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Abstract
We consider the problem of self-organisation in dense wireless sensor networks. Wireless sensor

networks can be viewed in terms of deployment of a large number of nodes in an Euclidean space.

After deployment, the nodes are required to build a topologyto communicate among themselves

and also to abase station. In this process they should meet some performance criteria, e.g. cov-

erage of the area to be monitored, connectivity of all the nodes in the network, the capacity of

the wireless network, etc. Also, once an event is detected inthe network, we need to localise the

occurrence of the event with the information reaching the base station in an energy efficient way

with minimum delay. These performance objectives are the issues addressed in self-organisation

of wireless sensor networks (WSN).

In this report, we first introduce the problem of self-organisation in general and then present a

survey of the existing literature in this area. Later we formalise a very commonly used approxi-

mation of proportionality between thehop-distance(the minimum number of hops) and Euclidean

distance for three different scenarios in dense networks. Our proofs bank on a certain geometric

construction and union bound, and provide a sufficient condition. We provide simulation results

that illustrate the theoretical result, and serve to show how large the number of nodes needs to

be before the asymptotics are useful. We propose a localisation algorithm that uses this theory

for a fixed anchor and a random node. We also introduce anotheralgorithm for localisation that

uses the empirical distribution of Euclidean distance given the hop-distance, which performs bet-

ter than the previous one. Finally, we discuss few more issues related to the non-idealities in real

sensor networks that require more understanding of the stochastic geometry of these networks and

theoretical formalisation.
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Chapter 1

Introduction to Self-Organisation in

Wireless Sensor Networks

1.1 Overview

An ad-hoc wireless sensor network is composed of a large number of nodes deployed densely in

close proximity to some phenomenon to be monitored. Each of these nodes makes observations

via one or more sensors, the overall purpose being to deduce an inference about the phenomenon

and to route this information back to a base station1. The network must possess self-organising

capabilities since the positions of individual nodes are not predetermined. Cooperation among

nodes is the dominant feature of this type of network, where groups of nodes cooperate to process

and disseminate the information gathered in their vicinityto the user.

Sensor networks are made up of smart sensor nodes calledmotes. The core of a mote is a small,

low-cost, low-power microprocessor. The microprocessor monitors one or more sensors and con-

nects to the outside world with a radio link. The digital radio transceiver allows a mote to transmit

reliably to a distance of a few meters. The typical power consumption is about 10 milliamps when

the mote is running, and about 10 microamps in sleep mode. Each sensor node is driven by one

1A base station is a node responsible for the fusion of sensor data. A base station is also known as fusion centre,

collector node, or sink.

1



1.2. System Model 2

or two 1.5 V cells. The microprocessor, sensors, antenna andbatteries are all packaged in small

containers, typically a few millimetres thick [13].

Sensor networks may consist of many different types of sensors such as seismic, thermal, electrical,

visual, acoustic, radar and so on. Sensor networks can find a wide variety of applications in a

number of domains. Some common applications of sensor networks are:

• Military applications such as battlefield surveillance, nuclear, biological and chemical (NBC)

attack detection, and reconnaissance.

• Environmental applications such as wild animal tracking, air and water pollution level mon-

itoring, forest fire detection and precision agriculture.

• Health applications such as heart rate monitoring, telemedicine and drug administration.

• Commercial applications such as highway traffic analysis, building security, structural fault

detection, and power consumption measurement.

1.2 System Model

We will focus on sensor networks forinferencingwhere the sensor network is deployed for the

purpose of deducing the occurrence and the location of anevent. An event results in a change in

the level of some form of ambient energy, in the region monitored, that needs to be sensed by the

nodes and used for inferencing, e.g., in border security applications, an event could be an entry or

presence of an enemy or intruder into the region.

Figure 1.1 shows the flow of operations in a Wireless Sensor Network (WSN). The stages are

briefly described below.

1. Node deployment: The first step in the formation of a wireless sensor network isnode

deployment which addresses the problems of how and where thenodes should be placed,

given an operational region, the number of sensor nodes to bedeployed, and the application.



1.2. System Model 3

Sensor Measurement, In−Network Computation
and Communication to the Base Station

Inference at the
Base Station

Node Deployment

Self−Organisation

Neighbour Discovery

Connectivity Capacity Routing Localisation

Figure 1.1: Various stages in the formation of a sensor network

The node deployment can be deterministic, or random, or somecombination of the two

depending on the accessibility of the region.

2. Neighbour discovery:Once node deployment is done, every node has to identify its neigh-

bours, i.e., nodes with whom it can directly communicate in the absence of interference.

The output of the neighbour discovery process can be represented by the graphG0 (over the

nodes), which has a link between each node and each of the discovered neighbours of the

node.

3. Self-organisation:After the deployment of nodes, the network self-organises,which means

that the connectivity between nodes are ensured, nodes find their routes to the base station
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and the locations of the nodes are estimated. So, self-organisation comprises of the following

aspects.

• Connectivity: This addresses the problem connecting each node with every other node

via single or multi-hop path. Connectivity ensures at leastone path by which informa-

tion can be transmitted from one node to any other node in the network.

• Capacity: Capacity addresses the question of how much information canbe propa-

gated through the network, and gives an upper limit on this maximum possible amount

of information flow.

• Routing: When an event is detected in the network, the information needs to be sent to

the Base Station in an energy efficient manner with minimum delay. Routing addresses

these problems in sensor networks.

• Localisation: To estimate the location of a detected event, we need to know the loca-

tion of the nodes in the network. The node location in a dense sensor network is often

estimated using the heuristic of the minimum number of hops between two nodes (we

will call this as the hop-distance) to be proportional to theEuclidean distance. This

report focuses on this issue and provides a theoretical formalisation for this approxi-

mation.

2 Although several algorithms for routing and localisation uses a topology as the starting point,

a topology is not absolutely necessary. We will discuss about a few routing algorithms that are

topology-free. However, topology-free localisation is possible if each node has independent way

of locating itself, e.g., if each of them are equipped with GPS transceivers. But for GPS-free

localisation, we need to have a topology. Topology-free approaches are interesting because it

requires less power, as it doesn’t need to maintain the topology and is robust against node failures.

1.3 Organisation of the Report

The rest of the report is organised as follows. In Chapter 2 wereview some literature on the various

aspects of self-organisation in wireless sensor networks.In Chapter 3, we provide a theory of
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distance discretisation, which is the use of integral hop-distance as a measure of Euclidean distance

(a real number), for two fixed points on an area. We model the sensor node locations as a random

deployment of points on a region of Euclidean space, e.g. a unit square, and the communication

topology as aGeometric Graph(GG)2. We show that the approximation of distance discretisation

is valid asymptotically almost surely in this topology if certain conditions are satisfied for the

radius (r) of the GG. In Chapter 4, we show the results on distance discretisation for two random

nodes in the RGG, and in Chapter 5, we prove that given the hop-distanceh from a fixed anchor

to a random node, the Euclidean distance lies within[(1 − ǫ)(h − 1)r, hr], for arbitrarily small

ǫ > 0. We illustrate the theoretical results with simulations ineach chapter. The emphasis of this

report is in localisation. In Chapter 6, we illustrate a new algorithm called Hop Count-yielded

Distance-based Localisation (HCDL), that uses the node-point theory of Chapter 5. Also, we show

a heuristic algorithm in Appendix B, that banks on the empirical distribution of d
hrcrit

(d andh are

the Euclidean and hop distances respectively andrcrit is the critical radius), which performs better

than the previous in the sense of location error. Finally in Chapter 8, we draw the conclusions from

this work and look at some future works.

2A geometric graphG(V, r) on A ⊆ R
2, and withn vertices, is a graph with vertex location vectorV ∈ An,

and an undirected edge between all the nodes that are at a distance≤ r. If V is random, the GG is called Random

Geometric Graph (RGG) [21].



Chapter 2

Previous Work

In this chapter, we survey some of the existing literature onself-organisation and classify them

according to the flowchart of Figure 1.1.

2.1 Connectivity

One of the most important issues related to any Wireless Ad-hoc network and particularly WSN

(Wireless Sensor Network) is that of connectivity. The topology control algorithm must always en-

sure that the resulting network or the sub-networks of the original network are strongly connected,

so that the information can flow from any node to the other within the entire network or within the

sub-networks. Any node should have at least a (single or multiple hop) path to any other node or

a certain base station within the network or the sub-network, and that is why we need a connected

communication topology. This connectivity problem can be classified as,

2.1.1 Power Control Mechanism

The goal of power control mechanisms is to dynamically change the nodes’ transmitting range in

order to maintain some property, e.g., connectivity, of thecommunication graph, while reducing

the energy consumed by node transceivers because they are one of the primary sources of energy

6
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consumption in WSNs. Power control mechanisms are fundamental to achieving a good network

energy efficiency. Power control is studied in homogeneous (nodes have the same transmitting

range) and non-homogeneous (nodes have different transmitting ranges) scenarios.

Homogeneous Power Control For homogeneous networks, the connectivity problem has been

addressed in detail by Gupta and Kumar [9], where it has been shown that ifn nodes are placed in a

disc of unit area inR2 and each node transmits at a power so as to cover an area ofπr2 = log n+c(n)
n

,

then the resulting network is asymptotically connectedw. p. 1iff c(n) → +∞ and asymptotically

disconnectedw. p. 1iff c(n) → c < ∞

In homogeneous networks, the CTR (Critical Transmitting Range) problem has been investigated

in theoretical ways as well as practical viewpoints. Narayanaswamy et al. [19] present a distributed

protocol, called COMPOW that attempts to determine the minimum common transmitting range

needed to ensure network connectivity. They show that setting the transmitting range to this value

has the beneficial effects of maximising network capacity, reducing the contention to access the

wireless channel, and minimising energy consumption.

Connectivity issue has been discussed also by Xue and Kumar in [26], where the authors prove

that in a network withn randomly placed nodes, each should be connected toΘ(log n) nearest

neighbours. If each node is connected to less than0.074 logn nearest neighbours, the network is

asymptotically disconnectedw. p. 1. While if each node is connected to more than5.1774 logn

nearest neighbours, the network is asymptotically connected w. p. 1. It appears that the critical

constant may be close to one, but remains an open problem.

In [22], Ramaiyan et al. have demonstrated joint control of power and hop length for a single cell

scenario. The objective was to maximise the transport capacity of the network.

Non-homogeneous Power Control Non-homogeneous networks are more challenging because

nodes are allowed to have different transmitting ranges. The problem of assigning a transmitting

range to nodes in such a way that the resulting communicationgraph is strongly connected and

the energy cost is minimum is called the Range Assignment (RA) problem, and it was first studied

by Kirousis et al. [15]. The computational complexity of RA has also been analysed in [15]. It
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is shown to be NP-hard in the case of 2D and 3D networks. However the optimal solution can

be approximated within a factor of 2 using the range assignment generated in [15]. An important

variant of RA has been recently studied is based on the concept of symmetry of the communication

graph. Due to the high overhead needed to handle unidirectional links in routing protocols or MAC

protocols which are naturally designed to work under the symmetric assumption, Symmetric Range

Assignment (SRA) shows more practical significance.

In practical wireless networks the links are neither homogeneous in all directions nor time invari-

ant. This issue has been addressed in [3], where the authors use ideas from percolation theory and

compare networks of geometric discs to other simple shapes,including probabilistic connections,

and they find that when transmission range and node density are normalised across experiments

so as to preserve theexpected number of connections(ENC) enjoyed by each node, the discs are

the hardestshape to connect together. In other words, anisotropic radiation patterns and spotty

coverage allow an unbounded connected component to appear at lower ENC levels than perfect

circular coverage allows. This indicates that connectivity claims made in the literature using the

geometric disc abstraction will in general hold also for themore irregular shapes found in practice.

2.1.2 Power Management Mechanism

Power management is concerned of which set of nodes should beturned on/off and when, for the

purpose of constructing energy saving connected topology to prolong the network lifetime.

There are several algorithms that discuss about the sleep-wake cycling of the sensor nodes so that

the network lifetime is extended. Also care needs to be takenso that the power of the network falls

uniformly over the nodes of the network. Here we survey a particular example. In [6] Chen et

al. propose SPAN, a power saving topology maintenance algorithm for multi-hop ad hoc wireless

networks which adaptively elects coordinators from all nodes to form a routing backbone and turn

off other nodes’ radio receivers most of the time to conservepower.
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2.2 Capacity

Capacity of Wireless Networks has been discussed by Gupta and Kumar in [10], where they have

usedThroughput Capacityas the number of successful bits transmitted in the network in unit time.

But in networks, a packet is routed to its destination via a multi-hop path. If the throughput capacity

is considered, the same packet which is getting replicated in several nodes are counted multiple

times. We should focus on the packet that is transmitted fromsource to destination and count it

as a successful transmission from source to destination, i.e. the throughput per node should be

divided by the mean number of hops to get a quantity called theTransport Capacity. It implies that

in a wireless network the throughput is not the only parameter to be concerned with, the distance

to which a bit is transmitted is also important. So, mean hop length × throughput capacity=

transport capacity is the quantity to maximise.

In this paper, the authors have taken two types of networks, viz. theArbitrary andRandomNet-

works and models considered wereProtocolandPhysicalmodels. For arbitrary networks the node

locations are unknown, whereas in random networks they are random.

• Protocol Model: The transmission from nodei to j in themth sub channel is successful if

|Xk − Xj| ≥ (1 + ∆)|Xi − Xj |, for any simultaneous transmitterk 6= i transmitting in the

same sub channel.Xl denotes the location of the nodel, ∆: a constant.

• Physical Model: Let, {Xk, k ∈ τ} be the set of simultaneously transmitting nodes at some

time slot over a certain sub channel (We are using notation for nodes and their location

interchangeably). The transmission from nodei to j in that sub channel is successful if

Pi

|Xi−Xj |α

N0 +
∑

k∈τ,k 6=i
Pk

|Xk−Xj |α
≥ β

Where,N0: Noise variance,α: Path loss factor,β: Threshold

It is assumed that whenever these conditions are satisfied the nodes put across a fixedW bits over

the wireless channel. For a setting like this, the results presented in the paper are as follows:
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• Under a Protocol Model of noninterference, the capacity of wireless networks withn ran-

domly located nodes each capable of transmitting atW bits per second and employing a

common range, and each with randomly chosen and therefore likely far away destination, is

Θ
(

W√
n log n

)

. This is true whether the nodes are located on the surface of athree-dimensional

sphere or on a planar disc. Even when the nodes are optimally placed in a disc of unit area,

and the range of each transmission is optimally selected, a wireless network cannot provide

a throughput of more thanΘ
(

W√
n

)

bits per second to each node for a distance of the order

of 1 m away. In fact, summing over all the bits transported, a wireless network on a disc of

unit area in the plane cannot transport a total of more thanΘ(W
√

n) bit-meters per second,

irrespective of how the load is distributed. Under a Physical Model of noninterference, the

lower bounds are the same as those above for the Protocol Model, while the upper bounds

on throughput areΘ
(

W√
n

)

for Random Networks andΘ
(

W

n
1
α

)

for Arbitrary Networks.

• Splitting the channel into several sub channels does not change any of these results.

2.3 Routing

Routing can be defined as the algorithm to send a packet from source to destination. Routing

may use a topology or can be topology-free. Typically there are one or more sink nodes or base

stations which serve as collection points and connect the wireless nodes to a wired infrastructural

network, for example, the Internet. Since the radio range ofsensor nodes is of the order of a few

meters, the farthest nodes may not be able to reach the sink node in a single hop transmission.

Moreover, the nodes may be deployed over uneven terrain in a nonuniform manner (as would

be the case for example when several sensor nodes are airdropped over a mountainous region).

These factors combined with the resource limitations of sensor nodes make the problem of routing

highly nontrivial. The obvious solution to this problem is to resort tomulti-hop routing, wherein

sensor nodes communicate with the sink node via multiple hops through other intermediate nodes.

Each sensor node serves as a router in addition to sensing itsenvironment. Conventionallink state

routing algorithms consume a lot of expensive memory space for maintaining their tables and are

hence unsuitable for the sensor network scenario.
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The lifetime of a fully active sensor node is of the order of a few days. The most energy-intensive

operations for a node are those of radio transmission and reception. To maximise the network

lifetime, therefore, the amount of network traffic should beminimised. One way of accomplishing

this is for certain network nodes to collect raw sensor readings from a number of sensor nodes and

combine them into a single composite signal which is then forwarded towards the sink node. This

process is calleddata aggregation. Data aggregation can greatly reduce the number of packets

transmitted, which can result in large energy savings.

The routing protocols that have been proposed for sensor networks can be broadly classified asflat

andhierarchicalprotocols. Hierarchical protocols organise the network nodes into several logical

levels. This is typically implemented by a process calledcluster formation. A cluster consists of a

set of geographically proximal sensor nodes; one of the nodes serves as a cluster head. The cluster

heads can be organised into further hierarchical levels. The key advantage of hierarchical routing

protocols is that the cluster heads can perform efficient in-network data aggregation. Routing pro-

ceeds by forwarding packets up the hierarchy until the sink node is reached. Flat routing protocols,

on the other hand, attempt to find good-quality routes from source nodes to sink nodes by some

form of flooding. Since flooding is a very costly operation in resource starved networks, smart

routing algorithms restrict the flooding to localised regions. Some algorithms use probabilistic

techniques based on certain heuristics to establish routing paths.

2.3.1 Routing protocols

Flat Routing Protocols

Flat routing protocols are similar to the conventional multi-hop ad-hoc routing protocols. Each

sensor node determines its next hop neighbour node(s) to forward data packets. The nodes are not

organised into hierarchical clusters as is done in the hierarchical protocols. The advantage of this

approach is that all the nodes can reach the base station irrespective of their position.

Most of the flat routing protocols that have been proposed forsensor networks incorporate distance

vector routing algorithms. In distance vector routing, nodes maintain estimates of their distances
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from the destination nodes. Each node transmits its distance estimates to its neighbours. Each

node updates its distance vector so as to minimise the distance to each destination by examining

the cost to that destination reported by each of its neighbours and then adding its distance to

that neighbour. The problem with the straightforward distance vector algorithm is that it takes a

long time to converge after a topological change. The following subsections describe the routing

protocols that can be classified as flat routing protocols:

TinyOS Beaconing This is a topology-free routing technique. The TinyOS embedded sensor

network platform [11] employs a very simple ad-hoc routing protocol. The base station periodi-

cally broadcasts a route update beacon message to the network. The beacon message is received by

a few nodes that are in the vicinity of the base station. Thesenodes mark the base station as their

parent and rebroadcast the beacon to their neighbours. The algorithm proceeds recursively with

nodes progressively propagating the beacon to their neighbours; each node marks the first node

that it hears from as its parent. The beacon is thus flooded throughout the network, setting up a

breadth-first spanning tree rooted at the base station. Thisprocess is repeated at periodic intervals

known as epochs.

Each network node periodically reads its sensor data and transmits the data packet to its parent in

the spanning tree. The parent node in turn forwards the packet to its parent and so on. This process

is repeated until the data finally reaches the base station.

The attractive feature of TinyOS Beaconing is its simplicity, nodes do not have to maintain large

routing tables or other complicated data structures. Each node needs to remember only its parent

node in the path to the base station. By combining the beaconing with a MAC layer scheduling

scheme such as TDMA, the nodes can conserve power by keeping their radio off most of the time.

