
ple) = ZEVIZIHE () = U yIo

4 4

This theorem tells us that for a feasilde the node lies within the intersection of the annuli of
inner and outer radiil — €)(h; — 1)r(n) andh;r(n) respectively, centred at anchdysl <[ < L,
with a probability that scales as shown in the above theorAngraphical illustration of this is

shown in Figure 5.5 fol, = 4.
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Figure 5.5: Graphical illustration of how Theorem 6 yield®eation region for a node that is at a

HD h; from anchor;, 1 <[ < 4.

5.2 HD-ED Relationship in Random Geometric Graphs: Fixed

Radius

The scaling of-(n) with n as shown in the previous section ensures asymptotic cawnitgetnd

increases the precision in localisationras— co. But in a wireless sensor network the radius

of the RGG on which hop-distances are measured often

camesgo the radio range for a given

transmit power, and hence does not decrease witBo, it is meaningful to use a fixed radius

for the RGG and it is denoted liy(v, ). But for connectivity, we need to use number of nodes

sufficient to make the network connected (i.e., the radiwsighscale withn like r(n) = ¢, /22,

c> %r a constant; see [9]), i.e., need at least= inf{n :

n

r(n) < r} nodes. Using a constant

value for radius-, and redefiningz,, = {v : (1 —¢)(ly — 1)r < D,(v, ;) < Di(v,hy) < hyr},
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where the hop distance is measured on the RIGG ), we can show (along similar lines as for
Equation 5.2),

—
(Y

Pn(Ehz)

J hi—1 4l
> P (mjzl e AM)

V
—_
|
—~
S
|
—_
~—
- 1

] e -

whereJ < L ”j” J . Which implies, as: — oo,
—Pp

1=PY(By,) = O (e

PYE,) = 1-0O (e—”q I—W) (5.7)
So, we can state the following theorem,

Theorem 7 For a givenl > ¢ > 0, and a fixed-, P"(E},) =1 - O (e*ng(e)c%z)'

whereg(€) = q(€)/1 — p*(e),

1—et+4/(1—€)2+8 —3(1—€)++/(1—€)?+8
ple) = ——F——q(€) = ¥ :

Hence lim,_.., P"(E,,) = 1. For L anchors, we will get/h € H (note that the set of feasible

vectors,H, does not scale with in this case),
1 - PN, Ey) = O (anq HW) (5.8)
Hence we get the following theorem.

Theorem 8 For a givenl > ¢ > 0, andr fixed,Vn > ny = inf{n : r(n) < r}, Yh =
[hla"' 7hl7'.. 7hL] EH;
P (M) = 1— O (e
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Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d. Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d.
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Figure 5.6: 1000 nodes, 5 hops, = 0.4, Figure 5.7: 5000 nodes, 5 hops, = 04,

P*"(Ey(n)) > 0.37. r(n) = 0.1876. P*"(Ey(n)) > 0.79. r(n) = 0.0931.
The thin dashed lines show the ED bounds given by Theorem 5, étthick solid line shows ED(h; — 1)r(n) from
bi.r(n) = % nn

whereg(e) = q() /1 p(e),
1—e+4/(1—€)248 —3(1—€)++/(1—€)2+8
ple) = ZEVIZIHE () = 202 yIO

4 4

Remark: We see that, for atlh € H, lim,_... P" (N, E},) = 1, but with an exponential con-
vergence rate compared to the power law scaling in the pusvsection. But it also says that
the precision of localisation remains fixedratather than increasing with like in the previous

section.

5.3 Extension to Randomised Lattice Deployment

In the previous sections we analysed the performance of BEpi#dportionality approximation for
uniform i.i.d. deployment. In this section we will prove aslar result for the randomised lattice
deployment. In randomised lattice node deployment, thearaa is split inta: cells each of area
%, and in each cell exactly one node is deployed, uniformly tive cell area. The locations of the

nodes in two different cells are independent of each othes.déhote bwgggg(.) the probability
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measure o™ so obtained (this is different from the uniform i.i.d. meges#"(.)). We will show
that, for this deployment also the above theorems hold. Mereonsider the case in which the
radiusr(n) of the RGG scales with as defined before. For fixedthe theorem is valid too, which

can be proved in a similar way as done in Section 5.2.

We have the following notation,

e S;7: area belonging to th&" strip of j*" blade (refer to Figures 5.1 and 5.2) of atda)t(n)

that falls in thek!” cell of the randomised lattice structure.

Thus,> 1, Si7 = u(n)t(n), V1 < i < by — 1,1 < j < J(n). Since a single node is uniformly

distributed over each cell whose aredtis

n ¢ - Si’j = 1,5
Pri (Ai,j ) = H (1 - f ) = (1 - nSkJ)
k=1 n k=1
We see that,
i o Vi<i<h -1
(1= nSy7) = n(l = u(n)t(n))
=1 V1 <j<.Jn)

Now, we know that the arithmetic mean is no smaller than tleegric mean. It follows that,

n

Pr, (ALY = JJ(—nS) < (52(1—nskﬂ)>

k=
= (I —u(n)t(n))" (5.9)
Hence we get (analysing similar to Equation 5.2, 5.3, 5.4%B}the following theorem,

Theorem 9 For a givenl > e > 0, andr(n) = ¢/ 22, ¢ > = Php (B (n) =1-0 (ng(—l)g)

whereg(e) = q(€)/1 — p*(e),

1—e+4/(1—€)2+48 —3(1—€)++/(1—€)2+8
ple) = TEVIEITER g ¢y = Z2OTIVImOTE,

4 4
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Hence lim,_.. P%, (Ey, (n)) = 1. Following a similar analysis as in Section 5.1.2 foanchors,

we can state the following theorem for randomised latticgéendeployment.