In spite of its attractive features, the beaconing protocolsuffers from one main disadvantage: it

is not resilient to node failures. If a parent node fails, then its entire sub-tree is cut off from the

base station during the current epoch. Moreover, the protocol results in uneven power consumption

across network nodes. The nodes nearer to the base station consume a lot of power in forwarding

packets from all the nodes in their sub-tree, whereas the leaf nodes in the spanning tree do not have

to perform any forwarding at all and consume the least power.
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Directed Diffusion A data-centric communication protocol for sensor networkshas been pro-

posed in [12]. All sensor data are characterised by attribute-value pairs. A node that requires data

sends outinterestsfor named data; interests are diffused through the network towards the nodes

that are capable of responding. Data are in turn drawn towards the requesting node viagradients

established along the reverse path of interest propagation. This style of data-centric communi-

cation is fundamentally different from the node-centric end-to-end communication mechanism of

traditional IP networks. An interest for data may contain several fields such as type, interval, du-

ration, time stamp and the coordinates of the target region.The duration refers to the time period

for which data is desired, and the interval refers to the datarate. The sink broadcasts interests to

its neighbours; due to the unreliable nature of broadcast networks, interests are refreshed period-

ically with updated time-stamp values. The initial interest specifies a large interval value; when

the path to the event source is established, a higher data rate is requested. Each node maintains an

interest cachethat contains several fields. One of the fields is called agradientthat specifies the

node’s downstream neighbour. The gradients in each node areused to set up the reverse path for

information flow from the source to the sink. A gradient also specifies the data rate requested by

the neighbouring node.

Whenever an interest is received, the node looks up its interest cache. If there is no matching entry

in the cache, a new interest entry is created. If a matching entry exists already, its time-stamp is

updated. The node further broadcasts the interest to its neighbours, and thus the interest is flooded

throughout the network, ultimately reaching the source. When the source node detects an event,

it searches its interest cache for matching event entries. If a matching interest entry is found, the

node starts relaying its readings at the highest requested data rate among all its outgoing gradients.

Intermediate nodes that receive a data message from their neighbours also check their interest

caches for matching entries. If no matching entry is found, the data packet is silently discarded.

Otherwise, the node searches itsdata cacheassociated with the matching interest entry. If there

is no recently seen data item corresponding to the interest,a new entry is created and the data is

forwarded to the neighbouring nodes; if the data is already present in the cache, the data packet is

silently dropped. This mechanism helps in preventing the formation of loops in data dissemination.
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The sink may finally receive low-rate event data from severalpaths. Itreinforcesone of its neigh-

bours to draw high-rate events. Reinforcement is done by sending out an interest with a higher data

rate (smaller interval). The same procedure is adopted by all the upstream nodes to reinforce one

or more paths that deliver high-quality event data. This finally results in an empirically low-delay

path between the source and the sink. In case multiple paths are created and some paths are found

to perform consistently better, an option is available tonegatively reinforcethe other paths. The

reinforcement rules can also be applied by intermediate nodes along previously reinforced paths to

enable local repair of failed or degraded paths.

Rumor Routing Algorithm Braginsky and Estrin [4] propose an algorithm to route user queries

to nodes that have observed certain events. Events are assumed to be localised phenomena, occur-

ring in a fixed region of space. Queries can be requests for information or commands to initiate

collection of more data. If the number of observed interesting events is high and the number of

queries for the events is low, it is better to flood thequeriesthrough the network. On the other

hand, if the number of user queries is very high compared to the number of interesting events, it

makes sense to floodevent information. The rumor routing algorithm tries to fit in between query

flooding and event flooding.

Rumor routing aims to create paths leading to events; whenever a query is issued for an event, it is

sent on a random walk through the network until it intersectsone of the event paths. If the random

query path fails to intersect any event path, the application resubmits the query, or in the worst

case, floods the query throughout the network.

Each node maintains aneighbour tableand anevent table. The event table contains a list of events

that the node has observed. The neighbour table can be maintained by actively initiating hello

messages or passively eavesdropping on network broadcasts.

The algorithm employs a set of long-lived packets calledagentsthat traverse the network, record in-

teresting events that they observe and disseminate this event information to network nodes. Agents

are generated by nodes randomly with a tunable probability based on whether the nodes have ob-

served an event in the recent past. Agents also contain eventtables similar to nodes, which include

the number of hops to each event. When an agent crosses a node that has information about some
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event that the agent has not yet seen, it updates its event table to include the event. Agents travel

for a specified number of hops and then die. Nodes can update their routing tables when they

encounter agents that have cheaper paths to certain events.

Highly resilient energy-efficient multipath routing Ganesan et al. [8] present a multipath rout-

ing technique to improve the resilience of a sensor network to node failure. Constructing k disjoint

paths from the source to the sink ensures that the network does not get disconnected even if k nodes

fail. However, finding completely disjoint paths tends to bevery energy-inefficient. To overcome

this problem, an algorithm to construct partially disjointpaths (calledbraided paths) with some

common nodes between paths is presented.

The algorithm aims to extend the concept of directed diffusion to eliminate the energy-intensive

flooding used to discover alternate paths. The basic idea of the algorithm is to set up multiple

paths along which data is disseminated at low data rates at the same time when the primary path is

established. If there is any node or link failure on the primary path, nodes can quickly reinforce one

of the alternate paths without resorting to expensive flooding. Nodes have to fall back on flooding

only if all the multiple paths fail simultaneously.

A mechanism to discover strictly disjoint multipaths is presented first. Following the directed

diffusion algorithm, the sink reinforces the link with its most preferred neighbour. At the same

time, it sends an alternate reinforcement message to its next most preferred neighbour, say A.

A propagates this reinforcement to its most preferred neighbour, say B, in the direction of the

source. If B already happens to lie on the primary path between the source and the sink, it sends

a negative reinforcementmessage back to A; A then tries its next most preferred neighbour and

so on. Otherwise B continues to propagate the alternate reinforcement to its neighbours. This

procedure can be extended to discover k disjoint multipathsbetween the source and the sink.

The problem of finding braided multipaths can be defined as finding the best path from the source

to the sink that does not contain one of the nodes on the primary path. This results in finding

an alternate path that is expected to be physically close to the primary path, and hence dissipates

energy proportional to the primary path. Braided paths are constructed using a procedure similar

to that of the disjoint multipaths. Each node on the primary path sends reinforcement messages to
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its first and second most preferred neighbours, thus trying to route around its immediate neighbour

on the primary path. A node not on the primary path that receives a reinforcement message from a

primary node propagates the message to its most preferred neighbour. If this neighbour happens to

lie on the primary path, then the reinforcement isnot propagated any further (since a braided path

has already been found).

Constructing strictly disjoint multipaths ensures that any number of failures on the primary path

does not affect any of the alternate paths. In contrast, in the case of the braided multipaths, failure

of a certain set of nodes on the primary path can disrupt all the multipaths. However, the advantage

of braided multipaths stems from the fact that the total number ofdistinctalternate paths through a

braid is much higher than the number of nodes along the primary path, thus greatly increasing the

resilience of the braid. It will be interesting to study the extension of the braided multipath algo-

rithm to multiple sources and sinks with respect to complexity, resilience to isolated and patterned

failures, and maintenance overhead.

ASCENT The ASCENT (Adaptive Self-Configuring sEnsor Networks Topologies) system [5]

builds on the observation that only a subset of the nodes is actually required to establish connec-

tivity in a dense sensor network. Each node determines its connectivity and decides whether or not

to participate in the routing mechanism.

Nodes in ASCENT can be in one of four states:active, passive, testor sleep. Active and test

nodes are involved in the forwarding of data and routing control messages. Sleeping nodes keep

their radios turned off to save power, whereas passive nodesonly listen to the network traffic in

promiscuous mode. Initially nodes start in the test state which is used to determine if the addition

of a new node is likely to improve the connectivity of the network. When a node enters the test

state, it initialises a timerTt and transmitsneighbour announcementmessages to other nodes. The

node upgrades itself to the active state as soon as the timer expires. Before the timer goes off,

however, if the number of active neighbours is above a certain threshold or the data loss rate is

higher than before, the node falls back to the passive state.A passive timerTp is started when the

node enters the passive state. As soon as this timer expires,the node turns its radio off and enters

the sleep state. Before this timer goes off, however, if the number of active neighbours is less



2.3. Routing 17

than a threshold, or the node hears a help message (describedbelow) from an active neighbour, it

transitions back to the test state. Nodes in the sleep state wake up and move to the passive state

after a timeout interval,Ts.

The source transmits packets towards the sink via the activenodes. Since there are only a few

active nodes to start with, many losses are encountered. This prompts the active nodes to broadcast

helpmessages, asking for more active nodes to join the network. Some of the nodes in the passive

state react to the help messages and become active nodes. This process continues until a sufficient

number of active nodes is available for reliable data transmission.

GRAdient Broadcast (GRAB) Routing Ye et al. [28] propose a routing algorithm named GRA-

dient Broadcast (GRAB), which is an example of a topology-free routing technique. GRAB ad-

dresses the problem of robust data forwarding to a data collecting unit (called the sink) using unre-

liable sensor nodes with error-prone wireless channels. The model for the sensor network consists

of large number of small, stationary sensor nodes deployed over a field. The user collects sensing

data via a stationary sink that communicates with the network. Each event is detected by multiple

nearby sensor nodes and one of them generates reports as a source. Due to the limited radio range,

reports are forwarded over many hops before reaching the sink. Nodes can tune their transmitting

powers to control how far the transmission may reach. Such power adjustments save energy and

reduce collisions whenever possible. This forwarding technique is called ‘mesh forwarding’ and

it is claimed that GRAB exploits the large scale property of sensor networks and achieves robust

data delivery through controlled mesh forwarding. The algorithm is topology-free, hence requires

no energy cost to maintain the topology. Also, since the route is discovered after the occurrence of

the event, it is robust against node failures.

Energy Efficient Routing Schurgers et al. [23] propose a set of techniques to improve the

routing in sensor networks. They argue that uniform utilisation of resources such as power can be

obtained by shaping the traffic flow. For instance, the routing paths for several data streams are

likely to share many common nodes. These common nodes burn out faster owing to the heavy load

and thereby limit the system lifetime. A traffic flow that spreads the energy utilisation over all the
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nodes uniformly is highly desirable to maximise the lifetime of the network.

All previously discussed protocols do not diminish the total network energy uniformly. This is the

difference of this protocol with the rest.

Three techniques for spreading the network traffic uniformly are proposed. In the first scheme, a

stochastic modelis used by any node to select the next hop. The randomly chosenlinks tend to

distribute the traffic load across the network. In theenergy-based scheme, a node that has depleted

its energy reserves below a certain threshold discourages neighbouring nodes from forwarding

packets to it. This is done by appropriate advertisements toneighbours. In thestream-based

scheme, a node on the path of one data stream tries to divert traffic from other streams away from

it.

Summary of Flat Routing Protocols The preceding sections have described several flat routing

protocols for sensor networks. Since the routing algorithms have to operate based only on local

knowledge, some form of distance vector routing is adopted.However, as discussed previously,

distance vector routing protocols converge very slowly.

Hierarchical and cluster-based Routing Protocols

Hierarchical routing protocols organise the network into groups calledclusters. Each cluster selects

a node that serves as thecluster-head. The cluster-head is responsible for collecting the sensordata

from all the cluster members, aggregating them and transmitting a summary to the base station.

This results in eliminating a large number of redundant messages from the nodes, thereby reducing

the overall power consumption in the network. It also avoidsmany MAC layer collisions that waste

the available bandwidth. This enables the sensor network toscale to a large number of nodes.

The disadvantage of cluster-based algorithms is that the base station should be reachable from all

the cluster-heads. This drains the power reserves of the cluster-heads quickly, thereby disconnect-

ing the corresponding clusters from the network. It is possible to avoid this problem by periodically

rotating the cluster heads among the nodes to ensure uniformenergy consumption.
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LEACH Heinzelman et al. [2] describe LEACH (Low Energy Adaptive Clustering Hierarchy),

a cluster-based routing protocol. LEACH aims to uniformly distribute the energy consumed by

sensor nodes across the network to extend system lifetime. This is accomplished by periodically

rotating the cluster head nodes. The cluster heads collect the sensor readings from the other nodes

in the cluster, perform local compression or aggregation onthe data to reduce global communica-

tion and transmit a summary of the readings back to a central base station. Thus the cluster heads

are the most critical nodes in the network since the entire cluster would be disconnected if the

corresponding cluster-head were to run out of energy. A fundamental assumption of the LEACH

algorithm is that nodes can adjust their transmission powerto transmit signals to varying distances.

The LEACH algorithm runs in rounds, with each round beginning with a setup phasein which

the cluster-heads are selected and the clusters are formed,and thesteady-state phase, in which the

sensor data transfer takes place. Each node determines by itself whether to serve as a cluster head

or not during the current round, based on its remaining energy level and a predetermined desired

percentage of cluster-heads in the network. The algorithm guarantees that each node will become

a cluster-head eventually, after some fixed number of rounds. This contributes towards uniform

energy dissipation of the nodes.

Once a node decides to act as a cluster-head for the current round, it broadcasts anadvertisement

messageto the rest of the nodes. Each of the non-cluster-head nodes affiliate themselves with the

cluster-head from which they receive the advertisement message with the highest signal strength,

with ties being broken randomly. The cluster-head is informed about this affiliation by a message

from each of the affiliating nodes. This process organises the entire network into clusters, with a

single cluster-head for each cluster.

After a cluster-head receives affiliation messages from allthe nodes in its cluster, it creates a

TDMA schedule and broadcasts it to the nodes. The TDMA schedule divides time into a set of

slots, the number of slots being equal to the number of nodes in the cluster. Each node is assigned

a unique time slot during which it can transmit its readings to the cluster-head. The advantage

of this approach is that a node can turn off its radio transceiver during all of the other time slots,

leading to large energy savings. When the cluster-head receives the sensor readings from all of

its cluster nodes, it compresses and aggregates them into a composite signal and transmits it to
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the base station. This transmission potentially requires high energy since the cluster-head may be

very distant from the base station. An additional disadvantage of this scheme is that if there is

any physical obstruction (such as a tree, a hill or a building) between the cluster-head and the base

station, the entire cluster is cut off from the base station.

Summary of Hierarchical and cluster-based Routing Protocols Hierarchical routing proto-

cols greatly increase the scalability of a sensor network. The overall energy consumption of the

nodes is reduced, leading to prolonged network lifetime. The organisation of the network into

clusters lends itself to efficient data aggregation which inturn results in better utilisation of the

channel bandwidth. Cluster-based routing holds great promise for many-to-one and one-to-many

communication paradigms that are prevalent in sensor networks.

2.4 Localisation

Given an event has occurred in the region where sensor nodes are deployed, to know the exact

location of the event is the goal ofLocalisation. In situations where the entire or part of the terrain

is inaccessible, e.g. in battlefields, the nodes are deployed in a random manner over the area and

the nodes have no information about its location. To estimate the location of the sensor nodes, we

need localisation algorithms.

One approach for localisation can be to equip all the nodes with Global Positioning System (GPS)

receivers. GPS gives near accurate estimate of location. This approach requires the GPS satellites

and GPS enabled receivers. A typical GPS receiver calculates its position using the signals from

four or more GPS satellites. Four satellites are needed since the process needs a very accurate local

time, more accurate than any normal clock can provide, so thereceiver internally solves for time

as well as position. In other words, the receiver uses four measurements to solve for 4 variables,

namely, x, y, z and t (for these 3 co-ordinates we need 4 satellites). These values are then turned

into more user-friendly forms, such as latitude/longitudeor location on a map, then displayed to

the user.
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Each GPS satellite has an atomic clock, and continually transmits messages containing the current

time at the start of the message, parameters to calculate thelocation of the satellite (the ephemeris),

and the general system health (the almanac). The signals travel at a known speed, the speed of light,

through outer space, and slightly slower through the atmosphere. The receiver uses the arrival time

to compute the distance to each satellite, from which it determines the position of the receiver

using geometry and trigonometry.

Although four satellites are required for normal operation, fewer may be needed in some special

cases. For example, if one variable is already known (for example, a sea-going ship knows its

altitude is 0), a receiver can determine its position using only three satellites. Also, in practice, re-

ceivers use additional clues (doppler shift of satellite signals, last known position, dead reckoning,

inertial navigation, and so on) to give degraded answers when fewer than four satellites are visible.

GPS receivers are composed of an antenna, tuned to the frequencies transmitted by the satellites,

receiver-processors, and a highly-stable clock (often a crystal oscillator). They may also include a

display for providing location and speed information to theuser. A receiver is often described by

its number of channels: this signifies how many satellites itcan monitor simultaneously. Originally

limited to four or five, this has progressively increased over the years so that, as of 2006, receivers

typically have between twelve and twenty channels.

The advantage of using GPS is its accuracy. Autonomous civilian GPS receivers are typically

accurate to about 15 meters. But the complexity of computingthe location of the receiver makes it

energy intensive and each of the nodes more expensive.

Since the GPS-based approach is expensive, we will look at some algorithms that do not use GPS in

all the nodes. However in these methods, the beacon nodes should have their location information

beforehand, and thus they may be equipped with GPS receiver.Here we are going to discuss

two such methods of localisation, namelyDV hop based localisationandHop Count Ratio based

Localisation(HCRL).

Depending upon the sensor nodes’ radiation pattern, which can be either isotropic or anisotropic,

the localisation algorithms can be classified as the following.
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2.4.1 Localisation in isotropic atmosphere

DV Hop based localisation In [20], Niculescu and Nath have proposed an algorithm namedDV

hop where each node exchanges information containing the location of, and the hop-counts to, the

anchor nodes. After the information exchanges between anchor nodes are complete, an average

distance per hop is calculated. Now, to locate a certain node, the number of hops from at least

3 beacons are computed and multiplied with the average distance per hop to get an approximate

distance from each of the beacons. Usingtriangulationmethod, the location of the node can be

determined.

HCRL In [27], Yang et al. propose an algorithm namedHop Count Ratio based Localisation

(HCRL), where unlike the above algorithm, the average distance per hop is not evaluated. Rather,

the ratio of thehop distances(hop distance is defined as the minimum number of hops betweenany

two nodes) from a node to a pair of beacons are computed. It doesn’t require the knowledge of the

actual average distance per hop, only assumes that the hop distance and the Euclidean distances

are proportional. However, the minimum number of beacons inthis case is 4, since we are not

using the actual distance but the ratio of the distances.

Observation: In both the approaches, the assumption made is that the Euclidean distance between

two nodes in a dense network is proportional to the hop distance. This is because, in a dense

enough network, there are plenty of nodes and the minimum hoppath between any two nodes are

likely to be on a straight line connecting the nodes. In the following three chapters, we are going

to provide a theoretical formalisation of this approximation.

Proximity Distance Map (PDM) This approach was proposed by Lim and Hou [17]. The rela-

tion between the Euclidean distance and hop-distance is characterised as a linear transformation. If

D is the matrix of the pairwise distances between the beacons andH, the hop-distance matrix, then

the following relation is assumedD = TH, whereT is the linear transformation fromH to D.

GivenD andH, T is then obtained asT = DHT (HHT )−1. Now, for any node with a hop-tuple

h the Euclidean distance vector is estimated asd = Th and this ED vector is used to localise each

node via triangulation. This method has been tested for anisotropic networks and is found to work
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well.

The relation between the number of hops and the Euclidean distance traversed has been studied an-

alytically in previous literature. Vural and Ekici [24] have derived the distribution of the maximum

Euclidean distance traveled along a RGG with radiusr, in one dimension. They have studied the

distribution of the maximum Euclidean distance traveled along the line by a path of a given number

of hops, and have obtained approximations to the mean and variance of these distributions. A sim-

ilar analysis has been performed in Dulmanet al. [7], where two dimensional node deployments

have been considered in some detail.

The work presented in this report is different from the type above. Here our focus is on finding the

bound on Euclidean distance (ED) given hop-distance (HD) and vice-versa. In Chapter 3, we took

any two points on a two-dimensional plane and found a bound onthe HD. In Chapter 4, we took

any two nodes at a certain HD away and found the bound on the ED between them. In Chapter 5,

we took a fixed point and a node placed randomly at a certain HD away and found the bound

on the ED between them. Hence, the results presented in this report are different in addressing

the question of proportionality between the ED and HD, and gives a design rule for HD-based

localisation algorithm presented in Chapter 6.

2.4.2 Localisation in anisotropic atmosphere

In real networks, the radiation pattern of antennas and the radio propagation are anisotropic. Also

the deployment of the nodes may not be homogeneous. These non-idealities forces the above-

mentioned algorithms to perform worse. Following are two papers that address some of these

issues.

Concave Environment The concave environment is defined as a certain kind of node deploy-

ment where the nodes have a positive probability of falling only on an area, whose shape is non-

convex. Using a setup of this kind, in [25], the authors have proposed a new algorithm named

i-Multihop, that tries to estimate the location of a node using the distance information got from a

graph with nodes deployed in a non-convex region. The distance information can be imprecise due
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to the concavity and so they formulate an optimisation problem to solve for the location of a node

given the distance estimates. Through simulation they haveshown the algorithm to perform better

than the DV-Hop based approach in a non-convex setting.

Deployment with holes Since sensor networks are used for monitoring some process on an area,

it can haveholes. The holes are defined as regions where the node density is zero. In a network

with holes, it is difficult to use the hop-distance as a measure of Euclidean distance directly. This

issue has been addressed in the paper by Li and Liu [16], wherethey propose a new algorithm

called REndered Path (REP). This algorithm tries to figure out the true ED between two nodes

from the path information and the shape of the holes. The assumption there is that the number

of holes and their boundary information is known. Also they assume that outside the holes the

node density is homogeneous and the ED-HD proportionality is valid there. When a hole comes in

between the node and an anchor, the shortest path takes a route over the edge of the hole, and using

several geometric propositions, they prove that the true EDcan be figured out in such a setup.



Chapter 3

Distance Discretisation between Two Fixed

Points

3.1 Distance Discretisation: A Brief Introduction

We consider a dense wireless sensor network comprising a large number of nodes,n, distributed

uniformly over a region in Euclidean space, e.g., the unit square. If the communication range of

every node isr, then the communication topology becomes a geometric graph, i.e., each node is

connected to every other node that is at a distance≤ r. If the node deployment is random in some

sense, e.g., uniform i.i.d. deployment, then the network topology becomes a random geometric

graph (RGG) (see, e.g., [21]). Given a dense deployment of nodes, and a topology over them, a

frequently used approximation is to take the minimum numberof hops between nodes (i.e., the

hop distance) as a measure of the Euclidean distance between them. Bydistance discretisation,

we mean the use of the integral valued hop-distances as a measure of Euclidean distances, which

are real numbers. Niculescu and Nath [20], Nagpalet al. [18] and Yanget al. [27] have used this

approximation to develop techniques for GPS-free localisation in dense wireless sensor networks.

Yanget al., in particular, make a key assumption that the ratio of the Euclidean distance between a

node and two anchor nodes is well approximated by the ratio ofthe corresponding hop distances.

In the following section, we give a motivation for studying the Geometric Graph with random node

25
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placements and study the ED-HD relationships in a Random Geometric Graph in the sections to

follow.

3.2 Motivation for random node placement

A natural question that arises when we use random node placement for the sensor network, is the

part played by randomness in bringing out the ED from the HD information. The answer is that,

if we use an arbitrary placement of nodes, the HD does not giveany useful information about the

ED. This has been shown in the following section, where we show that we can always come up

with an arbitrary node placement for which if the HD≥ 2, r < ED ≤ HD × r, wherer is the

radius of the geometric graph on which we measure the hops. So, this fact motivates us to use the

random placement of nodes, and we will prove that, in such a setup, HD gives useful information

about the ED, thus making the Random Geometric Graphs interesting to study.

3.3 HD-ED Relationship in Arbitrary Geometric Graphs

In this section, we evaluate the performance of distance-hop proportionality in anarbitrary geo-

metric graph (by arbitrary we mean the node locations are arbitrary) with radiusr, and show that

this approximation is coarse. The setting and few notationsare as follows.

Setting:

• n nodes are deployed on a unit 2-dimensional areaA in an arbitrary fashion. The node

locations are denoted by the vectorv = [v1, v2, · · · , vn] ∈ An, wherevi is the location of

theith node.

• We form the geometric graphG(v, r) by connecting the nodes that are within the radiusr of

each other, wherer is the radius for the arbitrary geometric graph.

We defineanchorsas nodes whose locations are known apriori, e.g., in Figure 3.1, we have shown

4 anchorsb1, b2, b3 andb4, with their position fixed at the 4 corners of the unit squareA.
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b1 ≡ (0, 0)

Area to monitor, A

b2 ≡ (1, 0)

b3 ≡ (1, 1)b4 ≡ (0, 1)

sample deploymentv

r

Neighbours in the
Geometric Graph
G(v, r)

Node locations can be arbitrary or random

Figure 3.1: An example deployment with the 4
anchors.

sample deploymentv

Dl(v, hl)

Dl(v, hl)

bl

Area to monitor, A

These paths are onG(v, r)

Anchor can be anywhere inA, this is an example
lth anchor location

Figure 3.2: Graphical illustration ofDl(v, hl)
andDl(v, hl).

Notation:

• N = [n] = {1, 2, · · · , n}, the index set of the nodes, i.e., nodei ∈ N has a locationvi on

A.

• bl = Location of thelth anchor node,l = 1, · · · , L, e.g., in Figure 3.1,L = 4.

• Hl,i(v) = Minimum number of hops of nodei from anchorbl on the graphG(v, r) for the

deploymentv.

• Dl,i(v) = Euclidean distance of nodei from anchorbl for the deploymentv.

Dl(v, hl) = max
{i∈N :Hl,i(v)=hl}

Dl,i(v)

Dl(v, hl) = min
{i∈N :Hl,i(v)=hl}

Dl,i(v)

A graphical illustration of the above two quantities is given in Figure 3.2.

• Nj = {k ∈ N : ||vj − vk|| ≤ r, k 6= j}, j ∈ N . This is the neighbour set of nodej in

G(v, r).
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a1

a3
a1a3 > r

a1a2 = r

γ >
π
3

a2

a2a3 = r

Figure 3.3: Condition for sequential neighbours in arbitrary geometric graph.

With this setting, given the hop distancehl onG(v, r) between a node and an anchor, we wish to

obtain constraints on the Euclidean distance of the node from anchorbl. We define a sequence of

nodes{a1, a2, · · · , aK}, where allai ∈ N , i = 1, · · · , K, assequential neighboursiff

Nai
=







{ai−1, ai+1} for i = 2, · · · , K − 1

{ai+1} for i = 1

{ai−1} for i = K

We can observe if{a1, a2, a3} have the following properties,a1a2 = r, a2a3 = r anda1a3 > r,1

they will be sequential neighbours onG(v, r) (See Figure 3.3). Then, by using cosine law in

△a1a2a3, we get,a1a3 =
√

r2 + r2 − 2r.r cos γ = r
√

2(1 − cos γ) > r, for γ > π
3
. Now, to find

a bound on ED for HDhl, we construct a regular polygon withhl + 1 sides, all with lengthr, as

shown in Figure 3.4. We know that the total interior angle is(hl + 1 − 2)π = (hl − 1)π. Hence

each angle is(hl−1)π
hl+1

. We see that,(hl−1)π
hl+1

> π
3
, iff hl > 2. So, for all hop distanceshl ≥ 3, each of

the internal angles will be> π
3
. Now we pick two adjacent nodess andd as shown in Figure 3.4.

We want the hop distance between them to behl, we delete the edgesd and increase all the other

angles by a very small amountδ, hence we get the node sequence as shown in Figure 3.5. This

sequence of nodes will be sequential neighbours iff the ED betweens andd, i.e. r1, becomes> r.

1Define,ajak = ||vaj
− vak

||



3.3. HD-ED Relationship in Arbitrary Geometric Graphs 29

= r

s

d

A regular hl + 1 sided polygon

γ > π
3

∀hl > 2

= r
all internal angles = γ

3

2

1

hl + 1

Figure 3.4: Construction to find the lower
bound on Euclidean distance.

= r

s

d

r1 = r + δ′, δ′ > 0

hop distance betweens and d = hl

this edge is deleted

all other angles

γ + δ

3

2

1

increase byδ

hl + 1

Figure 3.5: Achievability of the lower bound.

Now the following lemma says that for a certain choice ofδ, r1 > r with the nodes on the path

from s to d being sequential neighbours.

Lemma 1 For hl > 2 and0 < δ < 4π
hl+1

, r1 > r

Proof: In Appendix A.

Hences andd cease to be neighbours and the nodes in the path froms tod still follow the properties

of being sequential neighbours. Assuming other nodes to be more thanr from all the nodes of this

set ofhl + 1 nodes, the hop distance betweens andd becomeshl, however the Euclidean distance

between them is just more thanr, for hl ≥ 3. Forhl = 2, a construction similar to Figure 3.3 can

be done to show that the distance betweens = a1 andd = a3 is just a little more thanr. Hence

for any arbitrary geometric graph in 2-dimensions, given the hop distance between a node and an

anchor beinghl ≥ 2, the Euclidean distance can be arbitrarily close but more than r, which is

a trivial lower bound. The upper bound on ED remainshlr as usual, which can be achieved by

placing the nodes on a straight liner distance from each other to form a set ofhl + 1 sequential

neighbours. Hence, we have proved the following lemma.

Lemma 2 For arbitrary v andhl ≥ 2, r < Dl(v, hl) ≤ Dl(v, hl) ≤ hlr and both bounds are

sharp.
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Hence the hop distance in an arbitrary geometric graph on a plane does not provide useful infor-

mation about the Euclidean distance between the nodes.

However, the situation changes when the distribution of nodes has positive density over all points

on A, e.g., the node distribution is Uniform i.i.d. or Randomised Lattice. As we will find out

in the following sections, in a random geometric graph with asufficient number of nodes, the

hop-distance serves as a good measure of the Euclidean distance.

3.4 ED-HD proportionality in Random Geometric Graph (RGG)

In this chapter, we formalise the notion of proportionalitybetween the hop distance (HD) between

any two points (not necessarily nodes) on a unit areaA and the Euclidean distance (ED) between

them. The nodes are distributed in a uniform i.i.d. fashion overA, i.e., the location of each node is

uniformly distributed overA, independent of the locations of the other nodes (a formal definition

is given later). On such a deployment of nodes, we consider the RGG with radiusr(n) = c
√

lnn
n

,

c > 1√
π
, which ensures connectedness of the RGG with probability approaching 1, asn → ∞

(Gupta and Kumar [9]). The notion of hop distance between a pair of arbitrary pointsb1 andb2

separated by Euclidean distanced is illustrated in Figure 3.6. A node that falls within a radius of

r(n) from point bi, i = 1, 2, is connected tobi, and this is counted as one hop. For a connected

RGG, there is at least one path between these two nodes, and hence we get a path between the

pointsb1 andb2. Connectivity of the RGG is ensured by the choice ofr(n) and existence of at

least one node within a radiusr(n) of bi is ensured by Lemma 3. The minimum number of hops

for all such possible paths is called the hop-distance betweenb1 andb2. In this setting, we show

that the hop distance is nearly proportional to the Euclidean distance in the following sense. For

eachǫ, 0 < ǫ < 1, if r(n) = c(ǫ)
√

ln n
n

, for an appropriate choice ofc(ǫ), the probability that the

hop distance lies in the interval
[

d
r(n)

, d
(1−ǫ)r(n)

)

goes to1 asn → ∞.

In Section 3.5, we establish the result for twofixedpointsb1 andb2 separated by a distanced on

A. A construction ensures a path of d
(1−ǫ)r(n)

hops w.h.p.2; hence the hop distance is no more

2w.h.p. (with high probability) means that the probability of the said event→ 1 asn → ∞
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Graphical illustration of hop−distance
between two given points on the unit area

this is counted as one 
hop

d

r(n)

r(n)
node location

this path is on the geometric graph

the minimum number of hops in all such possible paths
connecting the two points is called the hop−distancenode location

2b

b1

Figure 3.6: Illustration ofhop distance. Starting with each pointbi, we first seek a node within the
radiusr(n) of bi.

than this quantity w.h.p.. The lower bound,d
r(n)

, follows trivially by the triangle inequality. This

gives us Theorem 1. In Section 3.6, we generalise the result to hold simultaneously forall pairs

of points(b1, b2) separated by the distanced (Theorem 2). Finally in Section 3.7 we show that,

the constructions made to prove Theorem 2 extend to yield Theorem 3, which is the generalisation

of this result for any pair of points onA. We note here that Khudeet al. [14] have shown that

the hop distance lies w.h.p. in the interval
[

d
r(n)

, a d
r(n)

)

for a fixed numbera > 1, and hence their

result does not provide a means to control the accuracy of theapproximation between hop distance

and Euclidean distance. Here we show that the constanta can be made arbitrarily close to 1 by

appropriate choice ofǫ.

3.5 Proportionality for Two Fixed Points Separated by a Dis-

tanced

Setting:

• n nodes are deployed on a unit areaA in the uniform i.i.d.3 fashion. The random node

3
Pr
(
ith node falls inA1 ⊆ A

)
= |A1|

|A| , ∀i, independent of all nodesj 6= i, where|A| is the area of the regionA.

Deployment of this kind is called uniform i.i.d. deployment.
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strips

blade

N(n) hops

pr(n)

D(π)

b1 b2

t(n) = qr(n)

d

An example of aN(n) hop path π

u(n)

r(n)

Figure 3.7: The construction of a path taking the line joining b1 andb2 as the axis. We are looking
at the distance traveled along this path inN(n) hops.

locations are denoted by the random vectorV ∈ An, with a particular realisation being

denoted byv. We denote byPn(.) the probability measure onAn so obtained.

• We form the RGGG(v, r(n)) by connecting the nodes that are within the radiusr(n) of

each other, wherer(n), the radius of the geometric graph is chosen so that the network

remains asymptotically connected. We taker(n) = c
√

ln n
n

, c > 1√
π
, a constant; this ensures

asymptotic connectivity (see [9]).

Notation:

• Fix two pointsb1 andb2 in A such thatb1b2 = d, whereb1b2 denotes the Euclidean distance

between the pointsb1 andb2.

• If a node exists within a radius ofr(n) from each of the pointsbi, then we obtain a path

between these nodes in the RGGG(v, r(n)) (see Figure 3.6). The hop count of such a path

is the number of hops traversed on the RGG, plus 2. LetP(v, r(n)) denote the set of all such

paths betweenb1 andb2 for the deploymentv. Then we define the hop distance betweenb1

andb2, for the node deploymentv, by

Hb1b2(v) =







min{hop count for paths inP(v, r(n))}

n + 2, if P(v, r(n)) is empty
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The following lemma assures that there exists at least one node within a radius ofr(n) for any given

pointsb1 andb2, w.h.p.. Define,Bi = {v : ∃ at least one node within a radius ofr(n) from bi},

i = 1, 2.

Lemma 3 limn→∞ P
n (B1 ∩ B2) = 1

Proof: P
n (B1 ∩ B2) = 1 − P

n (Bc
1 ∪ Bc

2), and P
n (Bc

1 ∪ Bc
2) ≤ P

n(Bc
1) + P

n(Bc
2) = (1 −

πr2(n))n + (1 − πr2(n))n ≤ 2e−nπr2(n) n→∞−→ 0 sincer(n) = c
√

lnn
n

.

This Lemma tells us that the setP(v, r(n)) will be non-empty w.h.p.. Givenǫ, 0 < ǫ < 1, we will

write c(ǫ) to denote the dependence ofc on ǫ, and then we will writer(n, ǫ) = c(ǫ)
√

lnn
n

. Now

define the eventE1 =
{

v : d
r(n,ǫ)

≤ Hb1b2(v) < d
(1−ǫ)r(n,ǫ)

}

. The following theorem states that if

c(ǫ) is chosen appropriately thenPn(E1) → 1 asn → ∞, i.e., w.h.p.,Hb1b2(v) is proportional to

d (= b1b2), where the proportionality constant is1
r(n,ǫ)

, but for an error that can be made arbitrarily

small by choosingǫ to be small.

Theorem 1 For fixedb1 andb2 s.t. b1b2 = d, for all ǫ, 1 > ǫ > 0, if c2(ǫ) ≥ 1

2q
√

1−p2
, wherep and

q are any two constants satisfying1−ǫ < p < 1 and0 < q < p−(1−ǫ), thenlimn→∞ P
n (E1) = 1.

Discussion: We see that asǫ is made small (in order to achieve greater accuracy in the propor-

tionality between hop distance andd) p becomes closer to 1, andq closer to 0, thus increasing

c(ǫ), and hence makingr(n, ǫ) larger than the critical radius for connectedness, i.e.,
√

ln n
πn

. Now,

if it is desired thatr(n, ǫ) ≤ rmax, for some givenrmax, thenn can be appropriately chosen to

achieve this. Ifn is so chosen (and is large enough for the asymptotics to “kickin”) then we can

expect to get proportionality of hop distance andd in the sense of the theorem, and also a distance

discretisation accuracy ofrmax. We see that, due to thec(ǫ) factor, we may needn to be larger than

if the only objective was that of connectedness of the RGG.

Proof: The proof proceeds via a few lemmas. First, we define some quantities that will be needed

in the lemmas and then state and prove the lemmas. The theoremwill follow thereafter.
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We are given anǫ > 0. We take anǫ′ < ǫ and define,N(n) =
⌈

d
(1−ǫ′)r(n)

⌉

. So,

d

(1 − ǫ′)r(n)
≤ N(n) <

d

(1 − ǫ′)r(n)
+ 1 (3.1)

The construction in Figure 3.7 is done taking the straight line joining pointsb1 andb2 as the axis.

b1 is at the centre of the left side of the rectangle andb2 is at a distanced along the horizontal

axis of the rectangle. The rectangular box up to theN(n)th strip, hereafter referred to as ablade

and denoted byB(b1, b2), has been drawn along that axis and has shaded strips of widthqr(n).