Theorem 10 For a givenl > ¢ > 0, andr(n) = ¢y/%%, ¢ > =, Vh = [y, Jy, - by €
H(n),
1
Pho ("B () =1- 0 (s

n9(5)52

whereg(e) = q(e)\/1 — p?(e),

1—e+q/(1—€)2+8 —3(1—€)+4/(1—€)2+8
ple) = ———.q(e) =

4

5.4 ED bound on a Single Blade with Poisson Deployment

Here we consider another kind of deployment, where we piekntimber of nodes with the distri-
bution Poisson() and deploy these nodes uniformly over the afed he number of nodes falling
in A is arandom variable with mearn and since we are throwing the picked nodes uniformly over
A, the nodes falling in disjoint areas are independent andsBai distributed with rate propor-
tional to the area considered. Hence, for disjoint striphareau(n)t(n) each and the number of
node selection being Poissan(the number of nodes falling in each strip is Poissarfif)t(n)),
independent and identically distributed. Let the prolbgbiaw associated with this kind of de-
ployment be denoted b7, (.). Let us focus our attention to a certain blaie as shown in
Figure 5.2 pivoted at the anchor locatibn We also denote the maximum and minimum Eu-
clidean distance travelled by/a hop path within this blade b@fé (v, hy) andQlB;' (v, h;) respec-
tively. Now, ensuring at least one node in each of khe- 1 strips ofBj. will ensure the event

1 ! __ Rl
E,lfj(n) ={v:(1—-¢€(h—1r(n) < QlBj(v,hl) < DlBJ (v,hy) < lyr(n)} also occurs. So, we
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have for the givenr > 0,

n B!
1 > ]P)PO(Ehl](n))
> P, (N AL)
_ (1_€—nu(n>t<n>)hl—1

(1 _ n*CQq\/ﬁ) " (5.10)

The second inequality comes becaysec ﬂﬁglAﬁ’j} C{ve E,Kj; (n)} and the first equality
comes because of the independence of the number of nodes Hasson deployment and disjoint
strips. Since in this deployment we are not using the uniambpthe expression for probability
is exact. Hence the lower bound on the probability of the e\@tﬁ (n) is tighter, yet the rate
of convergence follows the power law (""" — »—4v =Y \which shows that the rate of
convergence is not affected by the union bound used in thee@fasniform i.i.d. and randomised

lattice deployments.

5.5 Simulation Results

In this section, we illustrate Theorem 5 through simulati@ve deployn nodes in uniform i.i.d.
fashion on the unit squatd, and form the geometric gragh(v, r(n)), wherer(n) = -, /22,

We also have 4 anchors at the 4 cornerslof

5.5.1 lllustration of Theorem 5 with increasingn for a fixed ¢ and HD

Recall from Theorem 5, the Euclidean distance of a node frdisred anchor lies in(1 — €)(h; —

1)r(n), hyr(n)] with probability > 1 — (hy — 1) [#’“Q(J n~9< for a givene and a hop-
(e

distanceh; from anchom;.

In this section, we fix = 0.4 and hop-distancé,; = 5 from anchorb, located at the bottom-

left corner of the unit squargl. The results are summarised in Table 5.1 and illustratesthew

theoretical bounds given in Theorem 5 becomes tighter asnarease the number of nodes
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n | r(n) [(L=¢€)(hy —1)r(n)| D, D, |hyr(n)|PLB|EP
100010.1876 0.4494 0.69340.90530.93620.37 1
2000 0.1391 0.3336 0.51960.667§0.69500.61| 1
3000 0.1166 0.2796 0.43130.55900.5826 0.70| 1
4000 0.1028 0.2465 0.3761]0.49290.51360.75| 1
5000 0.0931 0.2235 0.34280.45590.46550.79| 1
6000 0.0859 0.2062 0.31230.419110.42950.81| 1

Table 5.1:(1—¢)(h, —1)r(n) andh,r(n) are found from Theorem 2D, and D, are the maximum
and minimum EDs from anchargiven the hop-distande = 5. The theoretical Probability Lower

Bound (PLB) =1 — (h; — 1) L\/%w e~m9(9r*() and the Empirical Probability (EP) is found
T
4

from this experimentr(n) = =, /22, ¢ = 0.4.

s n

keeping the hop-distanég ande fixed. In this simulation, we useld = 5 ande = 0.4.

Figures 5.6 and 5.7 show the theoretical bounds given by rEne®, and only those nodes are

shown that have a hop-distante= 5 from anchorb;, for 1000 and 5000 nodes respectively.

5.5.2 lllustration of Theorem 5 with decreasing HD for a fixedn and a fixed

lower bound on probability

In this section, we have fixed the number of nodes= 5000 and also fixed the lower bound
on probability that the node lies within the bound[0f — €)(h; — 1)r(n), hir(n)] (as given by
Theorem 5) a0.80. Figures 5.9, 5.10 and 5.11 show that as we decrease theistapa¥),, the
bound on the ED becomes tighter, which implies that if we kibedower bound fixed, thethat

achieves that lower bound will be smaller for smaller hogtainces, as predicted by Theorem 5.
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Figure 5.8: 5000 nodes, 12 hops.

Predicted region for h = 8, on G(V,r(n)), Uniform i.i.d.
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Figure 5.10: 5000 nodes, 8 hops.
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Figure 5.9: 5000 nodes, 10 hops.

Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d.
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Figure 5.11: 5000 nodes, 5 hops.

The thin dashed lines show the ED bounds given by Theorem 5, étthick solid line shows ED(h; — 1)r(n) from
by. For all the casesP”(E;(n)) > 0.80. r(n) = =

For 5000 nodesy(n) = 0.0931.
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n |(1—e)(hy—1)r| D, | Dy | hr | PLB |EP

1000 0.2560 0.34830.45740.5000 0.0000
2000 0.2560 0.34790.46770.50000.0000
3000 0.2560 0.37750.48350.50000.0000
4000, 0.2560 0.37410.48430.50000.2906
5000 0.2560 0.38310.48970.50000.7733
6000 0.2560 0.37050.48260.50000.9275

N Y

Table 5.2: Radiusr = 0.1, hy = 5, ¢ = 0.36. The theoretical PLB =1 — (h; —

7Th1 —ng(E)T2 . . . .
1) [ﬁmw e . Abbreviations are as defined in Table 5.1.

5.5.3 lllustration of convergence in probability for the geometric graph with

fixed radius

Recall from Theorem 7, the Euclidean distance of a node fréimed anchor lies in(1 — ¢)(hy —

. .- . - whi —n (6)7“2 - _Ai
1)r, hyr] with probability> 1 — (h; — 1) me e~ ™99 for a givene and a hop-distande
from anchor,.

In this section, we fix the radius of the gragliv,r), » = 0.1 and takeh; = 5, ¢ = 0.36. The
simulation results are summarised in Table 5.2, which shbatsfor smallem, the lower bound
of probability (as given by Equation 5.6) is weak, but thevargence rate, due to its exponential

nature, is very rapid with the increaserin



Chapter 6

Application to Node Localisation

Localisation is defined as the procedure for estimatingdbation of a node. In a wireless sensor
network setup, we use the information of hop distance of arican the anchor nodes to estimate
the location. Usually, the anchor nodes are fixed at somégomthe region to be monitored and
the nodes are deployed randomly over the area. So, for tiaésation application, we will use the

fixed point to random node theorems from Chapter 5.

The setup for this application is as follows. nodes are deployed uniform i.i.d. on a unit area
A = [0,1]*>. We consider the geometric graph with radit() on this node placements. The
hop-distance corresponds to the hops over this geometjuhgi(V,r(n)) in this chapter. We
introduce an algorithm called Hop Count-derived Distabhased Localisation (HCDL), which
is explained in detail in the next section, to estimate tloation of each node. Also, to use this
algorithm, we need the information of the radiys). We provide a scheme to estimate.) using
the ED and HD between the anchor nodes only. We compare tii@mpance of this algorithm
with HCRL, proposed by Yang et al. [27], and PDM, proposed loy land Hou [17]. Both

techniques are discussed in Section 2.4.
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6.1 Algorithm: Hop Count-derived Distance-based Localisa

tion (HCDL) 1

From Theorem 5, we know that given a hop distahdeom a fixed anchor located at one of the
corners of the unit square, the Euclidean distance ligglin- €)(h — 1)r(n), hr(n)] w.h.p. Also,
with multiple anchors, the node is expected to be in the setetion of all these annuli as given by
Theorem 6 and shown in Figure 5.5. The algorithm HCDL explthis fact. The algorithm is as

follows.

6.1.1 The Algorithm

STEP 1: (Initialisation) Given the geometric grap&(V,r(n)) and the corresponding radius
r(n), each node finds the hop-distances from th@nchors and sets up its olin= [hy,- - -, hy]
vector, whereh; is the hop distance of the node fraltt anchor (This can be carried out by a

distributed Bellman-Ford algorithm).

STEP 2: (Region of Intersection)Pick a certain node, pick itls vector as found fronSTEP 1,
set are, small enough, and find the region of intersection formedieyennuli of radi{(1 —¢)(h; —

1)r(n), hyr(n)] centred at thé" anchor location] = 1, - - - , L, for that tagged node.

STEP 3: (Terminating Condition) Check if the region of intersection is non-empty, otherwise
increase the value ef For a finite number of nodesand a small enough it is possible that the
annuli do not have a common region. A graphical illustrat®given in Figure 5.5 for 4 anchors.
The value of for which an intersection is found, can be different for eifnt nodes. Hence, this

step can be stated as follows.

IF there is an intersection, declare the centroid of the regfantersection as the estimate of the
node. GO TCSTEP 4

ELSE increase: by an amount, 0 < k£ < 1. GO TOSTEP 2

1This is a joint work with Venkatesan N.E. and Prof. P. Vijayriar
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STEP 4: (Repetition)RepealSTEP 2to STEP 3for all n nodes.
STEP 5: STOP

Time complexity of HCDL: Assuming that given a region of intersection, the compaitatif the
centroid is of constant time, the time complexity to find tlog ldistances of nodes from thd.
anchors i<0(n?). Hence,STEP 1completes inD(n?) time. After getting the hop distances, we
are increasing thein each iteration and if there is an intersection in the anm# compute the
centroid, which is arO(1/k) (k is the step size of the increment Qfcomputation. So, for each
node the time complexity of th8TEPS 2 to 4is O(1/k). Forn nodes, it isO(n/k). Hence, the
time complexity of HCDL algorithm i€ (n?) + O(n/k).