The maximum distance between any two points in consecutive shaded strips isr(n) as shown in

the figure. We will show thatb2 is reachable (by reachable we mean that there exists a path as

shown in Figure 3.6 by which we can reachb2 from b1) from b1 in N(n) hops w.h.p.. If there

exists at least one node in all theN(n) consecutive shaded strips starting fromb1, we can connect

these consecutive nodes each with one hop and consequently get aN(n) hop path as shown in

Figure 3.7. Define,

• π(b1,B(b1, b2), N(n),v) : a path obtained by hopping over the nodes of theN(n) consec-

utive shaded strips in the bladeB(b1, b2) starting from pointb1 for a sample deploymentv,

see Figure 3.7. For brevity of notation, we will useπ to denote such a path.

• D(π(b1,B(b1, b2), N(n),v)) : Euclidean distance traveled along the axis of the bladeB(b1, b2)

by the pathπ(b1,B(b1, b2), N(n),v), as shown in Figure 3.7. To make the notation simple,

we will useD(π) to denote this distance.

• Ai = {v : ∃ at least one node in theith strip of the bladeB(b1, b2)}

In each hop at least a distance of(p − q)r(n) is traveled along the blade. If there exists at least

one node in each of theN(n) consecutive shaded strips starting fromb1, a distance of at least

N(n)(p − q)r(n) is traveled alongB(b1, b2) in N(n) hops. Hence,

∩N(n)
i=1 {Ai}

⊆ {v : ∃ a pathπ(b1,B(b1, b2), N(n),v) s.t.N(n)(p − q)r(n) ≤ D(π(b1,B(b1, b2), N(n),v))}

(3.2)
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Which implies,

P
n{v : ∃ a pathπ(b1,B(b1, b2), N(n),v) s.t.

N(n)(p − q)r(n) ≤ D(π(b1,B(b1, b2), N(n),v))}

≥ P
n
(

∩N(n)
i=1 {Ai}

)

= 1 − P
n
(

∪N(n)
i=1 {Ac

i}
)

≥ 1 −
N(n)
∑

i=1

P
n (Ac

i) (3.3)

Where the first inequality follows from Equation 3.2, the equality is due to De-Morgan’s Theorem

and the second inequality follows from the Union Bound. We will now prove the following lemma:

Lemma 4 limn→∞
∑N(n)

i=1 P
n (Ac

i) = 0, if and only ifc2 ≥ 1

2q
√

1−p2
.

Proof: Using the fact that node deployment is uniform i.i.d. over the unit area ofA,

N(n)
∑

i=1

P
n (Ac

i)

= N(n)(1 − u(n)t(n))n

<

(
d

(1 − ǫ′)r(n)
+ 1

)

(1 − u(n)t(n))n

≤
(

d

(1 − ǫ′)r(n)
+ 1

)

e−nu(n)t(n)

=
d

(1 − ǫ′)c

n
1
2
−c2q

√
1−p2

√
ln n

+ e−nc2q
√

1−p2 ln n
n

=
d

(1 − ǫ′)c

√

n1−2c2q
√

1−p2

ln n
+ e−c2q

√
1−p2 lnn (3.4)

r(n) = c
√

ln n
n

, c a constant, and by construction,u(n) =
√

1 − p2r(n), t(n) = qr(n). Here the

first inequality follows from (3.1). In the second inequality, we have used the fact1 − x ≤ e−x.

The second term in the above equation goes to zero asn → ∞. To drive the first term to zero,

it is necessary and sufficient to take1 − 2c2q
√

1 − p2 ≤ 0, i.e. c2 ≥ 1

2q
√

1−p2
, which proves the

lemma.
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Thus, under the hypothesis of Lemma 4, R.H.S. of Equation 3.3goes to1. Now we takep − q =

1 − ǫ′ > 1 − ǫ, asǫ′ < ǫ for the givenǫ > 0, this is possible since1 > p > q > 0, by the

construction. Which is same as1− ǫ < p < 1 and0 < q < p− (1− ǫ). Then we have, using (3.1),

N(n)(p − q)r(n) = N(n)(1 − ǫ′)r(n) ≥ d

So, whenv ∈ ∩N(n)
i=1 {Ai}, by such a choice ofp, q, we travel at least a distance ofd from b1 along

the blade inN(n) hops. Since all the points within the blade up to theN(n)th strip are reachable,

b2 is also reachable fromb1 in N(n) hops, see Figure 3.8. Hence the hop distance betweenb1 and

b2 can be no more thanN(n).

∩N(n)
i=1 {Ai}

⊆ {v : ∃ a pathπ s.t.D(π) ≥ N(n)(p − q)r(n)}

= {v : ∃ a pathπ s.t.D(π) ≥ N(n)(p − q)r(n) ≥ d}

= {v : b2 is reachable fromb1 in N(n) hops}

⊆ {v : Hb1b2(v) ≤ N(n)} (3.5)

⇒ P
n
(

∩N(n)
i=1 {Ai}

)

≤ P
n{v : Hb1b2(v) ≤ N(n)} (3.6)

The second equality holds from the fact that existence of such a pathπ will guarantee reachability

of b2 from b1 in N(n) hops, see Figure 3.8. So, from this result together with Lemma 4, we get the

following lemma:

Lemma 5 If c2 ≥ 1

2q
√

1−p2
, thenlimn→∞ P

n {v : Hb1b2(v) ≤ N(n)} = 1.

In Lemma 4 we got a bound onc that depends on the givenǫ. So, c and consequentlyr(n)

becomes function ofǫ. We invoke that dependence by changingc to c(ǫ) and r(n) to r(n, ǫ).

Where,r(n, ǫ) = c(ǫ)
√

ln n
n

. So, from this point onwards, we will user(n, ǫ) instead ofr(n) to

denote that all the subsequent results are true forr(n, ǫ), wherec(ǫ) satisfiesc2(ǫ) ≥ 1

2q
√

1−p2
,

wherep andq are any two constants satisfying1 − ǫ < p < 1 and0 < q < p − (1 − ǫ).
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the distance of this point from b1 is more than
d by the choice ofp and q

t(n) = qr(n)
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from b1 in N(n) hops

b1
b2

Figure 3.8: All the points in the arc shown are also reachablefrom b1 in N(n) hops.

We also know that,∀ v ∈ An, Hb1b2(v) ≥ d
r(n,ǫ)

, by triangle inequality. Then putting together this

and Lemma 5, we get,

P
n

{

v :
d

r(n, ǫ)
≤ Hb1b2(v) ≤

⌈
d

(1 − ǫ′)r(n, ǫ)

⌉}

n→∞−→ 1

⇒ P
n

{

v :
d

r(n, ǫ)
≤ Hb1b2(v) <

d

(1 − ǫ′)r(n, ǫ)
+ 1

}

n→∞−→ 1

Now, taking the upper bound ofHb1b2(v) in the above expression,

d

(1 − ǫ′)r(n, ǫ)
+ 1

=
d

(1 − ǫ)r(n, ǫ)







1 − ǫ

1 − ǫ′
︸ ︷︷ ︸

=:1−δ, asǫ′<ǫ

+
(1 − ǫ)r(n, ǫ)

d







=
d

(1 − ǫ)r(n, ǫ)

[

1 − δ +
(1 − ǫ)r(n, ǫ)

d

]

≤ d

(1 − ǫ)r(n, ǫ)
, ∀ n ≥ Nδ (3.7)

∃ anNδ such that∀ n ≥ Nδ, δ − (1−ǫ)r(n,ǫ)
d

≥ 0. Hence we have,

lim
n→∞

P
n

{

v :
d

r(n, ǫ)
≤ Hb1b2(v) <

d

(1 − ǫ)r(n, ǫ)

}

= 1
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Figure 3.9: Corollary for all pairs of pointsz1 andz2 ∈ B(b1, b2)

Hence the theorem.

Extension: We see from Equation 3.5, that by ensuring the existence of atleast one node in each

of theN(n) strips, not only we have a path ofN(n) hops betweenb1 andb2, but also have for all

pairs of pointsz1 andz2 ∈ B(b1, b2) (see Figure 3.9), with the Euclidean distance between them

being denoted byz1z2, the hop-distance will be≤
⌈

z1z2

(p−q)r(n,ǫ)

⌉

+ 1 =
⌈

z1z2

(1−ǫ′)r(n,ǫ)

⌉

+ 1, i.e.

{∩N(n)
i=1 Ai} ⊆

{

v : ∀z1, z2 ∈ B(b1, b2), Hz1z2(v) ≤
⌈

z1z2

(1 − ǫ′)r(n, ǫ)

⌉

+ 1

}

(3.8)

Now as in Equation 3.7, we can show the following,

⌈
z1z2

(1 − ǫ′)r(n, ǫ)

⌉

+ 1 <

(
z1z2

(1 − ǫ′)r(n, ǫ)
+ 1

)

+ 1

=
z1z2

(1 − ǫ)r(n, ǫ)

(
1 − ǫ

1 − ǫ′
+

2(1 − ǫ)r(n, ǫ)

z1z2

)

≤ z1z2

(1 − ǫ)r(n, ǫ)
∀n ≥ Nǫ (3.9)

The triangle inequality holds for all deploymentv, hence z1z2

r(n,ǫ)
≤ Hz1z2(v), ∀v ∈ An. So, we can

state the above result in the following corollary,

Corollary 1 For all ǫ, 1 > ǫ > 0, if c2(ǫ) ≥ 1

2q
√

1−p2
, wherep and q are any two constants

satisfying1 − ǫ < p < 1 and0 < q < p − (1 − ǫ), then

lim
n→∞

P
n

{

v : ∀z1, z2 ∈ B(b1, b2),
z1z2

r(n, ǫ)
≤ Hz1z2(v) <

z1z2

(1 − ǫ)r(n, ǫ)

}

= 1
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3.6 Generalisation for all Pairs of Points at a Distanced apart

on a Unit Square

Now we generalise the result so that it holds simultaneouslyfor all pairs of pointsb1, b2 in a

unit squareA, with b1b2 = d. For that we split the areaA into small squarelets of sider(n)√
2

as

shown in Figure 3.10, so that the diagonal of each squarelet is r(n). From the centre of each

squarelet, we construct a circle of radiusd+ r(n)
2

and segment the entire circle by blades, as shown

in Figure 3.10. We start with one blade. It will cover some portion of the circumference of the

circle of radiusd + r(n)√
2

. We construct the next blade so that it covers the adjacent portion of

the circumference that has not been covered by the previous blade. We go on constructing these

blades until the entire the circle is covered. In each blade we construct strips in the same way we

did previously. The only difference of these blades with that in Figure 3.7 is that here we have a

strip right in the beginning of the blade, which was not therein the previous construction. So, there

areN(n) + 1 strips now in each blade.

Now we choose inA, any two pointsb1 andb2 at a distanced. Pointb1 will fall in some squarelet. If

we ensure that each shaded strip of each blade drawn from the centre of each squarelet is nonempty,

we can travel in one hop fromb1 to any node in the first strip (since it is withinr(n) from all points

in the squarelet, under the condition as explained in Figure3.11) of the blade that containsb2 and

travel along that blade to reachb2, as shown in Figure 3.10. The radius of the circle drawn from

the centre of each squarelet isd+ r(n)
2

since nob2 that is at a distanced from anyb1 in the squarelet

can be beyond this range, and by ensuring the existence of at least a node in each strip of each

blade, all points inside and on this circle is reachable inN(n) hops (As the radius of the circle has

increased tod + r(n)
2

, we need to redefineN(n) =

⌈

d+
r(n)

2

(1−ǫ′)r(n)

⌉

). Henceb2 is reachable fromb1 in

N(n) + 1 hops and the hop distance betweenb1 andb2 can be no more thanN(n) + 1.

Some notations are in order,
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Figure 3.10: Construction for all pairsb1 andb2. There is a circle of radiusd centred at the centre
of each squarelet and each such circle is covered by blades.
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Figure 3.12: Let the angle subtended by the arc atb1 beα(n)

• Bk,j : jth blade drawn from the centre of thekth squarelet of the unit square.

• J(n) : Number of blades that cover the circle of radiusd + r(n)
2

drawn from the centre of

each squarelet.

• N(n) =

⌈
d+ r(n)

2

(1−ǫ′)r(n)

⌉

, ǫ′ < ǫ, the number of strips in each blade is nowN(n) + 1.

• K(n) : Number of squarelets in the unit square.

• a(n) is the length of the arc of radiusd that lies within a blade, drawn takingb1 as centre, as

shown in Figure 3.12.

• α(n) : angle subtended bya(n) at b1, see Figure 3.12.
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• πk,j(b1,Bk,j, N(n),v) : a path obtained by hopping over the nodes of theN(n) consecutive

shaded strips in the bladeBk,j starting from the node in the first strip that connects pointb1

for a sample deploymentv. For brevity of notation, we will useπk,j to denote the same.

• D(πk,j(b1,Bk,j, N(n),v)) : Euclidean distance traveled along the axis of the bladeBk,j by

the pathπk,j(b1,Bk,j, N(n),v). To make the notation simple, we will useD(πk,j) to denote

the same.

• Ak,j,i = {v : ∃ at least one node in theith strip ofBk,j}

• H(d,v) = sup{(b1b2)∈A2:b1b2=d} Hb1b2(v)

• H(d,v) = inf{(b1b2)∈A2:b1b2=d} Hb1b2(v)

Now, we choosep − q = 1 − ǫ′ as before.

{∩k,j,iAk,j,i}

⊆ {v : ∃ a pathπk,j, b2 ∈ Bk,j s.t.D(πk,j) ≥ N(n)(p − q)r(n)}

= {v : ∃ a pathπk,j, b2 ∈ Bk,j s.t.D(πk,j) ≥ N(n)(p − q)r(n) ≥ d}

⊆ {v : Hb1b2(v) ≤ N(n) + 1, ∀ (b1, b2) s.t. b1b2 = d}

=

{

v : H(d,v) <

(

d + r(n)
2

(1 − ǫ′)r(n)
+ 1

)

+ 1

}

(3.10)

To ensure that all nodes falling in the first strips of the blades pertaining to a squarelet is within

a distance ofr(n) from any point on the squarelet, we need to ensure the diagonal line from the

centre of the squarelet to the edge of the strip as shown in Figure 3.11 is≤ r(n)
2

, which gives

p ≥ 2q, i.e. no two strips in a blade should overlap. If it is not satisfied, there can be one event for

which the distance between the node falling in the first stripand some point on the squarelet can

be more thanr(n), as shown in Figure 3.11.

By similar arguments as in Equation 3.7, it can be shown that∃ a Nǫ s.t. the upper bound of
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H(d,v) in Equation 3.10 can be made≤ d
(1−ǫ)r(n)

, ∀n ≥ Nǫ. We have,

P
n (∩k,j,iAk,j,i) ≥ 1 −

K(n)
∑

k=1

J(n)
∑

j=1

N(n)+1
∑

i=1

P
n
(
Ac

k,j,i

)
(3.11)

The upper limit ofi is nowN(n)+ 1, because of the extra strip in the beginning of the blade. Now

usingα(n) as shown in Figure 3.12, we get,J(n) =
⌈

2π
α(n)

⌉

. Further, recalling the definition of

a(n),

α(n)

(

d +
r(n)

2

)

= a(n) ≥ u(n) ⇒ α(n) ≥ u(n)
(

d + r(n)
2

)

⇒ J(n) =

⌈
2π

α(n)

⌉

≤







2π
(

d + r(n)
2

)

√

1 − p2r(n)







(3.12)

Also,K(n) =
⌈ √

2
r(n)

⌉2

. We carry out the calculation to find the condition onc to drive the rightmost

quantity in Equation 3.11 to zero without the ceiling onJ(n) andK(n), since the condition onc

is the same even with the ceiling. Let us focus on the following term,

K(n)
∑

k=1

J(n)
∑

j=1

N(n)+1
∑

i=1

P
n
(
Ac

k,j,i

)

= K(n)J(n)(N(n) + 1)(1 − u(n)t(n))n

<

( √
2

r(n)

)2
2π(d + r(n)

2
)

√

1 − p2r(n)

[

d + r(n)
2

(1 − ǫ′)r(n)
+ 2

]

(1 − u(n)t(n))n

≤
( √

2

r(n)

)2
2π(d + r(n)

2
)

√

1 − p2r(n)

[

d + r(n)
2

(1 − ǫ′)r(n)
+ 2

]

e−q
√

1−p2c2 lnn

=
4π

√

1 − p2

[
d

r3(n)
+

1

2r2(n)

] [
d

(1 − ǫ′)r(n)
+

1

2 (1 − ǫ′)
+ 2

]

e−q
√

1−p2c2 ln n

=
4π

√

1 − p2

[

d2

(1 − ǫ′)c4

n2−q
√

1−p2c2

(ln n)2
+

(
d

2 (1 − ǫ′)
+ d

(
1

2 (1 − ǫ′)
+ 2

))
n

3
2
−q
√

1−p2c2

c3(ln n)
3
2

+

1

2

(
1

2 (1 − ǫ′)
+ 2

)
n1−q

√
1−p2c2

c2 ln n

]

(3.13)

To drive this quantity to zero asn → ∞, it is necessary and sufficient to takec2 ≥ 2

q
√

1−p2
. We
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know, for all (b1, b2) ∈ A2 s.t. b1b2 = d and∀ v ∈ An, Hb1b2(v) ≥ d
r(n)

. Hence,H(d,v) ≥ d
r(n)

,

∀ v ∈ An. We also have,∀n ≥ Nǫ,

(

d+
r(n)

2

(1−ǫ′)r(n)
+ 1

)

+ 1 ≤ d
(1−ǫ)r(n)

. So, definingE3 =
{

v : d
r(n,ǫ)

≤ H(d,v) ≤ H(d,v) < d
(1−ǫ)r(n,ǫ)

}

, the theorem can be stated as,

Theorem 2 For all ǫ, 1 > ǫ > 0, if c2(ǫ) ≥ 2

q
√

1−p2
, wherep andq are any two constants satisfying

1 − ǫ < p < 1 and0 < q < p − (1 − ǫ) andp ≥ 2q, on a unit square, thenlimn→∞ P
n (E3) = 1.

3.7 Generalisation for all Pairs of Points on a Unit Square

Theorem 2 takes account of any two points onA at a fixed distanced. We can generalise this

result for all distances≤ d using the same line of arguments as in Corollary 1. If we pick any pair

of pointsz1 andz2 in A, such thatz1z2 ≤ d, we will encounter a situation similar as depicted in

Figure 3.10, the pointsb1 andb2 being replaced byz1 andz2, d replaced byz1z2 and the radius

of the circle byz1z2 + r(n)
2

. Ensuring the existence of at least a node in each of the strips of the

blades in the original circle of radiusd + r(n)
2

, also ensures a path fromz1 to z2 with hop-distance

being≤
(⌈

z1z2+
r(n)

2

(p−q)r(n)

⌉

+ 1

)

+ 1 =

(⌈

z1z2+
r(n)

2

(1−ǫ′)r(n)

⌉

+ 1

)

+ 1. The last 1 comes from the first hop

from z1 to the node in the first strip of the blade that containsz2. Following the algebra similar to

Equation 3.7, it can be shown that
(⌈

z1z2

(1−ǫ′)r(n)

⌉

+ 1
)

+ 1 < z1z2

(1−ǫ)r(n)
, for all n ≥ Nǫ. So we have,

{∩k,j,iAk,j,i}

⊆
{

v : ∀z1, z2 ∈ A, z1z2 ≤ d, Hz1z2(v) <

(⌈

z1z2 + r(n)
2

(1 − ǫ′)r(n)

⌉

+ 1

)

+ 1

}

(3.14)

Now we taked to be equal to the diameter of the areaA (we define diameter as the maximum of

the minimum distance between any two points onA, here it turns out to be the diagonal of the

squareA). Then any pair of pointsz1 andz2 onA will have the propertyz1z2 ≤ d. So, we can

state Theorem 2 in more general setting as,
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Theorem 3 For all ǫ, 1 > ǫ > 0, if c2(ǫ) ≥ 2

q
√

1−p2
, wherep andq are any two constants satisfying

1 − ǫ < p < 1 and0 < q < p − (1 − ǫ) andp ≥ 2q, on a unit square,

lim
n→∞

P
n

{

v : ∀z1, z2 ∈ A,
z1z2

r(n, ǫ)
≤ Hz1z2(v) <

z1z2

(1 − ǫ)r(n, ǫ)

}

= 1

3.8 Illustration of Theorem 1 through Simulations

In this section we illustrate the result in Theorem 1 via simulation. This also provides some insight

into how largen might need to be for the asymptotics to be useful. We introduce the quantity

η := p − q = 1 − ǫ′ > 1 − ǫ, and thus writec(η) rather thanc(ǫ). We can chooseǫ′ to be very

close toǫ, and approximateη ≈ 1 − ǫ. So,η gives the accuracy in the proportionality between

hop distance (h) and Euclidean distance (d). By Theorem 1, for two fixed pointsb1 andb2, the d
h

ratio will be within (ηr(n), r(n)] with high probability (sinceh being in the interval
[

d
r(n)

, d
ηr(n)

)

implies thatd
h

ratio will be within (ηr(n), r(n)]), if c2(η) ≥ 1

2(p−η)
√

1−p2
, where0 < η < p < 1

andη ≈ 1 − ǫ.

For a givenǫ, η is fixed, and we choosep, such that,

p = arg max
p>η

(p − η)
√

1 − p2 =
η +

√

η2 + 8

4
(3.15)

Which minimisesc(η). The minimumc(η) is denoted bycmin(η) and we get,

c2
min(η) =

8

(
√

η2 + 8 − 3η)
√

8 − 2η2 − 2η
√

η2 + 8
(3.16)

We use thiscmin(η) in the simulations and the corresponding RGG radius is referred to asr(n, η)

and the RGG asG(V, r(n, η)).

We take,η = 0.8, which givescmin(η) = 3.23. With A being the unit square[0, 1]2, we chose

two fixed pointsb1 = (0.1, 0.1) andb2 = (0.9, 0.9), henced = b1b2 = 1.1314. Our simulation
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deploysn nodes in the uniform i.i.d. fashion (n varies as shown in Table 3.1), and builds the RGG

with radiusr(n, η). We then obtain the hop distance (h) betweenb1 andb2 on this RGG. This is

repeated 100 times for eachn, and the histogram of thed
h

ratio, is plotted, taking 200 bins in the

interval [0, 1]. An example histogram for 1400 nodes is shown in Figure 3.13.

We see that thed
h

ratio falls in the bin centred at 0.190, in 59% of the deployments, and in the

bin centred at 0.225, in 41% of the deployments. The frequency of occurrences (or the empirical

probability mass) of the corresponding hop distances for eachn are summarised in Table 3.1.

From Table 3.1 we see that for smalln, Hb1b2(V) falls outside the range
[

d
r(n,η)

, d
ηr(n,η)

)

with

some positive probability. This happens forn = 200, 400, 500, 800. But asn grows,Hb1b2(V)

falls within the predicted interval with probability 1. Forall n ≥ 900, this was observed in this

particular experiment. We may infer that, for alln ≥ 900, we can approximate hop distance

betweenb1 andb2 to be proportional to Euclidean distance between them with an accuracy factor

0.8. Of course, this value ofn depends on the value ofη and the locations of the pointsb1 andb2,

e.g., ifη is chosen to be close to1, i.e., giving much accurate proportionality between ED andHD,
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n r(n, η) d
r(n,η)

Hb1b2 probability mass d
ηr(n,η)

100 0.6935 1.6314 2 1 2.0393

200 0.5260 2.1510 3 1 2.6887

300 0.4456 2.5390 3 1 3.1736

400 0.3955 2.8607 3 0.87 3.5758

4 0.13

500 0.3603 3.1402 4 1 3.9257

600 0.3337 3.3905 4 1 4.2390

700 0.3126 3.6193 4 1 4.5238

800 0.2954 3.8300 4 0.87 4.7879

5 0.13

900 0.2810 4.0277 5 1 5.0352

1000 0.2686 4.2122 5 1 5.2672

1100 0.2579 4.3886 5 1 5.4869

1200 0.2484 4.5547 5 1 5.6940

1300 0.2400 4.7141 5 1 5.8927

1400 0.2325 4.8683 5 0.41 6.0860

6 0.59

1500 0.2256 5.0150 6 1 6.2681

1600 0.2194 5.1567 6 1 6.4467

1700 0.2138 5.2943 6 1 6.6164

1800 0.2085 5.4264 6 1 6.7830

1900 0.2037 5.5542 6 1 6.9411

2000 0.1992 5.6797 6 1 7.1023

2100 0.1950 5.8021 6 1 7.2526

2200 0.1911 5.9204 6 0.03 7.3996

7 0.97

Table 3.1: Simulation Results
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Figure 3.14: Comparing the histograms (100 runs) ofd
h

ratio onG(V, r(n)) andGcrit(V) for 1000
nodes

we will need larger values ofn.

Comparison with other Geometric Graphs: For a given node deploymentv definercrit(v) as the

least value ofr that makes theG(v, r) connected. We denoteG(v, rcrit(v)) byGcrit(v). Figure 3.14

compares thed
h

histogram for the proposed RGGG(V, r(n, η)) with that forGcrit(V), for n =

1000. We observe the variability ind
h

for G(V, r(n, η)) to be small and lies in the theoretical

interval(ηr(n, η), r(n, η)] given by Theorem 1. Whereas, thed
h

histogram forGcrit(V) has positive

mass over an interval of 0.03 to 0.065 (see the enlarged Figure 3.15) ford = 1.1314.

WhenG(V, r(n, η)) is used,ηr(n, η) < d
h
≤ r(n, η) w.h.p.. Consider two pairs of points(a1, a2)

and(b1, b2) with a1a2 = d1, Ha1a2(V) = h1 andb1b2 = d2, Hb1b2(V) = h2 respectively. The-

orem 1 implies that forr(n, η) chosen appropriately,Pn
(

∩2
i=1

{
di

r(n,η)
≤ hi < di

ηr(n,η)

})
n→∞−→ 1

(as the probability of both the events→ 1 individually asn → ∞). Thus forn large enough,

ηr(n, η) < di

hi
≤ r(n, η); i = 1, 2. So,η < d1/d2

h1/h2
< 1

η
w.h.p.. Hence, forη = 0.8, 0.8 < d1/d2

h1/h2
<

1.25 w.h.p., i.e., ifh1/h2 is used as an approximation tod1/d2, then the ratio of these quantities
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Figure 3.15: Histogram ofd
h

ratio onGcrit(V) for 1000 nodes (100 runs): pointsb1 andb2

will lie in the interval(0.8, 1.25) w.h.p. if r(n, η) is chosen according to Theorem 1. Such a ques-

tion is of interest in the context of the GPS-free localisation approach presented in [27]. We know,

proportionality betweend andh implies that the ratio ofd1/d2 to h1/h2 should be as close to unity

as possible. This can be achieved by choosingη closer to unity. Of course, the value ofn will

accordingly need to be larger for the asymptotics to work.

On the other hand, consider the same ratio forGcrit(V). Simulation withGcrit(V) yielded,0.03 ≤
d2

h2
≤ 0.065 w.h.p. forb1 = (0.1, 0.1) andb2 = (0.9, 0.9) (see Figure 3.15). Similarly fora1 =

(0.1, 0.9) anda2 = (0.9, 0.1), we have,0.03 ≤ d1

h1
≤ 0.07 w.h.p. (see Figure 3.16). Hence, for

Gcrit(V), 0.46 ≤ d1/d2

h1/h2
≤ 2.33, which is substantially inaccurate compared toG(V, r(1000, 0.8)).

These simulations show that if the proportionality betweenEuclidean and hop-distance is con-

cerned,G(V, r(n, η)) is better thanGcrit(V).



3.8. Illustration of Theorem 1 through Simulations 50

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Histogram for G
crit

d/h ratio ======>

E
m

p
ir
ic

a
l d

is
tr

ib
u

tio
n

1000 nodes
Avg r

crit
 = 0.057

a
1
 = (0.1,0.9)

a
2
 = (0.9,0.1)

Figure 3.16: Histogram ofd
h

ratio onGcrit(V) for 1000 nodes (100 runs): pointsa1 anda2



Chapter 4

Distance Discretisation between Two

Random Nodes

In this chapter, we look into the relationship of Euclidean and hop-distance between the nodes of

a random geometric graph. The proof techniques and the constructions are similar to what we got

for the case of point to point (Chapter 3) distance discretisation. As shown in Theorem 4, we can

show that the Euclidean distance lies within[(1− ǫ)hr(n), hr(n)] for this setup too, given that the

hop-distanceh between any pair of nodes is large enough.

Setting: We take a unit square areaA. n nodes are deployed Uniform i.i.d. on it, the node location

random vector is denoted byV ∈ An, with a certain realisation beingv = [v1, v2, · · · , vn] ∈ An,

wherevi is the location of theith node. The associated probability law is given byP
n(.). After

deployment, the nodes form a geometric graph with radiusr(n), r(n) = Θ
(√

lnn
n

)

. We will call

this geometric graphG(v, r(n)). Here we try to find a bound on the Euclidean distance between

any pair of nodes onG(v, r(n)) having hop distanceh between them.

Notation:

• N = [n] = {1, 2, · · · , n}, the index set of the nodes, i.e., nodei ∈ N has a locationvi on

A.

• Da,b(v): The Euclidean distance onA between two nodesa andb, a, b ∈ N , for the sample

51



Chapter 4. Distance Discretisation between Two Random Nodes 52

deploymentv.

• Ha,b(v): The hop distance onG(v, r(n)) between two nodesa and b, a, b ∈ N , for the

sample deploymentv.

D(v, h) = max
{(a,b)∈N 2:Ha,b(v)=h}

Da,b(v)

D(v, h) = min
{(a,b)∈N 2:Ha,b(v)=h}

Da,b(v)

Here, we will taker(n) = c
√

lnn
n

. Now we have the construction as shown in Figure 4.1. We

have split the unit squareA into squarelets with diagonalr(n). We construct a circle of radius

hr(n) + r(n)
2

centred at the centre of each squarelet. Then split it with the blades so that it covers

the entire circumference of the circle. Let us define the following.

• K(n) : Number of squarelets that splitA.

• J(n) : Number of blades to cover the part of circle withinA.

• Ai,j,k = {v : ∃ at least one node in theith strip of jth blade centred at thekth squarelet}

If for a deploymentv, there exists at least one node in each of theh − 1 strips for each of the

J(n) blades centred at the centre of each of theK(n) squarelets, we haveD(v, h) ≥ (p − q)(h −
1)r(n)− r(n)

2
, since all nodes that fall within this distance can be reached in≤ h − 1 hops for that

v. Hence,

{∩K(n)
k=1 ∩J(n)

j=1 ∩h−1
i=1 Ai,j,k}

⊆ {v : (p − q)(h − 1)r(n) − r(n)

2
≤ D(v, h) ≤ D(v, h) ≤ hr(n)} (4.1)

Since1 > p > q > 0, we can choosep − q = 1 − ǫ, for any given1 > ǫ > 0. For such a choice of

p andq, the event

{∩K(n)
k=1 ∩J(n)

j=1 ∩h−1
i=1 Ai,j,k}

⊆ {v :

(

(1 − ǫ)(h − 1) − 1

2

)

r(n) ≤ D(v, h) ≤ D(v, h) ≤ hr(n)}
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this circle is split by the 
blades

An example blade

there is a strip in the beginning of the blade here

squarelet

kth squarelet

d

centre of kth

r(n)

1 hop

h − 1 hops

blade that contains b2

from b1 to reach b2

in total h hops

r(n)√
2

r(n)√
2

r(n)

b2

b1

hr(n) + r(n)
2

· · ·

1 2
(h − 2)(p − q)r(n)

h − 2 h − 1

centre of kth

all the nodes falling here will have hop distance
≤ h − 1 from b1. So, the distance fromb1
to b2 can be no smaller than(h − 2)(p − q)r(n) − r(n)

2

jth blade

ith strip

Figure 4.1: Construction using the blades cutting the circumference of the circle of radiushr(n)+
r(n)

2
and the squarelet splitting the regionA.
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a(n)α

bl

hlr(n) + r(n)
2

u(n)

Figure 4.2: Construction to findJ(n).

P
n
(

∩K(n)
k=1 ∩J(n)

j=1 ∩h−1
i=1 Ai,j,k

)

≤ P
n{v :

(

(1 − ǫ)(h − 1) − 1

2

)

r(n) ≤ D(v, h) ≤ D(v, h) ≤ hr(n)} (4.2)

Now, we need to find the values ofJ(n) andK(n). To findJ(n), we need to define the following.

• a(n) is the length of the arc of radiushr(n) + r(n)
2

that lies within a blade, drawn takingk as

centre (k is the centre of thekth squarelet), as shown in Figure 4.2.

• α(n) : angle subtended bya(n) atk, see Figure 4.2.

Now we have,J(n) =
⌈

2π
α(n)

⌉

. We also have from Figure 4.2,
(

hr(n) + r(n)
2

)

α(n) = a(n) ≥

u(n) =
√

1 − p2r(n). Hence,α(n) ≥
√

1−p2

h+ 1
2

. So,J(n) ≤
⌈

2π(h+ 1
2
)√

1−p2

⌉

=

⌈

π(2h+1)√
1−p2

⌉

.
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We can find outK(n) =
⌈ √

2
r(n)

⌉2

. Now let us compute,

P
n
(

∩K(n)
k=1 ∩J(n)

j=1 ∩h−1
i=1 Ai,j,k

)

= 1 − P
n
(

∪K(n)
k=1 ∪J(n)

j=1 ∪h−1
i=1 Ac

i,j,k

)

≥ 1 −
K(n)
∑

k=1

J(n)
∑

j=1

h−1∑

i=1

P
n
(
Ac

i,j,k

)

≥ 1 − (h − 1)

⌈ √
2

r(n)

⌉2 ⌈

π(2h + 1)
√

1 − p2

⌉

(1 − u(n)t(n))n

≥ 1 − (h − 1)
2

c2

n

ln n

⌈

π(2h + 1)
√

1 − p2

⌉

e−nu(n)t(n)

= 1 − (h − 1)
2

c2

⌈

π(2h + 1)
√

1 − p2

⌉

1

ln n
n1−c2q

√
1−p2

n→∞−→ 1 iff c2 ≥ 1

q
√

1−p2
(4.3)

For brevity, we have carried out the calculation above without the ceiling onK(n), since the result

remains unaltered even with the ceiling. So, we get from Equations 4.2 and 4.3,

P
n{v :

(

(1 − ǫ)(h − 1) − 1

2

)

r(n) ≤ D(v, h) ≤ D(v, h) ≤ hr(n)}

≥ P
n
(

∩K(n)
k=1 ∩J(n)

j=1 ∩h−1
i=1 Ai,j,k

)

≥ 1 − (h − 1)
2

c2

⌈

π(2h + 1)
√

1 − p2

⌉

1

ln n
n1−c2q

√
1−p2

(4.4)

Let us define the following,Eh(n) = {v :
(
(1 − ǫ)(h − 1) − 1

2

)
r(n) ≤ D(v, h) ≤ D(v, h) ≤

hr(n)}. Then Equation 4.4 implies, asn → ∞, P
n(Eh(n)) = 1 −O

(
n1−c2q

√
1−p2

ln n

)

. So, we want,

c2 ≥ 1

q
√

1−p2
, for P

n(Eh(n))
n→∞−→ 1. We have already chosenp− q = 1− ǫ ⇒ q = p− (1− ǫ). To

keepc as small as possible (this is needed because it will keep ther(n) to be the smallest, which

is the radius of the geometric graph), we needq
√

1 − p2 as large as possible. So, we choose,

p = arg maxp(p− (1− ǫ))
√

1 − p2 =
1−ǫ+

√
(1−ǫ)2+8

4
, andq =

−3(1−ǫ)+
√

(1−ǫ)2+8

4
. By this choice,

p, q andc becomes function ofǫ. We will denote them byp(ǫ), q(ǫ) andc(ǫ) respectively. The

radius of the geometric graph,r(n, ǫ) = c(ǫ)
√

lnn
n

in turn also becomes a function ofǫ. Define,

Eh(n, ǫ) = {v :
(
(1 − ǫ)(h − 1) − 1

2

)
r(n, ǫ) ≤ D(v, h) ≤ D(v, h) ≤ hr(n, ǫ)}. Hence, for a
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given1 > ǫ > 0, writing g(ǫ) = q(ǫ)
√

1 − p2(ǫ), we get the following theorem.

Theorem 4 For 1 > ǫ > 0, if c2(ǫ) ≥ 1
g(ǫ)

, whereg(ǫ) = q(ǫ)
√

1 − p2(ǫ), andp(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
,

q(ǫ) =
−3(1−ǫ)+

√
(1−ǫ)2+8

4
,

P
n(Eh(n, ǫ)) = 1 −O

(

n1−c2(ǫ)g(ǫ)

ln n

)

Thus, lim
n→∞

P
n(Eh(n, ǫ)) = 1

A plot of g(ǫ) versusǫ is given in Figure 5.4, which shows that for smallerǫ, we need larger values

of c(ǫ) andr(n, ǫ).



Chapter 5

Distance Discretisation between A Fixed

Point and A Random Node

In this chapter, we will focus on the relationship of Euclidean and Hop distance between a node,

whose location is random, to a fixed point, e.g., an anchor. Ina large sensor field, the anchors

(also calledbeacons) are usually placed at fixed locations, e.g. at the 4 corners of a unit square,

and the nodes are deployed in some random fashion over the square. A high probability bound

on the Euclidean distance given a hop distance will help in determining a region where a certain

node is expected to lie, and it will be helpful for finding out the location of the node. We used this

Euclidean distance information yielded by the hop distanceto propose an algorithm for localisation

in the next chapter.

In Section 3.3, we find bounds on Euclidean distance for a given hop distance onarbitrary geo-

metric graphs in 2 dimensions, and show that for 2-D, the hop distance (HD) is not a good measure

of Euclidean distance (ED). However, when the node deployment is spatially homogeneous and

random, thus yielding an RGG, HD does become proportional toED in an approximate sense.