6.1.2 Estimating the value ofr(n)

We notice that the choice of(n) only requires the network to be connected, and hence we can
use the critical graph (the connected geometric graph vmtallest radius for a certain node de-
ployment) for localisation using HCDL. Algorithm that gvé¢he critical graph or any geometric
graph does not usually give the value of the radius of thatrgggnc graph (e.g., the DISCRIT
algorithm proposed by Acharya in [1] gives an approximaidr...;(V), but does not give the
rerit), thus, compelling us to find out an estimate of the trge) (#(n)) using the hop distance
between the anchors and the Euclidean distance between lthé¢ine following, we illustrate one
such method to estimate thén) using the HD and ED between the anchors and the point-node
theory (Chapter 5).

Assume two anchorg;, andb;, with their locations fixed and a hop-distankeébetween them.
Being anchors, the Euclidean distance between thigm,is known. From this information, we
want to get an estimate of the raditf3:) of the geometric graph using the point-node theory of
ED-HD relationship only (Chapter 5). For that, we pick arermtediate nodé on the shortest path
betweerb,, andb,,, such that the node is nearest to the straight line joibingndb,,, as shown in
Figure 6.1. Denoting the vertical distancekdfom the straight line as), we claim thatw < r(n).
The argument is as follows, if we consider the node that isfmpeaway fromp,, in the shortest

path between,, andb,,, it lies within a circle of radiug (n) of b, . Hence its vertical distance from
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dl K d2‘s

d 1

this distance < r(n)

beacon g

first node on the shortest path between the
beacons

Figure 6.1: Construction to show hown) is estimated inG(V,r(n)) using the ED and HD
between the anchors only and the node-point theory.

the straight line cannot be more thafn) (see Figure 6.1), and since we are considering the node
that is closest to the line, hence, < r(n). We can state this result in the form of the following

lemma.

Lemma 7 A node on the shortest path between two fixed anchpm@nd b,, and closest to the

straight line joining them, is no farther that{n) from the line.

Let us denote the hop distance betwéegrandk by h, and that betweeh andb,, by h., and the
Euclidean distances b¥ andd, respectively. Sincé is on the shortest path betwegnandb,,,

h = hi + hy. The perpendicular from on the straight line joining;, andb,,, divides the line into
two parts of lengthi, ; andd, ; as shown in Figure 6.1. We see thiat, = d; s + da 5, and by

triangle inequalityd;,;,, < hr(n). Following is the calculation to find out a lower bound&p, .

— /A2 — 2
d175 — dl - U}2, d2,8 — d2 - U}2

Now, according to Theorem 8; > (1 —¢€)(h; — 1)r(n),i = 1,2 w.h.p. and we knowp = h; + hs
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andw < r(n). Hence,

dis = \/d2 —w? > \/[(1 = €)2(h; — 1)22(n) — r2(n)]*,i = 1,2 (6.1)

Where,z™ = max{0, z}, the above is true since distance cannot be negative.

i, = s+ da 2 r(n) (VI =920 = D2 =17 + /[ = (e — 17~ 1T7)
= hr(n) = dys, > r(n) (VT = 20— 12— 17 + /[T — (b — 12— 1Y)

d
= Z;ng <rn

(6.2)

= - =T + V=Pl =T

All the above statements are w.h.p. The quantity) is highly probable to lie within this interval
asn — oo, but we do not have the distribution ofr) within this interval. So, with this infor-
mation, if we need to estimatén ), we should choose a distribution that gives the largesbpmgtr
For a continuous random variable with bounded support, thisum distribution is the entropy

maximiser. Hence, the estimateidh) is,

f‘(n) ~ 1 dl112 4+ dhlg
T2\ h U= — 12— 1 + /(1= (ha — 1)? — 1]*

We notice that, the choice of a nofl@xplained above, only gives us< r(n), which is true even
if we takek to be the node one hop away frdm andh — 1 hops away fronp;, on the shortest
path betweer;, andb,, (instead of taking: to be the node nearest to the straight line joining

andb,,). The inequality of Equation 6.1 still holds and the estienattr(n) given by Equation 6.2

: : o _ o1 J
remains valid. Hencéy; = h — 1 andhy, = 1, andr(n) 3 (h + V(1—2(h-2)2-1
This is how we estimate theg(n) for a pair of anchors. For localisation we halieanchors and

L
< ) pairs of anchors, each of which will yield an estimate-of). In HCDL, we use an average
2

L
of all these< ) values ofr(n) to get the final estimate(n) of r(n) for a givene.
2

Figures 6.2 and 6.3 show the error histogramg (@f) for ¢ = 0.02 and0.2 respectively. While

simulating the HCDL with the true value ofn), it was found that the maximum value ebver
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r(n) estimation error PDF r(n) estimation error PDF
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est r(n) - r(n) (1000 nodes, 100 runs, epsilon = 0.02) => est r(n) - r(n) (1000 nodes, 100 runs, epsilon = 0.20) =>

Empirical PDF
Empirical PDF

Figure 6.2:r(n) estimation error fore = 0.02  Figure 6.3:r(n) estimation error foe = 0.20

r(n) = /", 1000 nodes, 100 runs, 100 bins ir-0.02,0.02].

all nodes remains near the valuedo?, and the minimum was close €002 (the starting value of
was taken to b6.01 and was increased in stepsiofi1 (= k)). This was the reason to choose these

values fore. In both the cases, it turns out that the error in estimatimg was within+0.010.