This has been explored in the sections to follow. For the RGG,nodes are distributed in a uniform

i.i.d. fashion overA ⊂ R
2, i.e., the location of each node is uniformly distributed overA, inde-

pendent of the locations of the other nodes. On such a deployment of nodes, we consider the RGG

with radiusr(n) = c
√

ln n
n

, c > 1√
π
, which ensures connectedness of the RGG with probability

57



5.1. HD-ED Relationship in Random Geometric Graphs 58

approaching 1, asn → ∞ (by Gupta and Kumar [9]). We find in Section 5.1 that given a HDh

from an anchor node (location fixed) on this RGG, the EDd between the anchor and the node lies

within an interval[(1− ǫ)(h−1)r(n), hr(n)] w.h.p.1, for ǫ > 0, with the convergence rate dictated

by theǫ chosen. We note that this result is different from the approximations of [20] or [27] where

d is assumed to be exactly proportional toh. Rather, nodes having hop distanceh from the anchor

lies within an interval described by the two bounds mentioned above. In Section 5.2, we show that

the rate of convergence can be improved if the radiusr does not vary withn. Of course, we need

to choosen large enough so that the radius for connectivity according to [9] is smaller thanr. We

extend both the results for the case ofrandomised lattice deployment2 in Section 5.3.

Our results are via bounds and provide a sufficient conditionfor the rate of convergence. However

in Section 5.4, we have considered Poisson deployment in 1-dimension for which these conditions

are necessary and sufficient for the construction considered. Finally in Section 5.5, we provide

simulation results to illustrate the theorems.

5.1 HD-ED Relationship in Random Geometric Graphs

In this section we will provide theoretical results concerning distance-hop proportionality in an

RGG. The setting and few notations are as follows. The setting and the notations are as follows.

Setting:

• n nodes are deployed on a unit areaA in the uniform i.i.d. fashion. The node locations are

random, and are denoted by the random vectorV ∈ An, with a particular realisation being

denoted byv = [v1, v2, · · · , vn] ∈ An, wherevi is the location of theith node. We denote

by P
n(.) the probability measure onAn so obtained.

• We form the RGGG(v, r(n)) by connecting the nodes that are within the radiusr(n) of

each other, wherer(n), the radius of the geometric graph is chosen so that the network

1w.h.p. (with high probability) means that the probability of the said event→ 1 asn → ∞
2A randomised lattice deployment is obtained as follows. TheareaA is partitioned inton equal area “cells”, e.g.,

squares, and one node is placed at a uniformly distributed random location in each cell.
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remains asymptotically connected. We taker(n) = c
√

ln n
n

, c > 1√
π
, a constant; this ensures

asymptotic connectivity (see [9]).

Notation:

• N = [n] = {1, 2, · · · , n}, the index set of the nodes, i.e., nodei ∈ N has a locationvi on

A.

• bl = Location of thelth anchor node,l = 1, · · · , L.

• Hl,i(v) = Minimum number of hops of nodei from anchorbl on the graphG(v, r(n)) for a

sample deploymentv.

• Dl,i(v) = Euclidean distance of nodei from anchorbl for the deploymentv.

Dl(v, hl) = max
{i∈N :Hl,i(v)=hl}

Dl,i(v)

Dl(v, hl) = min
{i∈N :Hl,i(v)=hl}

Dl,i(v)

Graphical illustration of the above two quantities is similar to Figure 3.2, withr replaced by

r(n).

In Section 5.1.1, we analyse the distribution of distance from one anchor node and in Section 5.1.2,

we generalise it forL anchors.

The choice of the radius,r(n) = c
√

lnn
n

, c > 1√
π
, does not only guarantee asymptotic connectivity

among the nodes, but also ensures connectivity of the nodes with all the anchors. The following

lemma states that there will be at least a node within a distancer(n) of each anchorbl, l = 1, · · · , L

w.h.p. and so the nodes are connected to all the anchors in a dense network. Define,Bl = {v : ∃ at

least one node within a radius ofr(n) from bl}, l = 1, · · · , L.

Lemma 6 limn→∞ P
n
(
∩L

l=1Bl

)
= 1

Proof: P
n
(
∩L

l=1Bl

)
= 1 − P

n
(
∪L

l=1B
c
l

)
≥ 1 −∑L

l=1 P
n{Bc

l } = 1 −∑L
l=1(1 − πr2(n))n ≥

1 − Le−nπr2(n) n→∞−→ 1, sincer(n) = c
√

ln n
n

and1 − x ≤ e−x.
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5.1.1 Distance distribution from a fixed anchorbl: Uniform i.i.d. deploy-

ment

We make the construction as shown in Figure 5.1. Frombl (without loss of generality, we can

choosel = 1), we draw a circle of radiushlr(n) centred atbl, this is the maximum distance

reachable inhl hops, by triangle inequality, since each hop can be of maximum lengthr(n). All

the nodes{i ∈ N : Hl,i(v) = hl} lie within this disk. So,Dl(v, hl) ≤ hlr(n) for all v. To obtain

a lower bound onDl(v, hl), we construct blades as shown in Figure 5.1. We start with oneblade.

It will cover some portion of the circumference of the circleof radiushlr(n); see Figure 5.1.

Construct the next blade so that it covers the adjacent portion of the circumference that has not

been covered by the previous blade. We go on constructing these blades until the entire portion of

the circle lying inside the unit squareA is covered (see Figure 5.1). Let us define,

• J(n) : Number of blades required to cover the part of the circle withinA.

• Bl
j : jth blade drawn from the pointbl as shown in Figure 5.1,1 ≤ j ≤ J(n).

On each of these blades, we constructhl strips, shown shaded in Figure 5.2,u(n) being the width

of the blade andt(n) the width of the strip. We define the following event.

• Al
i,j = {v: ∃ at least one node in theith strip ofBl

j}

If a v ∈ Al
i,j , ∀1 ≤ i ≤ hl − 1, 1 ≤ j ≤ J(n), i.e., there exists at least one node in each of

the hl − 1 strips (see Figure 5.2) for all the bladesBl
j , then for thatv, all nodes at a distance

< (p− q)(hl − 1)r(n) from bl are reachable in at mosthl − 1 hops, hence will have a hop distance

≤ hl − 1 < hl. So, we haveDl(v, hl) ≥ (p − q)(hl − 1)r(n), for such a deploymentv; see

Figure 5.2. Hence,

{∩J(n)
j=1 ∩hl−1

i=1 Al
i,j}

⊆ {v : (p − q)(hl − 1)r(n) ≤ Dl(v, hl) ≤ Dl(v, hl) ≤ hlr(n)} (5.1)



5.1. HD-ED Relationship in Random Geometric Graphs 61

hlr(n)

. . .

J(n) blades...

hl strips in each blade

bl

blade Bl
j

A

Figure 5.1: Construction using the blades cutting the circumference of the circle of radiushlr(n).

Since1 > p > q > 0, we can choosep − q to be equal to1 − ǫ, for the givenǫ > 0. So the lower

bound in Equation 5.1 becomes,(p − q)(hl − 1)r(n) = (1 − ǫ)(hl − 1)r(n).

To find the value ofJ(n), we need to define the following.

• a(n) is the length of the arc of radiushlr(n) that lies within a blade, drawn takingbl as

centre, as shown in Figure 5.3.

• α(n) : angle subtended bya(n) at bl , see Figure 5.3.

Now from Figure 5.1, we have,J(n) =
⌈

π
2α(n)

⌉

. We also have from Figure 5.3,hlr(n)α(n) =

a(n) ≥ u(n) =
√

1 − p2r(n). Hence,α(n) ≥
√

1−p2

hl
. So,J(n) ≤

⌈

πhl

2
√

1−p2

⌉

.
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Blade

· · ·
· · ·

r(n)r(n)

hl
1 2

u(n) =
√

1 − p2r(n)

t(n) = qr(n)

pr(n)

(p − q)(hl − 1)r(n)

hl − 1bl

Bl
j

all nodes that fall here will have hop distance≤ hl − 1 from bl

Figure 5.2: The construction withhl hops.

Now we compute,

P
n
(

∩J(n)
j=1 ∩hl−1

i=1 Al
i,j

)

= 1 − P
n
(

∪J(n)
j=1 ∪hl−1

i=1 Al
i,j

c
)

≥ 1 −
J(n)
∑

j=1

hl−1∑

i=1

P
n
(
Al

i,j

c)

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

(1 − u(n)t(n))n

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e−nu(n)t(n)

= 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e−nq
√

1−p2r2(n)

n→∞−→ 1 (5.2)

The first inequality comes from the union bound, the second inequality, from the upper bound on

J(n). The third inequality uses the result1 − x ≤ e−x. We see that if the node distribution was

non-homogeneous with positive density over all points inA, the term(1 − u(n)t(n))n could have

been replaced by(1−fminu(n)t(n))n, wherefmin is the minimum density overA and asfmin > 0,

the same convergence result would have been true even for non-homogeneous node placements.
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a(n)α(n)

bl u(n)

hlr(n)

Figure 5.3: Construction to findJ(n).

Let us define,Ehl
(n) = {v : (1 − ǫ)(hl − 1)r(n) ≤ Dl(v, hl) ≤ Dl(v, hl) ≤ hlr(n)}. So, we

have, for the givenǫ > 0, and using Equations 5.1 and 5.2,

1 ≥ P
n(Ehl

(n))

≥ P
n
(

∩J(n)
j=1 ∩hl−1

i=1 Al
i,j

)

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e−nq
√

1−p2c2 ln n
n (5.3)

which implies,

0 ≤ 1 − P
n(Ehl

(n)) ≤ (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e−q
√

1−p2c2 lnn (5.4)

And asn → ∞,

1 − P
n(Ehl

(n))

= O
(

e−q
√

1−p2c2 ln n
)

= O
(

1

nq
√

1−p2c2

)

(5.5)

This result is true for anyp andq. But we can choose these constants so that the convergence

→ 0 of the bound in Equation 5.5 is the most rapid, i.e.,p andq are chosen so as to maximise
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Figure 5.4:g(ǫ) vs ǫ plot.

q
√

1 − p2, thus making the upper bound to reduce at the fastest rate. For the givenǫ > 0, p − q =

1− ǫ ⇒ q = p− (1− ǫ). We can show that,p = arg maxp(p− (1− ǫ))
√

1 − p2 =
1−ǫ+

√
(1−ǫ)2+8

4
,

q =
−3(1−ǫ)+

√
(1−ǫ)2+8

4
. Then writing,g(ǫ) = q(ǫ)

√

1 − p2(ǫ), we obtain the following theorem,

Theorem 5 For a given1 > ǫ > 0, andr(n) = c
√

ln n
n

, c > 1√
π
, P

n(Ehl
(n)) = 1 −O

(
1

ng(ǫ)c2

)

,

whereg(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4
.

Remark: A plot of g(ǫ) vsǫ is given in Figure 5.4. We see thatg(ǫ) ↓ 0 asǫ ↓ 0. Hence Theorem 5

says thatlimn→∞ P
n(Ehl

(n)) = 1, for any1 > ǫ > 0, so we can expect a node having a HD of

hl from anchorbl to be within a distance[(1 − ǫ)(hl − 1)r(n), hlr(n)] from bl in a dense network.

We notice that the width of this band of uncertainty is roughly r(n), which is the unit of distance

measurement onG(v, r(n)). The theorem also says that the rate of convergence is governed by the

ǫ chosen, i.e., the smaller theǫ, the slower the rate of convergence.
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5.1.2 Distance distribution from fixed anchorsbl, l = 1, · · · , L: Uniform

i.i.d. deployment

For L anchors, the question arises whether the hop-distances from theL anchors arefeasibleor

not, e.g., if we denote a disk with centrea and radiusr, by C(a, r) = {z ∈ A : ||z − a|| ≤ r},

then a necessary condition for afeasibleh vector (h = [h1, · · · , hl, · · · , hL] ∈ N
L is the hop

distance vector) is that∩L
l=1C(bl, hlr(n)) 6= φ (there will be other feasibility conditions also). We

denote the set of allfeasibleh vectors byH(n) (note thatfeasibleh vector depends onn). We

see that∀h ∈ H(n), ∩L
l=1Ehl

(n) ⊇ ∩L
l=1 ∩J(n)

j=1 ∩hl−1
i=1 Al

i,j, which implies that (analysing similar to

Equation 5.2),

P
n
(
∩L

l=1Ehl
(n)
)

≥ P
n
(

∩L
l=1 ∩J(n)

j=1 ∩hl−1
i=1 Al

i,j

)

≥ 1 −
L∑

l=1

(hl − 1)

⌈

πhl

2
√

1 − p2

⌉

n−q
√

1−p2c2

⇒ P
n
(
∩L

l=1Ehl
(n)
)

= 1 −O
(

n−q
√

1−p2c2
)

Hence we get the following theorem,

Theorem 6 For a given1 > ǫ > 0, andr(n) = c
√

lnn
n

, c > 1√
π
, ∀h = [h1, · · · , hl, · · · , hL] ∈

H(n),

P
n
(
∩L

l=1Ehl
(n)
)

= 1 −O
(

1

ng(ǫ)c2

)

whereg(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4

This theorem tells us that for a feasibleh, the node lies within the intersection of the annuli of

inner and outer radii(1− ǫ)(hl − 1)r(n) andhlr(n) respectively, centred at anchorsbl, 1 ≤ l ≤ L,

with a probability that scales as shown in the above theorem.A graphical illustration of this is

shown in Figure 5.5 forL = 4.
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Figure 5.5: Graphical illustration of how Theorem 6 yields alocation region for a node that is at a
HD hl from anchorbl, 1 ≤ l ≤ 4.

5.2 HD-ED Relationship in Random Geometric Graphs: Fixed

Radius

The scaling ofr(n) with n as shown in the previous section ensures asymptotic connectivity and

increases the precision in localisation asn → ∞. But in a wireless sensor network the radiusr

of the RGG on which hop-distances are measured often corresponds to the radio range for a given

transmit power, and hence does not decrease withn. So, it is meaningful to use a fixed radiusr

for the RGG and it is denoted byG(v, r). But for connectivity, we need to use number of nodes

sufficient to make the network connected (i.e., the radius should scale withn like r(n) = c
√

lnn
n

,

c > 1√
π
, a constant; see [9] ), i.e., need at leastn0 = inf{n : r(n) ≤ r} nodes. Using a constant

value for radiusr, and redefiningEhl
= {v : (1 − ǫ)(hl − 1)r ≤ Dl(v, hl) ≤ Dl(v, hl) ≤ hlr},
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where the hop distance is measured on the RGGG(v, r), we can show (along similar lines as for

Equation 5.2),

1 ≥ P
n(Ehl

)

≥ P
n
(

∩J
j=1 ∩hl−1

i=1 Al
i,j

)

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e−nq
√

1−p2r2

(5.6)

whereJ ≤
⌈

πhl

2
√

1−p2

⌉

. Which implies, asn → ∞,

1 − P
n(Ehl

) = O
(

e−nq
√

1−p2r2
)

P
n(Ehl

) = 1 −O
(

e−nq
√

1−p2r2
)

(5.7)

So, we can state the following theorem,

Theorem 7 For a given1 > ǫ > 0, and a fixedr, P
n(Ehl

) = 1 −O
(

e−ng(ǫ)c2r2
)

,

whereg(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4
.

Hence,limn→∞ P
n(Ehl

) = 1. ForL anchors, we will get∀h ∈ H (note that the set of feasibleh

vectors,H, does not scale withn in this case),

1 − P
n(∩L

l=1Ehl
) = O

(

e−nq
√

1−p2r2
)

(5.8)

Hence we get the following theorem.

Theorem 8 For a given1 > ǫ > 0, and r fixed, ∀n ≥ n0 = inf{n : r(n) ≤ r}, ∀h =

[h1, · · · , hl, · · · , hL] ∈ H,

P
n
(
∩L

l=1Ehl

)
= 1 −O

(

e−ng(ǫ)r2
)
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Figure 5.6: 1000 nodes, 5 hops,ǫ = 0.4,
P

n(E1(n)) ≥ 0.37. r(n) = 0.1876.
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Figure 5.7: 5000 nodes, 5 hops,ǫ = 0.4,
P

n(E1(n)) ≥ 0.79. r(n) = 0.0931.
The thin dashed lines show the ED bounds given by Theorem 5, the thick solid line shows ED(h1 − 1)r(n) from

b1. r(n) = 4√
π

√
lnn
n

.

whereg(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4

Remark: We see that, for allh ∈ H, limn→∞ P
n
(
∩L

l=1Ehl

)
= 1, but with an exponential con-

vergence rate compared to the power law scaling in the previous section. But it also says that

the precision of localisation remains fixed atr rather than increasing withn like in the previous

section.

5.3 Extension to Randomised Lattice Deployment

In the previous sections we analysed the performance of ED-HD proportionality approximation for

uniform i.i.d. deployment. In this section we will prove a similar result for the randomised lattice

deployment. In randomised lattice node deployment, the unit area is split inton cells each of area

1
n
, and in each cell exactly one node is deployed, uniformly over the cell area. The locations of the

nodes in two different cells are independent of each other. We denote byP(n)
RL(.) the probability



5.3. Extension to Randomised Lattice Deployment 69

measure onAn so obtained (this is different from the uniform i.i.d. measure P
n(.)). We will show

that, for this deployment also the above theorems hold. Herewe consider the case in which the

radiusr(n) of the RGG scales withn as defined before. For fixedr, the theorem is valid too, which

can be proved in a similar way as done in Section 5.2.

We have the following notation,

• Si,j
k : area belonging to theith strip ofjth blade (refer to Figures 5.1 and 5.2) of areau(n)t(n)

that falls in thekth cell of the randomised lattice structure.

Thus,
∑n

k=1 Si,j
k = u(n)t(n), ∀1 ≤ i ≤ hl − 1, 1 ≤ j ≤ J(n). Since a single node is uniformly

distributed over each cell whose area is1
n
,

P
n
RL

(
Al

i,j

c)
=

n∏

k=1

(

1 − Si,j
k
1
n

)

=

n∏

k=1

(
1 − nSi,j

k

)

We see that,

n∑

k=1

(
1 − nSi,j

k

)
= n(1 − u(n)t(n))

∀1 ≤ i ≤ hl − 1

∀1 ≤ j ≤ J(n)

Now, we know that the arithmetic mean is no smaller than the geometric mean. It follows that,

P
n
RL

(
Al

i,j

c)
=

n∏

k=1

(
1 − nSi,j

k

)
≤
(

1

n

n∑

k=1

(1 − nSi,j
k )

)n

= (1 − u(n)t(n))n (5.9)

Hence we get (analysing similar to Equation 5.2, 5.3, 5.4 and5.5) the following theorem,

Theorem 9 For a given1 > ǫ > 0, andr(n) = c
√

ln n
n

, c > 1√
π
, P

n
RL(Ehl

(n)) = 1 −O
(

1

ng(ǫ)c2

)

,

whereg(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4
.
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Hence,limn→∞ P
n
RL(Ehl

(n)) = 1. Following a similar analysis as in Section 5.1.2 forL anchors,

we can state the following theorem for randomised lattice node deployment.