6.2 Simulations implementing HCDL ongG,,.+(V)

In this section, we try out the HCDL algorithm on the criticathph formed by, nodes deployed
uniform i.i.d. on A = [0,1]%2. We know from Chapter 5 that for the point-node theory, there
is no restriction in choosing the radiu$n), other than requiring the network to be connected.
Hence we can choosén) to be the critical radius itself and hence can try out the gm on

the critical graphg...(V). We take the number of anchors, = 4, placed at the 4 corners of
the unit square. We start with= 0.01 and increase with step size= 0.01. In each step of
increasinge, we computer(n) and use that value for computing the intersection of the lnnu
of radii [(1 — €)(h; — 1)7(n), 7 (n)], I = 1,---, L. Figure 6.4 shows the error pattern of the
localisation of 1000 nodes using HCDL and Figures 6.5 andl@&oBv the error pattern for the same
node deployment with the localisation strategy being PDM HICRL respectively. Figure 6.7

shows the comparison between the CDFs of localisationsemndhe three strategies.

The simulation results clearly show that for the same nogd#ogenent, the HCDL algorithm,
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Localization error pattern using G i HCDL Localization error pattern using G it, PDM

/ \ \i/'\\ 0.; N \\
\\\\‘\\Q il
87 2;;15\//; VAL 2 § :\i ;4% /\7//// &
07 —= ~ ” P 0.7 & \
ol — =

o
©

oy S N =
L= 2 L
WA LT S L / 1~/</
—_— - = . —_— —
e == “,q N /,,/://f N \\“i /M = .
05777/ . N /\< = ’/— 05f——o—"" \\\ \\ ,/ <\ =
== AN EANT, A4 L RNNENONEN =
0.4 /‘\//\ \Z » RVVK o | % U ———— — = AN \\\]\\ ,/\ E
=7 A v T W LN = < Y

A /‘\\ VRS \7/'\ /ﬂ‘\\/\//// : 77i\;; N;J 1 \\\\L\\,E\\%\ — |
T \// N \\;\At\' ' 7 ) ////\ o3 %/*;\ N “ \7/V ! 4*\ AN &‘ AN /\TR )
- Ay N ;\ . ﬂ

. \>\// />7////

02 /A y /V\/ N T SN e
; Wy //%< M W %W//Wj V%l =hA

e

0.1 02 0.3 04 05 0.6 0.7 08 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000 nodes, 50 x 50 bins, avg error = 0.045 1000 nodes, avg error = 0.055
Figure 6.4: HCDL: 1000 nodes. Figure 6.5: PDM: 1000 nodes.

Localization error pattern using G HCRL

Location error CDF for the 3 approaches

! j LoggaRBBasect
/
W 08F @
i 5 /
Q i
:é ) //
5 /
) 04 ;;
/
03 ’?
4
02 /
N 4
/
5 o1 02 03 0. 4 0 5 0 5 0 7 0, ’ " Ioca(\oleerror (1000 nodes‘nzlé runs) ======> . =
1000 nodes, avg error = 0.084
Figure 6.6: HCRL: 1000 nodes. Figure 6.7: Comparison of error CDFs.

This error pattern is found by joining the true location ofade with its estimated location,.,..;; was0.0583 for the
three error pattern plots.
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which uses the fact of the ED-HD relationship in a random getoimgraph, performs better in es-
timating the node locations than HCRL, which uses the heao§ ED being directly proportional
to HD, or PDM, that approximates Euclidean distance digtaector of a node from anchor nodes

to be a linear transformation of the corresponding hopagisg vector.

6.3 A Heuristic for Localisation

In this section, we present a heuristic way of localisingasdepending upon the empirical distri-
bution of theﬁ. To find the empirical distribution, we take the Euclideastaince/ of a node
from a fixed anchor, find the corresponding hop-distalmo®er the critical geometric graph, find
the ratioﬁ, repeat it for all nodes and plot the histogram. For plottimghistogram, we use the
truer,,;; value, whereas during the localisation, where we will use émpirical distribution, we
estimate the value of..;; as explained in Appendix B. Once we have this empirical ithistion

of hriit, we know how the EDI is distributed, given the hop-distance and the estimatiéidalr

radiusr.,.;;. We use ED distribution from a finite number of anchors to getlbcation distribution
of the nodes and then we do an MMSE estimate to locate the nddhesapproach has been de-
scribed in detail in Appendix B. Despite having only emptigerification of the distribution and
a simplifying assumption of independence of the distanaasa the 4 anchors, it performs better

than the HCDL algorithm.



Chapter 7

Real Scenarios

The theorems presented in the Chapters 3, 4 and 5, use theeggograph abstraction of the
wireless sensor network. We proved results assuming the degloyment being either uniform
i.i.d., randomised lattice or Poisson, all of which are hgereous deployment ovet. In Sec-
tion 7.1.1, we show that for positive non-homogeneous depémt density of nodes on a unit area,

the theorems still remain valid.

In this chapter, we consider cases where the node deployheestty hits zero at certain regions
of the network, or the radiation pattern of the antennae efsétnsor nodes are directional, or the
radio propagation on the wireless media is susceptibledm@pand shadowing. We note that, if
it is possible to construct a geometric graph in a distrid@gynchronous fashion, over a network

with the above mentioned non-idealities, localisationldtave been done using HCDL as before.

So, in such environments, one solution approach to lodalisanight be to construct the geometric
graph by some means and apply HCDL, or another approachasatide without constructing the

geometric graph by some different algorithm.