Theorem 10 For a given1 > ǫ > 0, andr(n) = c
√

lnn
n

, c > 1√
π
, ∀h = [h1, · · · , hl, · · · , hL] ∈

H(n),

P
n
RL

(
∩L

l=1Ehl
(n)
)

= 1 −O
(

1

ng(ǫ)c2

)

whereg(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4

5.4 ED bound on a Single Blade with Poisson Deployment

Here we consider another kind of deployment, where we pick the number of nodes with the distri-

bution Poisson(n) and deploy these nodes uniformly over the areaA. The number of nodes falling

in A is a random variable with meann, and since we are throwing the picked nodes uniformly over

A, the nodes falling in disjoint areas are independent and Poisson distributed with rate propor-

tional to the area considered. Hence, for disjoint strips with areau(n)t(n) each and the number of

node selection being Poisson(n), the number of nodes falling in each strip is Poisson(nu(n)t(n)),

independent and identically distributed. Let the probability law associated with this kind of de-

ployment be denoted byPn
Po(.). Let us focus our attention to a certain bladeBl

j as shown in

Figure 5.2 pivoted at the anchor locationbl. We also denote the maximum and minimum Eu-

clidean distance travelled by ahl hop path within this blade byD
Bl

j

l (v, hl) andD
Bl

j

l (v, hl) respec-

tively. Now, ensuring at least one node in each of thehl − 1 strips ofBl
j will ensure the event

E
Bl

j

hl
(n) = {v : (1 − ǫ)(hl − 1)r(n) ≤ D

Bl
j

l (v, hl) ≤ D
Bl

j

l (v, hl) ≤ hlr(n)} also occurs. So, we
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have for the givenǫ > 0,

1 ≥ P
n
Po(E

Bl
j

hl
(n))

≥ P
n
Po

(

∩hl−1
i=1 Al

i,j

)

=
(
1 − e−nu(n)t(n)

)hl−1

=
(

1 − n−c2q
√

1−p2
)hl−1

(5.10)

The second inequality comes because{v ∈ ∩hl−1
i=1 Al

i,j} ⊆ {v ∈ E
Bl

j

hl
(n)} and the first equality

comes because of the independence of the number of nodes due to Poisson deployment and disjoint

strips. Since in this deployment we are not using the union bound, the expression for probability

is exact. Hence the lower bound on the probability of the event E
Bl

j

hl
(n) is tighter, yet the rate

of convergence follows the power law (e−nu(n)t(n) = n−q
√

1−p2c2), which shows that the rate of

convergence is not affected by the union bound used in the case of uniform i.i.d. and randomised

lattice deployments.

5.5 Simulation Results

In this section, we illustrate Theorem 5 through simulation. We deployn nodes in uniform i.i.d.

fashion on the unit squareA, and form the geometric graphG(v, r(n)), wherer(n) = 4√
π

√
lnn
n

.

We also have 4 anchors at the 4 corners ofA.

5.5.1 Illustration of Theorem 5 with increasingn for a fixed ǫ and HD

Recall from Theorem 5, the Euclidean distance of a node from afixed anchor lies in[(1− ǫ)(h1 −
1)r(n), h1r(n)] with probability≥ 1 − (h1 − 1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

n−g(ǫ)c2 , for a givenǫ and a hop-

distanceh1 from anchorb1.

In this section, we fixǫ = 0.4 and hop-distanceh1 = 5 from anchorb1 located at the bottom-

left corner of the unit squareA. The results are summarised in Table 5.1 and illustrates howthe

theoretical bounds given in Theorem 5 becomes tighter as we increase the number of nodesn,
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n r(n) (1 − ǫ)(h1 − 1)r(n) D1 D1 h1r(n) PLB EP

1000 0.1876 0.4494 0.6934 0.9053 0.9362 0.37 1

2000 0.1391 0.3336 0.5196 0.6678 0.6950 0.61 1

3000 0.1166 0.2796 0.4313 0.5590 0.5826 0.70 1

4000 0.1028 0.2465 0.3761 0.4929 0.5136 0.75 1

5000 0.0931 0.2235 0.3428 0.4559 0.4655 0.79 1

6000 0.0859 0.2062 0.3123 0.4191 0.4295 0.81 1

Table 5.1:(1−ǫ)(h1−1)r(n) andh1r(n) are found from Theorem 5.D1 andD1 are the maximum
and minimum EDs from anchor1 given the hop-distanceh1 = 5. The theoretical Probability Lower

Bound (PLB) =1 − (h1 − 1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

e−ng(ǫ)r2(n), and the Empirical Probability (EP) is found

from this experiment.r(n) = 4√
π

√
ln n
n

, ǫ = 0.4.

keeping the hop-distanceh1 andǫ fixed. In this simulation, we usedh1 = 5 andǫ = 0.4.

Figures 5.6 and 5.7 show the theoretical bounds given by Theorem 5, and only those nodes are

shown that have a hop-distanceh1 = 5 from anchorb1, for 1000 and 5000 nodes respectively.

5.5.2 Illustration of Theorem 5 with decreasing HD for a fixedn and a fixed

lower bound on probability

In this section, we have fixed the number of nodesn = 5000 and also fixed the lower bound

on probability that the node lies within the bound of[(1 − ǫ)(h1 − 1)r(n), h1r(n)] (as given by

Theorem 5) at0.80. Figures 5.9, 5.10 and 5.11 show that as we decrease the hop-distanceh1, the

bound on the ED becomes tighter, which implies that if we keepthe lower bound fixed, theǫ that

achieves that lower bound will be smaller for smaller hop-distances, as predicted by Theorem 5.
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Figure 5.8: 5000 nodes, 12 hops.
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Figure 5.9: 5000 nodes, 10 hops.
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Figure 5.10: 5000 nodes, 8 hops.
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Figure 5.11: 5000 nodes, 5 hops.
The thin dashed lines show the ED bounds given by Theorem 5, the thick solid line shows ED(h1 − 1)r(n) from

b1. For all the cases,Pn(E1(n)) ≥ 0.80. r(n) = 4√
π

√
ln n
n

. For 5000 nodes,r(n) = 0.0931.
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n (1 − ǫ)(h1 − 1)r D1 D1 h1r PLB EP

1000 0.2560 0.3483 0.4574 0.5000 0.0000 1

2000 0.2560 0.3479 0.4677 0.5000 0.0000 1

3000 0.2560 0.3775 0.4835 0.5000 0.0000 1

4000 0.2560 0.3741 0.4843 0.5000 0.2906 1

5000 0.2560 0.3831 0.4897 0.5000 0.7733 1

6000 0.2560 0.3705 0.4826 0.5000 0.9275 1

Table 5.2: Radiusr = 0.1, h1 = 5, ǫ = 0.36. The theoretical PLB =1 − (h1 −
1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

e−ng(ǫ)r2
. Abbreviations are as defined in Table 5.1.

5.5.3 Illustration of convergence in probability for the geometric graph with

fixed radius

Recall from Theorem 7, the Euclidean distance of a node from afixed anchor lies in[(1− ǫ)(h1 −
1)r, h1r] with probability≥ 1− (h1 −1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

e−ng(ǫ)r2
, for a givenǫ and a hop-distanceh1

from anchorb1.

In this section, we fix the radius of the graphG(v, r), r = 0.1 and takeh1 = 5, ǫ = 0.36. The

simulation results are summarised in Table 5.2, which showsthat for smallern, the lower bound

of probability (as given by Equation 5.6) is weak, but the convergence rate, due to its exponential

nature, is very rapid with the increase inn.



Chapter 6

Application to Node Localisation

Localisation is defined as the procedure for estimating the location of a node. In a wireless sensor

network setup, we use the information of hop distance of a node from the anchor nodes to estimate

the location. Usually, the anchor nodes are fixed at some points on the region to be monitored and

the nodes are deployed randomly over the area. So, for the localisation application, we will use the

fixed point to random node theorems from Chapter 5.

The setup for this application is as follows.n nodes are deployed uniform i.i.d. on a unit area

A = [0, 1]2. We consider the geometric graph with radiusr(n) on this node placements. The

hop-distance corresponds to the hops over this geometric graphG(V, r(n)) in this chapter. We

introduce an algorithm called Hop Count-derived Distance-based Localisation (HCDL), which

is explained in detail in the next section, to estimate the location of each node. Also, to use this

algorithm, we need the information of the radiusr(n). We provide a scheme to estimater(n) using

the ED and HD between the anchor nodes only. We compare the performance of this algorithm

with HCRL, proposed by Yang et al. [27], and PDM, proposed by Lim and Hou [17]. Both

techniques are discussed in Section 2.4.
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6.1 Algorithm: Hop Count-derived Distance-based Localisa-

tion (HCDL) 1

From Theorem 5, we know that given a hop distanceh from a fixed anchor located at one of the

corners of the unit square, the Euclidean distance lies in[(1 − ǫ)(h − 1)r(n), hr(n)] w.h.p. Also,

with multiple anchors, the node is expected to be in the intersection of all these annuli as given by

Theorem 6 and shown in Figure 5.5. The algorithm HCDL exploits this fact. The algorithm is as

follows.

6.1.1 The Algorithm

STEP 1: (Initialisation) Given the geometric graphG(V, r(n)) and the corresponding radius

r(n), each node finds the hop-distances from theL anchors and sets up its ownh = [h1, · · · , hL]

vector, wherehl is the hop distance of the node fromlth anchor (This can be carried out by a

distributed Bellman-Ford algorithm).

STEP 2: (Region of Intersection)Pick a certain node, pick itsh vector as found fromSTEP 1,

set anǫ, small enough, and find the region of intersection formed by the annuli of radii[(1−ǫ)(hl−
1)r(n), hlr(n)] centred at thelth anchor location,l = 1, · · · , L, for that tagged node.

STEP 3: (Terminating Condition) Check if the region of intersection is non-empty, otherwise

increase the value ofǫ. For a finite number of nodesn and a small enoughǫ, it is possible that the

annuli do not have a common region. A graphical illustrationis given in Figure 5.5 for 4 anchors.

The value ofǫ for which an intersection is found, can be different for different nodes. Hence, this

step can be stated as follows.

IF there is an intersection, declare the centroid of the regionof intersection as the estimate of the

node. GO TOSTEP 4.

ELSE increaseǫ by an amountk, 0 < k < 1. GO TOSTEP 2.

1This is a joint work with Venkatesan N.E. and Prof. P. Vijay Kumar
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STEP 4: (Repetition)RepeatSTEP 2to STEP 3for all n nodes.

STEP 5: STOP

Time complexity of HCDL: Assuming that given a region of intersection, the computation of the

centroid is of constant time, the time complexity to find the hop distances ofn nodes from theL

anchors isO(n2). Hence,STEP 1completes inO(n2) time. After getting the hop distances, we

are increasing theǫ in each iteration and if there is an intersection in the annuli, we compute the

centroid, which is anO(1/k) (k is the step size of the increment ofǫ) computation. So, for each

node the time complexity of theSTEPS 2 to 4is O(1/k). Forn nodes, it isO(n/k). Hence, the

time complexity of HCDL algorithm isO(n2) + O(n/k).

6.1.2 Estimating the value ofr(n)

We notice that the choice ofr(n) only requires the network to be connected, and hence we can

use the critical graph (the connected geometric graph with smallest radius for a certain node de-

ployment) for localisation using HCDL. Algorithm that gives the critical graph or any geometric

graph does not usually give the value of the radius of that geometric graph (e.g., the DISCRIT

algorithm proposed by Acharya in [1] gives an approximationof Gcrit(V), but does not give the

rcrit), thus, compelling us to find out an estimate of the truer(n) (r̂(n)) using the hop distance

between the anchors and the Euclidean distance between them. In the following, we illustrate one

such method to estimate ther(n) using the HD and ED between the anchors and the point-node

theory (Chapter 5).

Assume two anchorsbl1 and bl2 with their locations fixed and a hop-distanceh between them.

Being anchors, the Euclidean distance between them,dl1l2 is known. From this information, we

want to get an estimate of the radiusr(n) of the geometric graph using the point-node theory of

ED-HD relationship only (Chapter 5). For that, we pick an intermediate nodek on the shortest path

betweenbl1 andbl2 , such that the node is nearest to the straight line joiningbl1 andbl2 , as shown in

Figure 6.1. Denoting the vertical distance ofk from the straight line asw, we claim that,w ≤ r(n).

The argument is as follows, if we consider the node that is onehop away frombl1 in the shortest

path betweenbl1 andbl2 , it lies within a circle of radiusr(n) of bl1 . Hence its vertical distance from
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this distance≤ r(n)

Figure 6.1: Construction to show howr(n) is estimated inG(V, r(n)) using the ED and HD
between the anchors only and the node-point theory.

the straight line cannot be more thanr(n) (see Figure 6.1), and since we are considering the node

that is closest to the line, hence,w ≤ r(n). We can state this result in the form of the following

lemma.

Lemma 7 A node on the shortest path between two fixed anchorsbl1 and bl2 and closest to the

straight line joining them, is no farther thanr(n) from the line.

Let us denote the hop distance betweenbl1 andk by h1 and that betweenk andbl2 by h2, and the

Euclidean distances byd1 andd2 respectively. Sincek is on the shortest path betweenbl1 andbl2 ,

h = h1 + h2. The perpendicular fromk on the straight line joiningbl1 andbl2 , divides the line into

two parts of lengthd1,s andd2,s as shown in Figure 6.1. We see thatdl1l2 = d1,s + d2,s, and by

triangle inequality,dl1l2 ≤ hr(n). Following is the calculation to find out a lower bound ondl1l2 .

d1,s =
√

d2
1 − w2, d2,s =

√

d2
2 − w2

Now, according to Theorem 5,di ≥ (1− ǫ)(hi −1)r(n), i = 1, 2 w.h.p. and we know,h = h1 +h2
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andw ≤ r(n). Hence,

di,s =
√

d2
i − w2 ≥

√

[(1 − ǫ)2(hi − 1)2r2(n) − r2(n)]+, i = 1, 2 (6.1)

Where,x+ = max{0, x}, the above is true since distance cannot be negative.

∴ dl1l2 = d1,s + d2,s ≥ r(n)
(√

[(1 − ǫ)2(h1 − 1)2 − 1]+ +
√

[(1 − ǫ)2(h2 − 1)2 − 1]+
)

⇒ hr(n) ≥ dl1l2 ≥ r(n)
(√

[(1 − ǫ)2(h1 − 1)2 − 1]+ +
√

[(1 − ǫ)2(h2 − 1)2 − 1]+
)

⇒ dl1l2

h
≤ r(n) ≤ dl1l2

√

[(1 − ǫ)2(h1 − 1)2 − 1]+ +
√

[(1 − ǫ)2(h2 − 1)2 − 1]+
(6.2)

All the above statements are w.h.p. The quantityr(n) is highly probable to lie within this interval

asn → ∞, but we do not have the distribution ofr(n) within this interval. So, with this infor-

mation, if we need to estimater(n), we should choose a distribution that gives the largest entropy.

For a continuous random variable with bounded support, the uniform distribution is the entropy

maximiser. Hence, the estimate ofr(n) is,

r̂(n) ≈ 1

2

(

dl1l2

h
+

dl1l2
√

[(1 − ǫ)2(h1 − 1)2 − 1]+ +
√

[(1 − ǫ)2(h2 − 1)2 − 1]+

)

We notice that, the choice of a nodek explained above, only gives usw ≤ r(n), which is true even

if we takek to be the node one hop away frombl2 andh − 1 hops away frombl1 on the shortest

path betweenbl1 andbl2 (instead of takingk to be the node nearest to the straight line joiningbl1

andbl2). The inequality of Equation 6.1 still holds and the estimate of r(n) given by Equation 6.2

remains valid. Hence,h1 = h − 1 andh2 = 1, andr̂(n) = 1
2

(

d
h

+ d√
(1−ǫ)2(h−2)2−1

)

.

This is how we estimate ther(n) for a pair of anchors. For localisation we haveL anchors and
(L

2

)

pairs of anchors, each of which will yield an estimate ofr(n). In HCDL, we use an average

of all these
(L

2

)

values of̂r(n) to get the final estimatēr(n) of r(n) for a givenǫ.

Figures 6.2 and 6.3 show the error histograms ofr̂(n) for ǫ = 0.02 and0.2 respectively. While

simulating the HCDL with the true value ofr(n), it was found that the maximum value ofǫ over
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Figure 6.2:r(n) estimation error forǫ = 0.02
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Figure 6.3:r(n) estimation error forǫ = 0.20

r(n) = 2√
π

√
lnn
n

, 1000 nodes, 100 runs, 100 bins in[−0.02, 0.02].

all nodes remains near the value of0.2, and the minimum was close to0.02 (the starting value ofǫ

was taken to be0.01 and was increased in steps of0.01(= k)). This was the reason to choose these

values forǫ. In both the cases, it turns out that the error in estimatingr(n) was within±0.010.

6.2 Simulations implementing HCDL onGcrit(V)

In this section, we try out the HCDL algorithm on the criticalgraph formed byn nodes deployed

uniform i.i.d. onA = [0, 1]2. We know from Chapter 5 that for the point-node theory, there

is no restriction in choosing the radiusr(n), other than requiring the network to be connected.

Hence we can chooser(n) to be the critical radius itself and hence can try out the algorithm on

the critical graphGcrit(V). We take the number of anchors,L = 4, placed at the 4 corners of

the unit square. We start withǫ = 0.01 and increase with step sizek = 0.01. In each step of

increasingǫ, we computēr(n) and use that value for computing the intersection of the annuli

of radii [(1 − ǫ)(hl − 1)r̄(n), hlr̄(n)], l = 1, · · · , L. Figure 6.4 shows the error pattern of the

localisation of 1000 nodes using HCDL and Figures 6.5 and 6.6show the error pattern for the same

node deployment with the localisation strategy being PDM and HCRL respectively. Figure 6.7

shows the comparison between the CDFs of localisation errors in the three strategies.

The simulation results clearly show that for the same node deployment, the HCDL algorithm,
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Figure 6.4: HCDL: 1000 nodes.
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Figure 6.5: PDM: 1000 nodes.
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Figure 6.6: HCRL: 1000 nodes.
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Figure 6.7: Comparison of error CDFs.
This error pattern is found by joining the true location of a node with its estimated location.rcrit was0.0583 for the

three error pattern plots.
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which uses the fact of the ED-HD relationship in a random geometric graph, performs better in es-

timating the node locations than HCRL, which uses the heuristic of ED being directly proportional

to HD, or PDM, that approximates Euclidean distance distance vector of a node from anchor nodes

to be a linear transformation of the corresponding hop-distance vector.

6.3 A Heuristic for Localisation

In this section, we present a heuristic way of localising nodes depending upon the empirical distri-

bution of the d
hrcrit

. To find the empirical distribution, we take the Euclidean distanced of a node

from a fixed anchor, find the corresponding hop-distanceh over the critical geometric graph, find

the ratio d
hrcrit

, repeat it for all nodes and plot the histogram. For plottingthe histogram, we use the

truercrit value, whereas during the localisation, where we will use this empirical distribution, we

estimate the value ofrcrit as explained in Appendix B. Once we have this empirical distribution

of d
hrcrit

, we know how the EDd is distributed, given the hop-distance and the estimated critical

radiusrcrit. We use ED distribution from a finite number of anchors to get the location distribution

of the nodes and then we do an MMSE estimate to locate the nodes. The approach has been de-

scribed in detail in Appendix B. Despite having only empirical verification of the distribution and

a simplifying assumption of independence of the distances from the 4 anchors, it performs better

than the HCDL algorithm.



Chapter 7

Real Scenarios

The theorems presented in the Chapters 3, 4 and 5, use the geometric graph abstraction of the

wireless sensor network. We proved results assuming the node deployment being either uniform

i.i.d., randomised lattice or Poisson, all of which are homogeneous deployment overA. In Sec-

tion 7.1.1, we show that for positive non-homogeneous deployment density of nodes on a unit area,

the theorems still remain valid.

In this chapter, we consider cases where the node deploymentdensity hits zero at certain regions

of the network, or the radiation pattern of the antennae of the sensor nodes are directional, or the

radio propagation on the wireless media is susceptible to fading and shadowing. We note that, if

it is possible to construct a geometric graph in a distributed asynchronous fashion, over a network

with the above mentioned non-idealities, localisation could have been done using HCDL as before.

So, in such environments, one solution approach to localisation might be to construct the geometric

graph by some means and apply HCDL, or another approach is to localise without constructing the

geometric graph by some different algorithm.

In this chapter, we do not introduce any new algorithm for localisation in anisotropic environment.

But in Section 7.2, we assume a model for radiation anisotropy and apply HCDL on the graph given

by the anisotropic model. It turned out that the performancein terms of location error distribution

is approaching that of the true geometric graph as number of nodes become large.
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7.1 Non-homogeneous node deployment

7.1.1 Node deployment density is positive on all points

Let vi be the location of theith node onA and the distribution of the nodef(vi) > 0, ∀vi ∈ A.

We have shown in Section 5.1.1, that even with this kind of a node placement, the Theorems 5

and 6 hold in the point-node case. This is because, in Equation 5.2, the probabilityPn
(
Al

i,j
c)

can

now be upper bounded by(1−fminu(n)t(n))n, wherefmin is the minimum density of a node over

A, and the upper bound still→ 0 asn → ∞ as long asfmin > 0. Although, a small value of

fmin will affect the rate of convergence of the probabilityP
n{v : (1 − ǫ)(hl − 1)r(n) ≤ Dl(v, hl)

≤ Dl(v, hl) ≤ hlr(n)} to 1 and we will need more nodes to guarantee the Euclidean distance to

lie within the bounds given mentioned before with a high probability.

7.1.2 Node deployment density hits zero at some points

If f(vi) = 0, for somevi ∈ A (regions with such points are also calledholes), the ED and HD

ceases to be proportional, and the localisation algorithmsthat uses the proportionality between

them, performs worse. This is because, if there is a hole in the path between the node and the

anchor, the relationship derived in the previous chapters are no longer valid and the hop-distance

multiplied by the radius of the geometric graph is much larger than the true Euclidean distance.

This phenomena has been illustrated in Figure 7.1.

This issue has been addressed in the paper by Li and Liu [16], where they propose a new algorithm

called REndered Path (REP). This algorithm tries to figure out the true ED between two nodes from

the path information and the shape of the holes. The assumption there is that the number of holes

and their boundary information is known. Also they assume that outside the holes the node density

is homogeneous and the ED-HD proportionality is valid there. When a hole comes in between the

node and an anchor, the shortest path takes a route over the boundary of the hole, and using several

geometric propositions, they prove that the true ED can be figured out in such a setup. Now, with

a ED information about a node from 3 anchors, the same triangulation technique can be applied

to estimate the location of the node. The complexity of REP isclaimed to beO(nL), wheren is
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Figure 7.1: We see that the shortest path from the anchor to the tagged node takes a path along the
boundary of the hole on the geometric graph. Hence, ED is no longer proportional to HD in this
setup.

the number of nodes andL is the number of holes (This is the complexity when the hop distance

information between the nodes is available beforehand).

In a node deployment with holes, we can have the following observations:

1. The number of anchor nodes need to be higher in the case of non-homogeneity. Our previous

examples with 4 beacons would not suffice since there might beholes in the path. Hence,

the anchors should be large in number and deployed uniformlyover the non-hole region, and

localisation using 3 nearest anchors is expected to give an accurate estimate of the location.

In [16], the typical number of anchors is in the multiples of 10.

2. Regarding the ED-HD relationship in node-node case, we need the hop-distance to be larger.

Hence, we need a dense deployment of nodes so thatr(n) decreases and the hop-distance be-

tween the node and an anchor increases. But we recall that theresult presented in Chapter 4

was a sufficient condition. We also need to find a necessary condition for node-node ED-HD

relationship, which will be helpful in localisation using randomly placed anchor nodes.
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7.2 Anisotropic radiation

In real networks, the radiation pattern of the antennae of the sensor nodes are anisotropic. So, the

nodes experience different gains depending on the locationand random orientation of the antenna.

In this section, we have taken an easier model for the antennaanisotropy and tested the localisation

algorithm HCDL using the network formed by such nodes and compared its performance with the

corresponding isotropic network. The anisotropic antennamodel is shown in Figure 7.2, and the

orientation axis of the antenna of a node is picked uniformlyover[0, 2π]. And two nodes share an

edge if and only if they are withinr(n) of each other and also one node is in the angular spreadθ

of the other and vice-versa.

Figures 7.3 to 7.6 (on the left are the graphs formed for isotropic radiation pattern and on the left

the same for anisotropic; we tookθ = π
2

andr(n) = 2√
π

√
lnn
n

for these simulations) show that the

geometric graph formed by such a radiation pattern is sparser than that of the isotropic one. There

are few isolated nodes for 1000 nodes, which diminishes asn increases to 5000. In Figures 7.7

to 7.10, we show the error patterns of the nodes with isotropic and anisotropic radiation patterns

for a certain deployment for 1000 and 5000 nodes. In the anisotropic case, we have eliminated the

isolated nodes from the error computing. The CDF of the location errors is given in Figures 7.11

and 7.12. We can observe from the simulation outputs that with the increase inn, not only the

geometric graph becomes connected, but also the ED starts following some relationship with HD,

similar to the theorems stated in previous chapters. That iswhy, the error CDF for the anisotropic

radiation comes closer to that for isotropic as we increasen from 1000 to 5000.

A proposition: We can figure out the isotropic geometric graph from the anisotropic radiation

pattern setup through collaborating with the first hop neighbours of each node. Even if a node is

not connected to another node, which is withinr(n) of it on A, because of anisotropy, it is highly

probable that some of its neighbours must be having a link with it when the node density is high.

It is, therefore, seems reasonable to disseminate information about the neighbours among nodes to

figure out the true geometry of the isotropic geometric graph.
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Figure 7.2: The setup for the Anisotropic Network.
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Figure 7.3: GG for 1000 nodes: Isotropic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Corresponding G(V,r(n)): Anisotropic

Figure 7.4: GG for 1000 nodes: Anisotropic.
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Figure 7.5: GG for 5000 nodes: Isotropic.
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Figure 7.6: GG for 5000 nodes: Anisotropic.
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Figure 7.7: Error for 1000 nodes: Isotropic.
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Figure 7.8: Error for 1000 nodes: Anisotropic.
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Figure 7.9: Error for 5000 nodes: Isotropic.
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Figure 7.10: Error for 5000 nodes: Anisotropic.
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Figure 7.11: Error CDF comparison for 1000
nodes.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Location error CDF for Isotropic and Anisotropic approaches

location error (5000 nodes, 1 run) ======>

E
m

pi
ric

al
 C

D
F

 

 
HCDL−ISO
HCDL−ANISO

Figure 7.12: Error CDF comparison for 5000
nodes.

7.3 Anisotropic propagation

The propagation of radio signals in wireless networks are susceptible to non-idealities like fading,

shadowing etc. In absence of all these the radio propagationis affected by only path loss, and

the received power decreases monotonically with distance.This monotonicity is lost whenever the

non-idealities are taken into consideration. The geometric graph will not be a good model of the

communication graph for that kind of network, since a node far away in Euclidean distance may

be connected whereas a nearer node may not be. Hence there will not be any upper bound on ED

given the HD, as we had in a geometric graph.



Chapter 8

Conclusions and Work Ahead

From the discussions of the previous chapters, we can conclude the following.

1. We have proved hop-distance is approximately proportional to Euclidean distance in a dense

random geometric graph with positive density of nodes on allpoints in an area.

2. We were able to prove a sufficient condition for the proportionality between the ED and HD

for point-point (Chapter 3) and node-node (Chapter 4) cases, which requires the radius of

the geometric graph to be scaled in a certain fashion. We see that this radius is larger than

the radius for the network to be just connected (the criticalradius). Future scope of work in

this area is in finding a necessary condition for this proportionality.

3. In point-node case (Chapter 5), however, we proved that given HD= h, (1 − ǫ)(h − 1)r <

ED ≤ hr w.h.p. The parameterǫ provides a trade-off between ED-HD proportionality and

the rate of convergence of the desired probability to1. This theory does not require any

specific scaling of the radius of the geometric graph and hence, can be used for the critical

graph.

4. We used the node-point theory in localising nodes in Chapter 6, and proposed an algorithm

HCDL, which can be used on any geometric graph including the critical graph and uses only

the information of the hop-distances of a node from the 4 anchors. This is the same informa-

tion required for the HCRL algorithm, but HCDL gives a much better location estimate than
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HCRL.

We illustrated a heuristic algorithm in Appendix B using thed
hrcrit

distribution, which per-

forms better than both HCDL and HCRL in localisation. Futurescope of work is in formal-

ising this approach theoretically.

5. In Chapter 7, we discussed about some challenging issues in a real wireless sensor network,

e.g., anisotropy in antenna radiation patterns and in radiopropagation. We also looked into

networks withholes, where the proposal of using more number of anchor nodes and revision

of node-node theory can be looked into in future.

Simulation results show that HCDL performs well even in a dense network having nodes

with anisotropic antenna radiation patterns. It compels tothink that a result similar to node

point theory is true even for this kind of a setup. Formalising this observation is also a future

work.



Appendix A

Proof of Lemma 1

The setting for this lemma is as described in Section 3.3 and as depicted in Figure 3.5. We had an

hl + 1 sided regular polygon with sides of lengthr. We deleted a certain edgesd and increased all

angles except the two adjacent to the deleted edge by a small amountδ. The resulting figure is as

shown in Figure A.1. The length of edgesd in this new figure isr1. We restate the lemma.

Lemma: Forhl > 2 and0 < δ < 4π
hl+1

, r1 > r

Proof: Each of the internal angles except the adjacent angles ofsd is φ = (hl−1)π
hl+1

+ δ (see Fig-

ure A.1) and angles adjacent tosd are,

φ′ =
1

2
[total internal angle− (hl − 1) × φ]

=
1

2

[

(hl − 1)π − (hl − 1)

(
(hl − 1)π

hl + 1
+ δ

)]

=
(hl − 1)π

hl + 1
− (hl − 1)

2
δ hl > 2 (A.1)

It can be easily proved1 that the angle bisectors of all these internal angles meet atthe pointc as

shown in Figure A.2. Now, we apply sine rule in the triangles△sdc and△sp1c, wherep1 is the

adjacent node ofs other thand (see Figure A.2).z is the length of the line segment connectings

andc. For△sdc,

1It can be shown that(π − φ′) + 2(π − φ
2
− φ′

2
) + (hl − 2)(π − φ) = 2π

93



Chapter A. Proof of Lemma 1 94

r1

rr

r

d

s

φ

φ′

φ′ φ

φ

φ

φ

φ

r

r

rr

Figure A.1:φ = (hl−1)π
hl+1

+ δ andφ′ = (hl−1)π
hl+1

−
(hl−1)

2
δ.

d

s
r

z

π − φ′

p1

φ′

2

π − φ
2
− φ′

2

c

r1

φ
2

Figure A.2:c is the point where the angle bisec-
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r1

sin(π − φ′)
=

z

sin φ′

2

z =
r1

2 cos φ′

2

(A.2)

and for△sp1c,

z

sin φ
2

=
r

sin(π − φ
2
− φ′

2
)

z =
r sin φ

2

sin
(

φ+φ′

2

) (A.3)

Eliminatingz from these two equations, we get,

r1 =
2r sin φ

2
cos φ′

2

sin φ
2

cos φ′

2
+ cos φ

2
sin φ′

2
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Now we have,φ−φ′

2
= hl+1

4
δ andφ+φ′

2
= (hl−1)π

hl+1
− (hl−3)

4
δ. Hence, to show,

r1 > r

⇒ r1 − r > 0

⇒ r
sin φ−φ′

2

sin φ+φ′

2

> 0

⇒ r
sin hl+1

4
δ

sin
(

(hl−1)π
hl+1

− (hl−3)
4

δ
) > 0 (A.4)

For the numerator to be positive,π > hl+1
4

δ > 0 ⇒ 4π
hl+1

> δ > 0. For the denominator, the

condition is 4(hl−1)π
(hl+1)(hl−3)

> δ > 0, for hl ≥ 3. Together, the condition onδ is 4π
hl+1

> δ > 0, to have

r1 > r, for hl > 2 (sincehl−1
hl−3

> 1 and so, 4(hl−1)π
(hl+1)(hl−3)

> 4π
hl+1

, ∀hl ≥ 3). Hence proved.



Appendix B

Localisation using the Empirical

Distribution of d
hrcrit

This localisation algorithm depends on the histogram ofd
hrcrit

found by taking the ratio of Eu-

clidean distance of 1000 nodes, deployed uniform i.i.d. over A = [0, 1]2, from the fixed anchor

at the origin to the product of the hop-distance, measured onGcrit(V), of the node and the corre-

sponding critical radiusrcrit. Figure B.1 shows the histogram, where we took 200 bins in[0, 1].

From the critical graph, we find out the hop-distances of a node from the 4 anchors and call it the

hop-distance vectorhi = [hi,1 hi,2 hi,3 hi,4] ∈ N
4. If vi is the location of theith node onA,

andhi be the hop-distance vector, we know that the location of thatnode is uniquely determined

by the distancesdi,l, l = 1, 2, 3, 4 (di,l = Euclidean distance betweenith node location (vi) andlth

anchor location (bl), i.e.,||vi − bl||) from the anchors. So, we can write the following.
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Histogram.

f(vi|hi, rcrit) = f(vi|hi,1, · · · , hi,4, rcrit)

=
f(hi,1, · · · , hi,4|vi, rcrit)f(vi, rcrit)

f(hi,1, · · · , hi,4, rcrit)
Bayes theorem

∝ f(hi,1, · · · , hi,4|vi, rcrit)

≈
4∏

l=1

f(hi,l|vi, rcrit)

=

4∏

l=1

f(vi|hi,l, rcrit)f(hi,l, rcrit)

f(vi, rcrit)

∝
4∏

l=1

f(vi|hi,l, rcrit) (B.1)
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The assumption in the proportionality of step 3 is the independence ofrcrit with the node location

vi (then the factorf(vi, rcrit) = f(vi)f(rcrit) becomes independent ofvi). But we know, the

critical radius is roughlyc
√

ln n
n

, c > 1√
π
, by Gupta-Kumar [9], which is independent of the node

locations. The approximation in the fourth step can be argued as follows. If the anchors are spaced

far apart, so that given the node locationvi, the shortest path of the node from the anchors are non-

intersecting, the assumption of independence of hop-distance givenvi is reasonable. That is why

we took the 4 anchors at the 4 corners ofA, and shortest path are most likely to be non-intersecting.

Let us denoteX = d
hrcrit

and its distribution byfX(.). Assuming the random variableX to be

independent of the hop-distance, we compute,

f(vi|hi,l, rcrit)

=







fX

„

||vi−bl||

hi,lrcrit

«

R

vi∈Ri,l
fX

„

||vi−bl||

hi,lrcrit

«

dvi

∀vi ∈ Ri,l = {v : ||v − bl|| ≤ hi,lrcrit} ∩ A

0 otherwise

(B.2)

We see that the denominator of the first term above is independent of the locationvi. Therefore,

f(vi|hi, rcrit) ∝
4∏

l=1

f(vi|hi,l, rcrit)

∝







∏4
l=1 fX

(
||vi−bl||
hi,lrcrit

)

vi ∈ ∩4
l=1Ri,l

0 otherwise

=







∏4
l=1 fX

(
di,l

hi,lrcrit

)

vi ∈ ∩4
l=1Ri,l

0 otherwise

(B.3)

With this distribution of node location, we now use the minimum mean square error (MMSE)

estimate of the node location. Hence the location of nodei is estimated as,

v̂i = E(vi|hi, rcrit) =

∫

vi∈∩4
l=1Ri,l

vif(vi|hi, rcrit)dvi (B.4)
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Gcrit(V) can be found using a distributed algorithm, but the information aboutrcrit may not be

known. So, we use the following technique to estimate the critical radius. We use the ED and HD

information between the anchors. LetD andH be the ED and HD between a pair of anchors and

both are known apriori. Hence all the distributions and expectations used in the following analysis

are given these two. Now we need to find the distribution of thecritical radiusR givenD andH,

using the distribution ofX = d
hR

(i.e.,fX). We assume,X to be independent ofD andH. Hence,

we have,

FR(r|D ∈ [d, d + ∆d), H = h) = P(R ≤ r|D ∈ [d, d + ∆d), H = h)

= P

(
d

hX
≤ r|D ∈ [d, d + ∆d), H = h

)

≈ P

(

X ≥ d

hr

)

=

∫ 1

d
hr

fX(y)dy sinceX ∈ [0, 1]

= 1 − FX

(
d

hr

)

(B.5)

The approximation on the third line is due to the independence assumption. Differentiating,

fR(r|D ∈ [d, d + ∆d), H = h) =
d

hr2
fX

(
d

hr

)

(B.6)

Now, for MMSE estimate ofR, we have,

R̂ = E(R|D ∈ [d, d + ∆d), H = h) =

∫ ∞

d
h

rfR(r|D ∈ [d, d + ∆d), H = h)dr

since0 ≤ d
hr

≤ 1, henced
h
≤ r ≤ ∞

=

∫ ∞

d
h

r
d

hr2
fX

(
d

hr

)

dr

=

∫ ∞

d
h

d

hr
fX

(
d

hr

)

dr

=

∫ 0

1

zfX(z)

(

− d

hz2

)

dz let d
hr

= z, dr = − d
hz2 dz

=

∫ 1

0

d

hz
fX(z)dz (B.7)
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Figure B.2: Localisation error CDFs of MMSE, HCDL, PDM & HCRL.

We carry out this integration numerically in the following way. For a certain pair of anchorsp (there

are 6 such pairs for 4 beacons), denoting the ED and HD betweenthem bydp andhp respectively,

r̂crit,p = Ep(rcrit|dp, hp) (B.8)

We have found the d
hrcrit

distribution using 200 bins in[0, 1], let the bin vector be represented by

valuej, j = 1, 2, · · · , 200, and we have the corresponding probability massesπ(valuej). So, the

above expression is calculated according to Equation B.7 as,

r̂crit,p = Ep(rcrit|dp, hp)

=

200∑

j=1

dp

hpvaluej
π(valuej) (B.9)
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Finally,

r̂crit =
1

6

6∑

p=1

r̂crit,p (B.10)

This is our final estimate forrcrit. We will use this value ofrcrit for location estimate.

Figure B.2 shows the error CDF of such an approach and compares it with the other three ap-

proaches, viz. HCDL, PDM and HCRL. Figures B.3 to B.6 show error pattern plots for these

different schemes on one such deployment. It shows that thisheuristic approach performs better

than the other three approaches.
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