In this chapter, we do not introduce any new algorithm foal@ation in anisotropic environment.
Butin Section 7.2, we assume a model for radiation anisgtaml apply HCDL on the graph given
by the anisotropic model. It turned out that the performanderms of location error distribution

is approaching that of the true geometric graph as numbeo@ésbecome large.
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7.1 Non-homogeneous node deployment

7.1.1 Node deployment density is positive on all points

Let v; be the location of thé’” node onA and the distribution of the nod&v;) > 0, Vu; € A.
We have shown in Section 5.1.1, that even with this kind of denplacement, the Theorems 5
and 6 hold in the point-node case. This is because, in Equéti the probability” (Al ;) can
now be upper bounded kY — f,..,u(n)t(n))", wheref,,;, is the minimum density of a node over
A, and the upper bound stitb 0 asn — oo as long asf,.;, > 0. Although, a small value of
fmin Will affect the rate of convergence of the probabilty{v : (1 —€)(h; — 1)r(n) < D,(v, k)

< Dy(v,h;) < hr(n)} to 1 and we will need more nodes to guarantee the Euclidean distan

lie within the bounds given mentioned before with a high adaibty.

7.1.2 Node deployment density hits zero at some points

If f(v;) = 0, for somev; € A (regions with such points are also callbedleg, the ED and HD

ceases to be proportional, and the localisation algorittitas uses the proportionality between
them, performs worse. This is because, if there is a holeenptith between the node and the
anchor, the relationship derived in the previous chaptersia longer valid and the hop-distance
multiplied by the radius of the geometric graph is much latp@n the true Euclidean distance.

This phenomena has been illustrated in Figure 7.1.

This issue has been addressed in the paper by Li and Liu [I@&enthey propose a new algorithm
called REndered Path (REP). This algorithm tries to figutefwaitrue ED between two nodes from
the path information and the shape of the holes. The assamibtere is that the number of holes
and their boundary information is known. Also they assunag tlutside the holes the node density
is homogeneous and the ED-HD proportionality is valid th&#aen a hole comes in between the
node and an anchor, the shortest path takes a route overuhddny of the hole, and using several
geometric propositions, they prove that the true ED can hedout in such a setup. Now, with
a ED information about a node from 3 anchors, the same triatign technique can be applied

to estimate the location of the node. The complexity of RE&tdsned to beD(nL), wheren is
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Figure 7.1: We see that the shortest path from the anchoettatiged node takes a path along the
boundary of the hole on the geometric graph. Hence, ED is mgdoproportional to HD in this
setup.

the number of nodes andis the number of holes (This is the complexity when the hopadise

information between the nodes is available beforehand).

In a node deployment with holes, we can have the followingeolsions:

1. The number of anchor nodes need to be higher in the casedimmogeneity. Our previous
examples with 4 beacons would not suffice since there miglmobes in the path. Hence,
the anchors should be large in number and deployed unifoordy the non-hole region, and
localisation using 3 nearest anchors is expected to giveeurate estimate of the location.

In [16], the typical number of anchors is in the multiples 6f 1

2. Regarding the ED-HD relationship in node-node case, wd tfee hop-distance to be larger.
Hence, we need a dense deployment of nodes so(thatlecreases and the hop-distance be-
tween the node and an anchor increases. But we recall thegghk presented in Chapter 4
was a sufficient condition. We also need to find a necessawitoomfor node-node ED-HD

relationship, which will be helpful in localisation usingndomly placed anchor nodes.
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7.2 Anisotropic radiation

In real networks, the radiation pattern of the antennae @stimsor nodes are anisotropic. So, the
nodes experience different gains depending on the locatidirandom orientation of the antenna.
In this section, we have taken an easier model for the antamisatropy and tested the localisation
algorithm HCDL using the network formed by such nodes andpamed its performance with the
corresponding isotropic network. The anisotropic antemoael is shown in Figure 7.2, and the
orientation axis of the antenna of a node is picked uniforovgr [0, 27]. And two nodes share an
edge if and only if they are within(n) of each other and also one node is in the angular sptead

of the other and vice-versa.

Figures 7.3 to 7.6 (on the left are the graphs formed for cgmtrradiation pattern and on the left
the same for anisotropic; we todk= 7 andr(n) = % Inn for these simulations) show that the
geometric graph formed by such a radiation pattern is spénae that of the isotropic one. There
are few isolated nodes for 1000 nodes, which diminishes m€reases to 5000. In Figures 7.7
to 7.10, we show the error patterns of the nodes with isotrapd anisotropic radiation patterns
for a certain deployment for 1000 and 5000 nodes. In the &ogie case, we have eliminated the
isolated nodes from the error computing. The CDF of the locagrrors is given in Figures 7.11
and 7.12. We can observe from the simulation outputs thdt thi¢ increase im, not only the

geometric graph becomes connected, but also the ED stdawiftg some relationship with HD,

similar to the theorems stated in previous chapters. Thahig the error CDF for the anisotropic

radiation comes closer to that for isotropic as we increaem 1000 to 5000.

A proposition: We can figure out the isotropic geometric graph from the dropac radiation
pattern setup through collaborating with the first hop nbalrs of each node. Even if a node is
not connected to another node, which is within) of it on A, because of anisotropy, it is highly
probable that some of its neighbours must be having a link wivhen the node density is high.
It is, therefore, seems reasonable to disseminate infawmabout the neighbours among nodes to

figure out the true geometry of the isotropic geometric graph
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Localization error pattern using G(V,r(n)), HCDL-Isotropic Locallzatlon error pattern using G(V,r(n)), HCDL—Anlsotrop|c
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Figure 7.11: Error CDF comparison for 10(&igure 7.12: Error CDF comparison for 5000
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7.3 Anisotropic propagation

The propagation of radio signals in wireless networks asesptible to non-idealities like fading,
shadowing etc. In absence of all these the radio propagatiaffected by only path loss, and
the received power decreases monotonically with distahlees. monotonicity is lost whenever the
non-idealities are taken into consideration. The geomegtaph will not be a good model of the
communication graph for that kind of network, since a nodeafsay in Euclidean distance may
be connected whereas a nearer node may not be. Hence thiemetiié any upper bound on ED

given the HD, as we had in a geometric graph.



Chapter 8

Conclusions and Work Ahead

From the discussions of the previous chapters, we can coathe following.

1. We have proved hop-distance is approximately propoatitmEuclidean distance in a dense

random geometric graph with positive density of nodes opailhts in an area.

2. We were able to prove a sufficient condition for the projpoulity between the ED and HD
for point-point (Chapter 3) and node-node (Chapter 4) casbgh requires the radius of
the geometric graph to be scaled in a certain fashion. Wehsgeltis radius is larger than
the radius for the network to be just connected (the critiadlus). Future scope of work in

this area is in finding a necessary condition for this prapaoslity.

3. In point-node case (Chapter 5), however, we proved tvaihgHiD= h, (1 —¢)(h — 1)r <
ED < hr w.h.p. The parameterprovides a trade-off between ED-HD proportionality and
the rate of convergence of the desired probabilityl toThis theory does not require any
specific scaling of the radius of the geometric graph and éecen be used for the critical

graph.

4. We used the node-point theory in localising nodes in Giratand proposed an algorithm
HCDL, which can be used on any geometric graph including tiiea graph and uses only
the information of the hop-distances of a node from the 4 arschThis is the same informa-

tion required for the HCRL algorithm, but HCDL gives a muchtbelocation estimate than
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HCRL.

We illustrated a heuristic algorithm in Appendix B using tﬁ% distribution, which per-
forms better than both HCDL and HCRL in localisation. Futsecepe of work is in formal-

ising this approach theoretically.

5. In Chapter 7, we discussed about some challenging issw@esenl wireless sensor network,
e.g., anisotropy in antenna radiation patterns and in rabpagation. We also looked into
networks withholes where the proposal of using more number of anchor nodeseumsion

of node-node theory can be looked into in future.

Simulation results show that HCDL performs well even in asgenetwork having nodes
with anisotropic antenna radiation patterns. It compelkhitok that a result similar to node
point theory is true even for this kind of a setup. Formaligiinis observation is also a future

work.



Appendix A

Proof of Lemma 1

The setting for this lemma is as described in Section 3.3 ardepicted in Figure 3.5. We had an
h; + 1 sided regular polygon with sides of lengthWe deleted a certain edgé and increased all
angles except the two adjacent to the deleted edge by a smalirds. The resulting figure is as

shown in Figure A.1. The length of edgé in this new figure is;. We restate the lemma.

Lemma: Forh, > 2and0 < § < 2 r; > r

hl+1’
Proof: Each of the internal angles except the adjacent angled &f ¢ = (h,iljfl)” + 0 (see Fig-
ure A.1) and angles adjacentdd are,
1 .
¢ = 5[total internal angle- (h; — 1) x ¢]
1 (hl — 1)7’(’
= = — D — — 1) (===
5 (b = D) — (hy )( 11 +5)}
(hi=Dr _(m=Ds oo (A1)

i +1 2

It can be easily provédhat the angle bisectors of all these internal angles metbegbointc as
shown in Figure A.2. Now, we apply sine rule in the trianglesdc and Asp,c, wherep, is the
adjacent node of other thand (see Figure A.2)z is the length of the line segment connecting
andc. For Asdec,

’

Y1t can be shown thetr — ¢') + 2(7 — & — £) + (b — 2)(7 — ¢) = 27
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d
i e (y=D)m _ (=D : : : :
Figure A.l:p = 5—-+ 6 and¢’ = o Figure A.2:cis the point where the angle bisec-
g, tors meet.
T . z
SiIl(?T — qb’) sin %/
po= (A.2)
2 cos %
and forAsp;c,
z . r
sin £ sin(r — £ — £)
@
TS 5
2
z = —= A.3
sn (57) -
Eliminating z from these two equations, we get,
27 sin % cos %/

= . 7 . 7
smgcos%jtcosgsm%
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Now we have25% = 2§ and £ = (h;i;ll) (=3) 5. Hence, to show,

rn>r

= r—r>0

= S5 ¢>;¢>’ >0
r G
sin —¢’+2¢
sin %(5
= 7 >0 (A.4)
sin ((m—nw ) 5)
hi+1 4

For the numerator to be positive, > hl“é >0 = h‘*il > ¢ > 0. For the denominator, the
4(hy—1)m

condition i |sm > 9 > 0, for h; > 3. Together, the condition ohis

ry > r, for Iy ,(hfﬁl)(;l)%) > 722, ¥h; > 3). Hence proved. -

h+1>6>0 to have




Appendix B

Localisation using the Empirical

Distribution of hi

crit

This localisation algorithm depends on the histograrr);rérﬁ found by taking the ratio of Eu-
clidean distance of 1000 nodes, deployed uniform i.i.dro¥e= [0, 1], from the fixed anchor
at the origin to the product of the hop-distance, measured.i{V), of the node and the corre-
sponding critical radius..;. Figure B.1 shows the histogram, where we took 200 bing,ih].
From the critical graph, we find out the hop-distances of aerfoaim the 4 anchors and call it the
hop-distance vectds; = [h;; hio hisz hi4) € N If v; is the location of the node onA,
andh; be the hop-distance vector, we know that the location oftilbae is uniquely determined
by the distanced;,;, | = 1,2, 3,4 (d;; = Euclidean distance betwe¢fi node location;) and*"

anchor locationy), i.e.,||v; — b;||) from the anchors. So, we can write the following.
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hr("rh‘

d/(hrcm) histogram for 1000 nodes
0.04 \ \ \

0.035— -

0.025

0.02~ -

0.015

0011 i
0005 i
0 \ \ \ e ol

Figure B.1:-— Histogram.

f(vi|hi7 Tcm‘t) = f(vi|hi,17 T, hi,47 Tcm‘t)
f(hi 1" 7hi4|vi7 Tcrit)f(viarcrit>
= ’ : Bayes theorem
f(hi,la T >hz’,4, Tcm’t) Y

X f(hi,b te ,hi,4|Ui, Tcm't)

4
H f(higlvis rerit)
I=1

— ﬁ f(vi|hi,lu Tcrit)f(hi,la rcrit)
=1 f(/Uia rcm't)
4
N H f(ilhi g, 7erit) (B.1)

=1
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The assumption in the proportionality of step 3 is the inael@mce of-...; with the node location

v; (then the factorf (v, 7o) = f(vi)f(rcm) becomes independent of). But we know, the
critical radius is roughly: 1“” € > -, by Gupta-Kumar [9], which is independent of the node
locations. The approximation in the fourth step can be at@s=follows. If the anchors are spaced
far apart, so that given the node locatignthe shortest path of the node from the anchors are non-
intersecting, the assumption of independence of hop+uistgiveny; is reasonable. That is why

we took the 4 anchors at the 4 cornersfyfand shortest path are most likely to be non-intersecting.

Let us denoteX = ;-“— and its distribution byfx(.). Assuming the random variabl€ to be

independent of the hop-dlstance, we compute,

f(Uz' | hi,la Tcm’t)

()
’leljbm Vo, € Rig = {v:|jv =0 < hiyreri} NA
= f”ieRi,l Ix (%)d“ (B.2)

0 otherwise

We see that the denominator of the first term above is indep@raf the location;. Therefore,
4
Filhg, reri) o< T fvilhig, rert)
=1
(

Hz fx <Hvz blH) v; € N Ry

z 1Terit

XX
0 otherwise
Hl 1 fX < 7, lrcrzt) Ui e ﬂ?le’L’l

= A (B.3)
0 otherwise

\

With this distribution of node location, we now use the minm mean square error (MMSE)

estimate of the node location. Hence the location of nadestimated as,

f)i - E(Ui|hi7 rcrit) - / Uif(vi|hiu Tcrit)dvi (B4)
v; €M 1R11
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G(V) can be found using a distributed algorithm, but the infororaeboutr..;; may not be
known. So, we use the following technique to estimate thecafiradius. We use the ED and HD
information between the anchors. LBtand H be the ED and HD between a pair of anchors and
both are known apriori. Hence all the distributions and exgigons used in the following analysis
are given these two. Now we need to find the distribution ofcifitecal radiusR given D and H,
using the distribution oX = h% (i.e., fx). We assumeX to be independent dD andH. Hence,

we have,

Fr(r|D € [d,d+Ad),H=h) = P(R<r|De€[d,d+ Ad),H =h)
hX
d
PlX>—
(=)

1

= / fx(y)dy  sinceX € [0,1]
hr

:1-%%(%) (B.5)

d
= IP(— <r|De€ [d,d+Ad),H:h>

Q

The approximation on the third line is due to the independerssumption. Differentiating,

fr(r|D € [d,d+ Ad),H = h) = %fx (%) (B.6)

Now, for MMSE estimate of?, we have,

o0

rfr(r|D € [d,d+ Ad), H = h)dr

A

R=FE(R|D € [d,d+Ad),H=h) =

—

sinced < = <1, hencef <r < oo

>~ d d
= — — | d
/% rhTQfX (hr) "

'd
_ / = fx(2)dz (B.7)



Chapter B.

Localisation using the Empirical Distribution of —4 100

hr("rh‘

Empirical CDF
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Figure B.2: Localisation error CDFs of MMSE, HCDL, PDM & HCRL

We carry out this integration numerically in the followingw For a certain pair of anchapgthere

are 6 such

pairs for 4 beacons), denoting the ED and HD bettheembyd, andh,, respectively,

fcm’t,p = Ep(rcrit‘dpa hp) (88)

We have found th% distribution using 200 bins ifD, 1], let the bin vector be represented by

valuej, j =

1,2,---,200, and we have the corresponding probability massealue;). So, the

above expression is calculated according to Equation B.7 as

fcm‘t,p = Ep (Tcm‘t | dpa hp)

00
= mﬂ(valuej) (B.9)
j=1 P J
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Terit

Localization error pattern using G_., MMSE

crit’

HCDL

Localization error patlern using Gcm
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Figure B.3: Error for MMSE
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Figure B.4: Error for HCDL.
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Localization error pattern using Gcrl
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Figure B.6: Error for HCRL.

rerie Was0.0583 for this example deployment.
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Finally,
6
> vt (B.10)

p=1

Terit =

| =

This is our final estimate far.,;;. We will use this value of.,;; for location estimate.

Figure B.2 shows the error CDF of such an approach and compavéath the other three ap-
proaches, viz. HCDL, PDM and HCRL. Figures B.3 to B.6 showrepattern plots for these
different schemes on one such deployment. It shows thahthisistic approach performs better

than the other three approaches.
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